
Econ 250 Winter 2009
Assignment 2 - Solutions

1. For a restaurant, the time it takes to deliver pizza (in minutes) is uni-
form over the interval (25, 37). Determine the proportion of deliveries
that are made in less than half an hour.

Solution: Let X be the time it takes to deliver pizza. Then,

X ∼ U [25, 37].

The proportion of deliveries that are made in less than half an hour is
simply

P (X < 30) =
∫ 35

27

dx

37− 25

= 5× 1
12

= 0.4167

2. The length of an aluminum-coated steel sheet manufactured by a cer-
tain factory is approximately normal with mean 75 centimeters and
standard deviation 1 centimeter. Find the probability that a randomly
selected sheet manufactured by this factory is between 74.5 and 75.8
centimeters.

Solution: Let L denote the length of an aluminum-coated steel sheet.
Then,

L ∼ N [75, 1].

The probability that L is between 74.5 and 75.8 cm is

P (74.5 ≤ L ≤ 75.8) = P (
74.5− 75√

1
≤ L− 75√

1
≤ 75.8− 75√

1
)

= P (−0.5 ≤ L ≤ 0.5)
= Fz(0.5)− Fz(−0.5)
= Fz(0.5)− (1− Fz(0.5))
= 2Fz(0.5)− 1 = 2× 0.6915− 1 = 0.383

3. Let X, the grade of a randomly selected student in the first midterm
of ECON250, be a normal random variable. A professor is said to
grade the test on the curve if he finds the average µ and the standard
deviation σ of the grades and then assigns letter grades according to
the following table.
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Range of the grade Letter grade
X ≥ µ+ σ A

µ+ σ > X ≥ µ B
µ > X ≥ µ− σ C

µ− σ > X ≥ µ− 2σ D
X > µ− 2σ F

Suppose that the professor grades the test on the curve. Determine the
percentage of the students who will get A,B,C,D, and F, respectively.
Note: this kind of grading scheme is actually not permitted at Queen’s.

Solution: We can interpret the probability that one student will get a
particular grade as the fraction of all students that will get that grade.
So the percentage of students that will get an A is simply

P (X ≥ µ+ σ) = P (
X − µ
σ

≥ µ+ σ − µ
σ

)

= P (Z ≥ 1)
= 1− P (Z ≤ 1)
= 1− Fz(1) = 0.1587

The percentage of students that will get a B is

P (µ+ σ > X ≥ µ) = P (
µ+ σ − µ

σ
>
X − µ
σ

≥ µ− µ
σ

)

= P (1 > Z ≥ 0)
= Fz(1)− Fz(0)
= 0.8413− 0.5000 = 0.3413

The percentage of students that will get a C is

P (µ > X ≥ µ− σ) = P (
µ− µ
σ

>
X − µ
σ

≥ µ− σ − µ
σ

)

= P (0 > Z ≥ −1)
= Fz(0)− Fz(−1)
= 0.5000− (1− 0.8413) = 0.3413

The percentage of students that will get a D is

P (µ− σ > X ≥ µ− 2σ) = P (
µ− σ − µ

σ
>
X − µ
σ

≥ µ− 2σ − µ
σ

)

= P (−1 > Z ≥ −2)
= Fz(−1)− Fz(−2)
= (1− 0.8413)− (1− 0.9772) = 0.1559
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The percentage of students that will fail is

P (X > µ− 2σ) = P (
X − µ
σ

>
µ− 2σ − µ

σ
)

= P (Z ≥ −2)
= 1− P (Z ≤ 2)
= 1− Fz(2) = 0.0228

4. Suppose that 90% of the patients with a certain disease can be cured
with a certain drug.

a. What is the approximate probability that, of 50 such patients, at
least 45 can be cured with the drug?

b. Approximate the same probability but using the continuity cor-
rection.

Solution: This is a binomial question. A success occurs is a patient
can be cured with a certain drug. The probability of a success is 0.9.
Let X be the number of successes in 50 trials. Then, the probability
that there are at least 45 successes in 50 trials is

P (X ≥ 45) =
50∑

x=45

(
50
45

)
0.9x0.150−x

This is difficult to compute directly, so we can approximate it using
the normal distribution. We know that when nπ(1 − π) > 9 the
approximation is good. In this case, nπ(1−π) = 50×0.9×0.1 = 4.5 < 9
so the approximation may not be very good. Proceeding anyway, we
know that approximatelyX ∼ N(50·0.9, 0.9·0.1·50) orX ∼ N(45, 4.5).

a. Then,

P (X ≥ 45) ≈ P (
X − 45√

4.5
≥ 45− 45√

4.5
)

= P (Z ≥ 0)
= 1− Fz(0)
= 1− 0.5 = 0.5
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b. Applying the continuity correction we have

P (Xle45) ≈ P (X ≥ 45.5)

= P (
X − 45√

4.5
≥ 44.5− 45√

4.5
)

= P (Z ≥ −0.24)
= 1− Fz(−0.24)
= 1− (1− Fz(0.24)) = 0.5948

The exact value for the binomial probability is 0.616123. So we see
that when the normal approximation is not very good, the continu-
ity correction can be very large and provide a large improvement in
accuracy.

5. The weight of a single 9-ounce bag of potato chips has an N(9.12, 0.15)
distribution. Consider taking a sample of bags of chips and calculating
the average weight of the sample.

a. What is the probability of a 3-bag average falling between 9.08
and 9.16 ounces?

b. What is the probability of a 30-bag average falling between 9.08
and 9.16 ounces?

c. What is the probability of a 150-bag average falling between 9.08
and 9.16 ounces?

d. If the weights were known to have a mean of 9.12 ounces and
a standard deviation of 0.15 ounces but the distribution of the
weights was unknown, what would you be able to say about the
probabilities you calculated in parts (a), (b), and (c)? Would any
of them still be reasonable accurate?

Solution: Let W be the weight of a single 9-ounce bag of potato
chips. Then,

W ∼ N(9.12, 0.15)

a. Since the data is normally distributed and independent, the sam-
pling distribution of the sample mean, X̄ is

N(9.12,
0.15

3
)
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for a 3-bag sample. Then,

P (9.08 ≤ X̄ ≤ 9.16) = P (
9.08− 9.12√

0.15/3
≤ Z ≤ 9.16− 9.12√

0.15/3
)

= P (−0.18 ≤ Z ≤ 0.18)
= Fz(0.18)− Fz(−0.18)
= Fz(0.18) + Fz(0.18)− 1 = 0.1428

b. Again, since the data is normally distributed and independent,
the sampling distribution of the sample mean, X̄ is

N(9.12,
0.15
30

)

for a 30-bag sample. Then,

P (9.08 ≤ X̄ ≤ 9.16) = P (
9.08− 9.12√

0.15/30
≤ Z ≤ 9.16− 9.12√

0.15/30
)

= P (−0.57 ≤ Z ≤ 0.57)
= Fz(0.57)− Fz(−0.57)
= Fz(0.57) + Fz(0.57)− 1 = 0.4314

c. With a 150-bag sample, the sampling distribution of the sample
mean, X̄ is

N(9.12,
0.15
150

)

. Then,

P (9.08 ≤ X̄ ≤ 9.16) = P (
9.08− 9.12√

0.15/150
≤ Z ≤ 9.16− 9.12√

0.15/150
)

= P (−0.18 ≤ Z ≤ 0.18)
= Fz(1.26)− Fz(−1.26)
= Fz(1.26) + Fz(1.26)− 1 = 0.7924

d. As the above calculations make clear, the larger the sample size,
the higher the chances that the sample mean will be close to the
population mean. In fact, for sample size of 30, the probability
that the sample mean is within 0.08 of the population is about
43% which is not terribly high. It shoots to about 80% for a
sample size of 150. If the distribution shape is unknown, then
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the sampling distribution is approximately normal for large n
due to the CLT. So we would expect that if we didn’t know the
shape of the distribution that the result in c) would still be valid
while the result in a) would be very suspicious. The result in b)
would be a very rough answer but not completely invalid.

6. Plastic bags used for packaging produce are manufactured so that
the breaking strengths of the bags are normally distributed with a
standard deviation of 1.8 pounds per square inch. A random sample
of 16 bags is selected.

a. The probability is 0.01 that the sample standard deviation of
breaking strengths exceeds what number?

b. The probability is 0.15 that the sample mean exceeds the popu-
lation mean by how much?

c. The probability is 0.05 that the sample mean differs from the
population mean by how much?

Solution: Let B be the breaking strength of a plastic bag. Then,

B ∼ N(µ, 1.82)

where the population mean is denoted by µ as it is not given. Let
X̄ be the sample mean of the 16 plastic bags. Then, the sampling
distribution of X̄ is N(µ, 1.82

16 ).

a. Please ignore, we didn’t cover this.

b. Let the sample mean exceed the population mean by at least x
so that X̄ > µ+ x. Then, we are given that

P (X̄ > µ+ x) = 0.15

After standardization, we have

P (X̄ > µ+ x) = P (
X̄ − µ
1.8/4

>
µ+ x− µ

1.8/4
)

= P (Z > x/0.45) = 0.15

or
1− P (Z ≤ x/0.45) = 0.15

implying
P (Z ≤ x/0.45) = 0.85
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Now, doing a reverse lookup on the tables we find that Fz(1.04) =
0.8508. Therefore, x/0.45 = 1.04 implying that x = 0.468. Hence,
the probability that the sample mean exceeds the population
means by 0.47 is 0.15.

c. We essentially need to apply the same logic as in b) except that
we need to allow the sample mean to be either larger or smaller
than the population mean. Let the difference be d so that

µ− d ≤ X ≤ µ+ d

Now, we know that P (µ − d ≤ X ≤ µ + d) = 0.05. Then,
proceeding as in b) we have

P (µ− d ≤ X ≤ µ+ d) = P (
µ− d− µ

0.45
≤ X − µ

0.45
≤ µ+ d− µ

0.45
)

= P (
−d
0.45

≤ Z ≤ d

0.45
)

= Fz(d/0.45)− Fz(−d/0.45)
= Fz(d/0.45)− (1− Fz(d/0.45))
= 2Fz(d/0.45)− 1 = 0.05

Hence,
Fz(d/0.45) = 0.525

Moreover, doing a reverse lookup on the tables we have Fz(0.06) =
0.524 which is close enough. Hence, d/0.45 = 0.06 or d = 0.027.
In other words, the probability that the sample mean differs from
the population mean by 0.06 is 0.05.

7. Independent random samples of accounting professors and information
systems (IS) professors where asked to provide the number of hours
they spend in preparation for each class. The sample of 321 IS pro-
fessors had a mean time of 3.01 preparation hours, and the sample of
94 accounting professors had a mean time of 2.88 hours. From similar
past studies that population standard deviation for the IS professors
is assumed to be 1.09 and similarly the population standard deviation
for the accounting professors is 1.01 and the population means are the
same. What is the probability that the IS professors mean preparation
time is at least 30 minutes more than accounting professors? Repeat
the calculations for at least 15 minutes and at least 5 minutes and
comment.
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Solution: This is a difference in means question. Let X1,i denote the
preparation time of the ith accounting professor and let X2,i denote
the preparation time of the ith IS professor. Then, let X̄1 =

∑n1
i=1

X1,i

n1

and X̄2 =
∑n2

i=1
X2,i

n2
be the sample means of the preparation times of

the accounting and IS professors respectively. Also, let µ1, µ2 and σ1,
σ2 be the population mean preparation times and standard deviations
for the two types of professors.

From the question, we know that X̄1 = 3.01, n1 = 94 and X̄2 =
2.88, n2 = 321. The populations standard deviations are 1.01 and
1.09 for accounting and IS professors respectively. Then, we want
to know what is the probability that X̄2 will exceed X̄1 by at least
30 minutes. Noting that both n1 and n2 are large and appealing to
the CLT, we know that the sampling distribution of the difference in
means is N(µ2 − µ1,

σ2
1
n1

+ σ2
2
n2

). Then,

P (X̄2 − X̄1 ≥ 30) = 1− P (X̄2 − X̄1 ≤ 0.5)

= 1− P (
X̄2 − X̄1 − (µ2 − µ1)√

σ2
1
n1

+ σ2
2
n2

≤ 0.5− (µ2 − µ1)√
σ2
1
n1

+ σ2
2
n2

)

= 1− P (Z ≤ 0.5√
1.012

94 + 1.092

321

)

= 1− Fz(4.14) = 0

That is the probability of such a large difference in the sample means
is practically zero. Repeating the calculation for 15 minutes, we have

P (X̄2 − X̄1 ≥ 30) = 1− P (X̄2 − X̄1 ≤ 0.25)

= 1− P (
X̄2 − X̄1 − (µ2 − µ1)√

σ2
1
n1

+ σ2
2
n2

≤ 0.25− (µ2 − µ1)√
σ2
1
n1

+ σ2
2
n2

)

= 1− P (Z ≤ 0.25√
1.012

94 + 1.092

321

)

= 1− Fz(2.07) = 0.02

The probability of a 15 minute difference is about 2%. In other words,
if we were to sample repeatedly using these sample sizes about 2%
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of the time, we would get a difference exceeding 15 minutes. Lastly,
repeating the calculation for 5 minutes, we have

P (X̄2 − X̄1 ≥ 30) = 1− P (X̄2 − X̄1 ≤ 0.0833)

= 1− P (
X̄2 − X̄1 − (µ2 − µ1)√

σ2
1
n1

+ σ2
2
n2

≤ 0.0833− (µ2 − µ1)√
σ2
1
n1

+ σ2
2
n2

)

= 1− P (Z ≤ 0.0833√
1.012

94 + 1.092

321

)

= 1− Fz(0.69) = 0.25

Here we see the probability has jumped to about a quarter. So, a
5 minute difference in the sample mean preparation times occurs in
about 1 out 4 samples.
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