# Chapter 7

# **Estimation:Single Population**

# 7.1 Introduction

- So far we have seen how to study the characteristics of samples (sampling distributions)
- Now we can formalize that by discussing *statistical inference*, how to learn about populations from random samples.
- 1. *Estimation* (Chapter 8-9)–Using observed data to make informed "guesses" about unknown parameters
- 2. *Hypothesis Testing* (Chapter 10)– Testing whether a population has some property, given what we observe in a sample.

# 7.2 Some Principles

- Suppose that we face a population with an unknown parameter.
- A sample statistic which we use to estimate that parameter is called an *estimator*, and when we apply this rule to the sample we have an *estimate* or a *point estimate*. [See *Transparency 8.1*]
- A simple example: Estimate  $\mu$  by  $\bar{X}$ .
- The estimator is  $\overline{X}$  and the estimate is a specific number we get when we calculate the sample mean.
- Note the actual value we calculate for the sample mean (like 4.2) is a **realization** of a random variable and is called the **estimate**
- The estimator,  $\bar{X}$  is a random variable (i.e. it has a distribution).

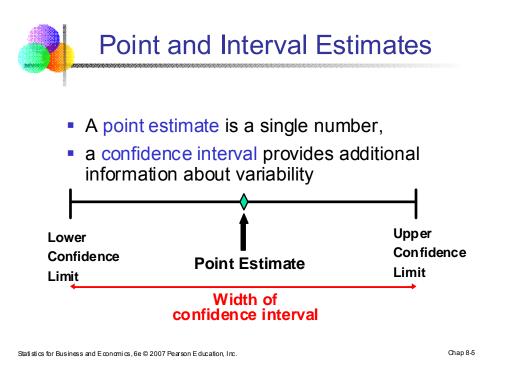


Figure 7.1:

# 7.3 Desirable Properties in Choosing Estimators

### 7.3.1 Unbiasedness

- An estimator is unbiased if its expectation equals the population parameter.
- for instance, denote the true population parameter by  $\theta$  and the estimator by  $\hat{\theta}$ , we say  $\hat{\theta}$  is an **unbiased estimator** of  $\theta$

$$E[\hat{\theta}] = \theta$$

• Accordingly, we can define **bias** as

$$Bias(\hat{\theta}) = E[\hat{\theta}] - \theta$$

• We have seen that:

$$E[\bar{X}] = \mu \quad and \quad E[s^2] = \sigma^2. \tag{7.1}$$

• Clearly the sample mean and sample variance are unbiased estimators.

### 7.3. DESIRABLE PROPERTIES IN CHOOSING ESTIMATORS



| We can estimate a Population Parameter |   | with a Sample<br>Statistic<br>(a Point Estimate) |  |
|----------------------------------------|---|--------------------------------------------------|--|
| Mean                                   | μ | x                                                |  |
| Proportion                             | Р | p                                                |  |

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 8-6



• The point of unbiasedness is not that we can check this directly, for we do not know the true values of  $\mu$  and  $\sigma^2$ .

• The point is that whatever values they take, the **average** of our estimators will equal those values.

• The *sampling distribution* of the estimator is centered over the population parameter.

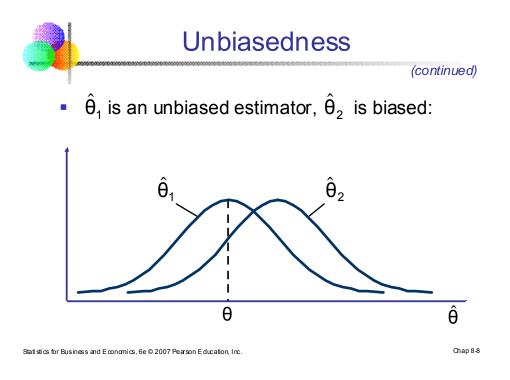
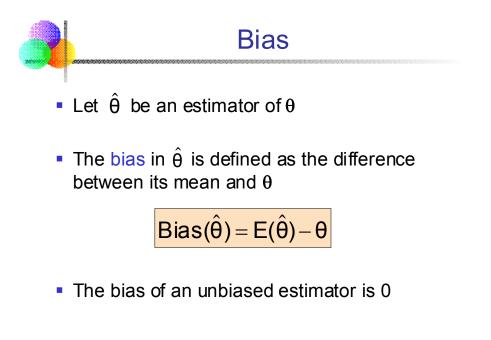
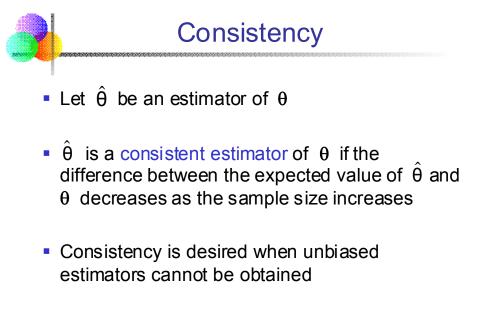


Figure 7.3:



Chap 8-9

Figure 7.4:



Chap 8-10

Figure 7.5:

### 7.3.2 Efficiency: Minimum Variance

• A second criterion to apply in choosing an estimator is that it should have as **small** a **sample variance** as possible.

#### Example:

- Suppose we want to estimate  $\mu$  and we have two samples to choose from, one with 100 observations and one with 200 observations.
- Because the variance of  $\bar{X}$  is  $\sigma^2/n$  we will have a smaller variance by using the larger sample, though both are unbiased.
- We say that the estimator using the larger number of observations is more *efficient*.

# 7.4 Minimum Variance Unbiased Estimator

• Let  $\hat{\theta}$  be an unbiased estimator and let  $\tilde{\theta}$  be any other unbiased estimator of  $\theta$ .

#### 7.5. CONFIDENCE INTERVAL ESTIMATOR

• If  $V[\hat{\theta}] \leq V[\tilde{\theta}]$ , for any  $\tilde{\theta}$ , then  $\hat{\theta}$  is a minimum variance unbiased estimator of  $\theta$ .

• We can show that  $\bar{X}$  is a minimum variance unbiased estimator of  $\mu$ .

### 7.4.1 Relative Efficiency

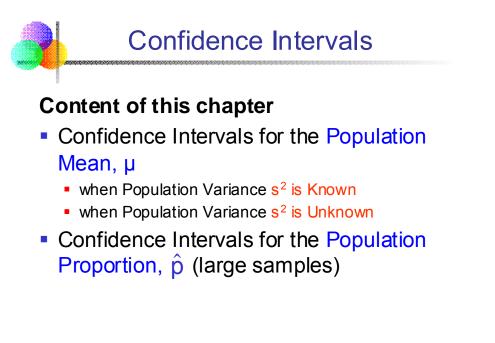
• The relative efficiency of  $\hat{\theta}$  to  $\tilde{\theta}$ 

Relative Efficiency = 
$$\frac{V[\hat{\theta}]}{V[\hat{\theta}]}$$

- For the minimum variance unbiased estimator this ratio is always greater than 1.
- The median is less efficient than the sample mean in estimating the population mean

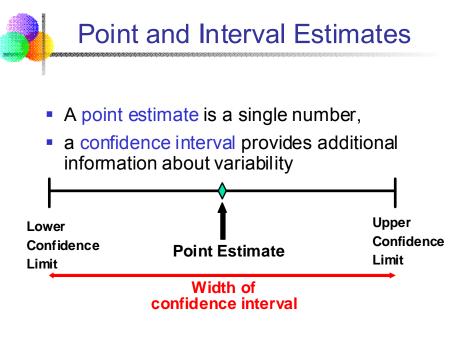
# 7.5 Confidence Interval Estimator

- So far we have seen simple examples of **point estimates**.
- But often we would like to **estimate a range** which **might** bracket the true parameter.
- These ranges are called **interval estimates or confidence intervals**. [See *Transparency 8.4*].
- A confidence interval extimator for a population parameter is a rule for determining (based on sample information) a range, or interval that is likely to include the parameter.
- The corresponding estimate is called a confidence interval estimate.



Chap 8-3

Figure 7.6:



Chap 8-5

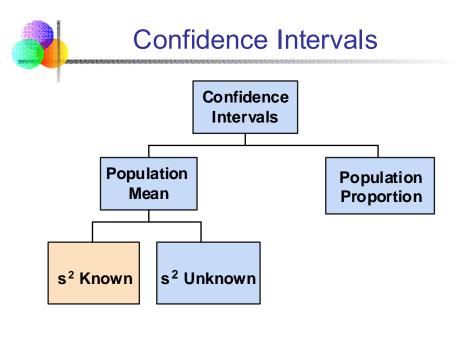
Figure 7.7:



| We can estimate a Population Parameter |   | with a Sample<br>Statistic<br>(a Point Estimate) |  |
|----------------------------------------|---|--------------------------------------------------|--|
| Mean                                   | μ | x                                                |  |
| Proportion                             | Р | p                                                |  |

Chap 8-6

Figure 7.8:

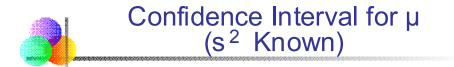


Chap 8-18

Figure 7.9:

# 7.6 Example: Population Variance $\sigma^2$ Known

• Let us take an unrealistic but simple example in which we know  $\sigma^2$  but do not



- Assumptions
  - Population variance s<sup>2</sup> is known
  - Population is normally distributed
  - If population is not normal, use large sample
- Confidence interval estimate:

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(where  $z_{_{\alpha/2}}$  is the normal distribution value for a probability of  $\alpha/2$  in each tail)

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 8-19

Figure 7.10:

• Then we know that

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$
(7.2)

- Because the estimator  $\bar{X}$  is unbiased, this statistic has a mean of zero.
- We can see from the tabulated, standard normal distribution that there is a probability of .025 that Z < -1.96 and a probability of .025 that Z > 1.96. [See *Transparency 8.3*].
- Let us call the sum of those two cut-off probabilities  $\alpha$ .
- And let us call the cut-off points  $-Z_{\alpha/2}$  and  $Z_{\alpha/2}$ .
- Then the area between these points is 0.95 and  $\alpha = .05$  (so  $Z_{\frac{.05}{2}} = 1.96$ )

$$P(-Z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < Z_{\alpha/2}) = 1 - \alpha, \qquad (7.3)$$

• We can (after some careful thinking about inequalities) obtain:

$$P(\bar{X} - Z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}) = 1 - \alpha.$$
(7.4)

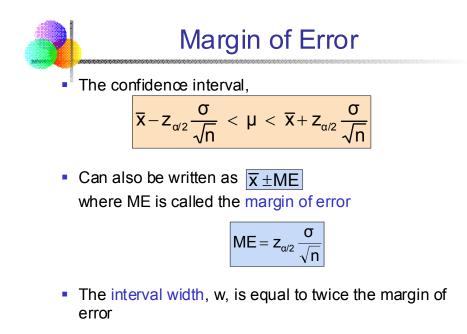
• This gives us a 100 (1- $\alpha$ ) % confidence interval for the population mean  $\mu$ :

$$\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

[See Transparencies 8.4 and 8.6].

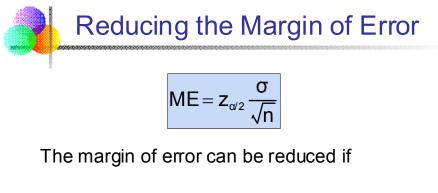
• Margin of error (the sampling error, the bound, or the interval half width) is given by

$$ME = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$



Chap 8-20

Figure 7.11:



- the population standard deviation can be reduced (s?)
- The sample size is increased (n?)
- The confidence level is decreased,  $(1 \alpha)$ ?

Chap 8-21



# 7.7 Example of a Confidence Interval

- Ten patients are given a sleep inducing drug in clinical trials. The average increase in sleep is  $\bar{X} = 1.58$  hours.
- Now suppose, unrealistically, that we know that  $\sigma^2 = 1.66$ .
- Then with n = 10 our 95 percent confidence interval for  $\mu$  is:

$$\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1.58 \pm 1.96 \frac{\sqrt{1.66}}{\sqrt{10}} = (.78, \ 2.38)$$
 (7.5)

### 7.8 Notes and Interpreting Confidence Intervals

- We know that
- $P(\bar{X} Z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}) = 1 \alpha.$ (7.6)

#### 7.8. NOTES AND INTERPRETING CONFIDENCE INTERVALS 17

However from the above example we **cannot** say:

$$P(.78 \le \mu \le 2.38) = .95 \tag{7.7}$$

• Once we have calculated the confidence interval (the realization of a random variable) *μ* is either in or out (ie. **probability is zero or 1**)

### 7.8.1 Appropriate Interpretation of a Confidence Interval

- Imagine that we select another sample then work out another confidence interval and if we keep taking additional samples (of the same size) then we obtain a set of confidence intervals.
- We can say that 95% of these confidence intervals contain the true  $\mu$ .
- We do not know whether any particular interval contains  $\mu$  or not.

### 7.8.2 Notes on Confidence Intervals

- 1. Notice that the for a given  $\alpha$ , the confidence interval is smaller as n (sample size) increases.
- 2. If we wish to make a more confident statement (a smaller  $\alpha$ ) then the confidence interval must be wider (i.e.  $Z_{\alpha/2}$  is larger)
- 3. If  $\sigma$  increases, the confidence interval increases.

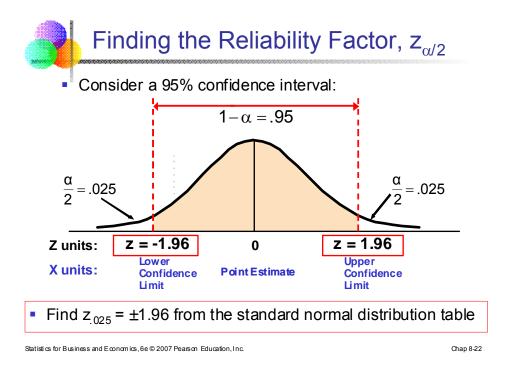


Figure 7.13:



 Commonly used confidence levels are 90%, 95%, and 99%

| Confidence<br>Level | $\begin{array}{c} \text{Confidence} \\ \text{Coefficient,} \\ 1 - \alpha \end{array}$ | $Z_{a/2}$ value |  |
|---------------------|---------------------------------------------------------------------------------------|-----------------|--|
| 80%                 | .80                                                                                   | 1.28            |  |
| <b>90%</b>          | .90                                                                                   | 1.645           |  |
| <b>95</b> %         | .95                                                                                   | 1.96            |  |
| 98%                 | .98                                                                                   | 2.33            |  |
| <b>99%</b>          | .99                                                                                   | 2.58            |  |
| 99.8%               | .998                                                                                  | 3.08            |  |
| <b>99.9%</b>        | .999                                                                                  | 3.27            |  |

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Figure 7.14:

Chap 8-23

# Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

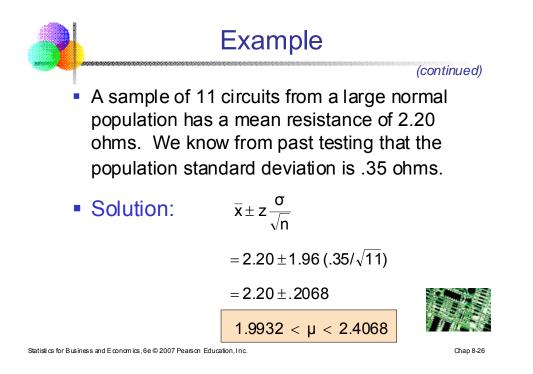


Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 8-25

Figure 7.15:

#### 7.9. UNKNOWN VARIANCE AND THE STUDENT'S T DISTRIBUTION 21





# 7.9 Unknown Variance and the student's t distribution

- With this background, we can now take the usual applied situation where we do not know  $\sigma$ .
- If we replace  $\sigma$  by an unbiased estimate, the sample standard deviation in our standardized test statistic we get:

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}} \tag{7.8}$$



- Consider a random sample of n observations
  - with mean  $\overline{x}$  and standard deviation s
  - from a normally distributed population with mean μ
- Then the variable

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

follows the Student's t distribution with (n - 1) degrees of freedom

Statistics for Business and Economics, 6e © 2007 Pears on Education, Inc.

Chap 8-29

Figure 7.17:

### 7.9. UNKNOWN VARIANCE AND THE STUDENT'S T DISTRIBUTION 23

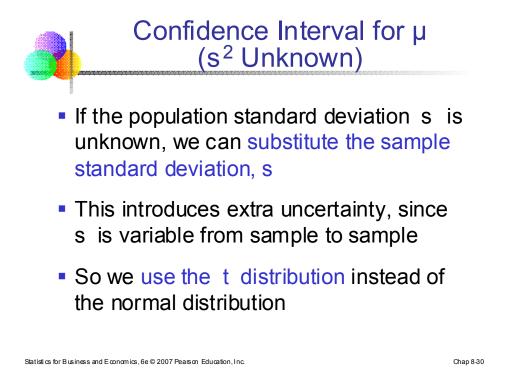


Figure 7.18:

• This statistic is distributed as a t distribution

### 7.9.1 Notes on the student's t distribution

- 1. If we have many samples, this statistic varies across them for two reasons: because  $\bar{X}$  and s both will tend to differ from sample to sample.
- 2. This contrasts with the sample variation in Z which arose only because of variation in  $\bar{X}$ .
- 3. This new statistic will be more variable and its distribution will be more dispersed than the normal distribution and it is said to follow student's **t** distribution. [See *Transparency* 8.7].
- 4. The t-distribution is tabulated (Table 8) just like the normal but depends on the **degrees of freedom**, labelled  $\nu = n 1$  for this problem. Hence we have a different value for each degrees of freedom.
- 5. The relationship between variables that are t-distributed and normally distributed is:

$$t \Rightarrow Z \quad as \quad n \to \infty \tag{7.9}$$

That is the student's t distribution becomes standard normal for large n. In fact

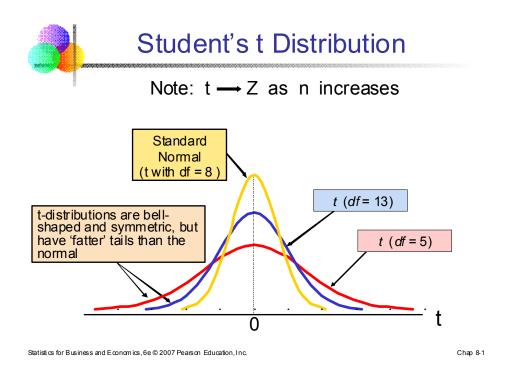


Figure 7.19:

for  $n \ge 30$  the student's t distribution is close to the normal.

- 6. The student's t distribution is symmetric about 0 and like the normal distribution has a single mean, median and mode (at 0).
- 7. The student's t distribution has **thickertails** reflecting the added uncertainty from estimating the variance.

# 7.10 Confidence Intervals when the Variance is Un-

### known

• Now we can form confidence intervals for the population mean when we do not know the population variance.

$$P(\bar{X} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}) = 1 - \alpha.$$
(7.10)

• The confidence interval is:

### 7.11. NOTES ON CONFIDENCE INTERVALS WITH STUDENT'S T DISTRIBUTION 2

t distribution values

With comparison to the Z value

| Confidence<br>Level | t<br><u>(10 d.f.)</u> | t<br><u>(20 d.f.)</u> | t<br><u>(30 d.f.)</u> | Z     |
|---------------------|-----------------------|-----------------------|-----------------------|-------|
| .80                 | 1.372                 | 1.325                 | 1.310                 | 1.282 |
| .90                 | 1.812                 | 1.725                 | 1.697                 | 1.645 |
| .95                 | 2.228                 | 2.086                 | 2.042                 | 1.960 |
| .99                 | 3.169                 | 2.845                 | 2.750                 | 2.576 |

Note: t →Z as n increases

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 8-35

Figure 7.20:

$$\bar{X} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}} \tag{7.11}$$

# 7.11 Notes on Confidence Intervals with student's t distribution

- 1. The width of the confidence interval will vary with the sample because s varies.
- 2. We have indexed the t as  $t_{\alpha/2,n-1}$  to remind you that this value depends on both the confidence level  $100(1 \alpha)$  and the degrees of freedom n-1.

### 7.11.1 Confidence Interval Example with Unknown Variance

- Let us return to the example of drugs.
- Suppose that in our sample of ten trials  $\overline{X} = 1.58$  and that s = 1.23. Then  $s/\sqrt{n} = .389$ .

- The value for the degrees of freedom is  $\nu = n 1 = 9$ .
- A 95 percent confidence interval implies  $\alpha = .05$ , and  $\alpha/2 = .025$  and from Table VI we find  $t_{.025,9} = 2.262$ .
- Thus the confidence interval is (.70, 2.46).

#### **Questions and Points to Note**

- Why is this wider even though the sample standard deviation is *smaller* than the population standard deviation which we used in the previous example? [See *Transparency 8.8*].
- Suppose that we had n = 20 clinical trials on the drug with the same sample standard deviation.
- Calculate what our confidence interval be? Why should it be smaller, why?
- As we get more observations (n gets bigger) the fact that we do not know the variance and need to estimate it becomes unimportant
- The interpretation of the confidence interval is the same as before: If we construct a large number of confidence intervals then we would expect that 95% of the intervals will bracket the true (unknown) population mean  $\mu$ .