Chapter 7

Estimation:Single Population

7.1 Introduction

- So far we have seen how to study the characteristics of samples (sampling distributions)
- Now we can formalize that by discussing *statistical inference*, how to learn about populations from random samples.
- 1. Estimation (Chapter 8-9)—Using observed data to make informed "guesses" about unknown parameters
- 2. Hypothesis Testing (Chapter 10)— Testing whether a population has some property, given what we observe in a sample.

7.2 Some Principles

- Suppose that we face a population with an unknown parameter.
- A sample statistic which we use to estimate that parameter is called an estimator, and when we apply this rule to the sample we have an *estimate* or a *point estimate*. [See Transparency 8.1]
- A simple example: Estimate μ by \bar{X} .
- The estimator is \bar{X} and the estimate is a specific number we get when we calculate the sample mean.
- Note the actual value we calculate for the sample mean (like 4.2) is a **realization** of a random variable and is called the estimate
- The estimator, \bar{X} is a random variable (i.e. it has a distribution).

Figure 7.1:

7.3 Desirable Properties in Choosing Estimators

7.3.1 Unbiasedness

- An estimator is unbiased if its expectation equals the population parameter.
- for instance, denote the true population parameter by θ and the estimator by $\hat{\theta}$, we say θ is an unbiased estimator of θ

$$
E[\hat{\theta}] = \theta
$$

• Accordingly, we can define bias as

$$
Bias(\hat{\theta}) = E[\hat{\theta}] - \theta
$$

• We have seen that:

$$
E[\bar{X}] = \mu \qquad and \qquad E[s^2] = \sigma^2. \tag{7.1}
$$

• Clearly the sample mean and sample variance are unbiased estimators.

7.3. DESIRABLE PROPERTIES IN CHOOSING ESTIMATORS 3

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 8-6

• The point of unbiasedness is not that we can check this directly, for we do not know the true values of μ and σ^2 .

• The point is that whatever values they take, the average of our estimators will equal those values.

• The *sampling distribution* of the estimator is centered over the population parameter.

Figure 7.3:

Figure 7.4:

Figure 7.5:

7.3.2 Efficiency: Minimum Variance

• A second criterion to apply in choosing an estimator is that it should have as **small** a sample variance as possible.

Example:

- Suppose we want to estimate μ and we have two samples to choose from, one with 100 observations and one with 200 observations.
- Because the variance of \bar{X} is σ^2/n we will have a smaller variance by using the larger sample, though both are unbiased.
- We say that the estimator using the larger number of observations is more *efficient*.

7.4 Minimum Variance Unbiased Estimator

• Let $\hat{\theta}$ be an unbiased estimator and let $\tilde{\theta}$ be any other unbiased estimator of θ .

7.5. CONFIDENCE INTERVAL ESTIMATOR 7

• If $V[\hat{\theta}] \leq V[\tilde{\theta}]$, for any $\tilde{\theta}$, then $\hat{\theta}$ is a minimum variance unbiased estimator of θ .

• We can show that \bar{X} is a minimum variance unbiased estimator of μ .

7.4.1 Relative Efficiency

• The relative efficiency of $\hat{\theta}$ to $\tilde{\theta}$

Relative Efficiency
$$
=\frac{V[\tilde{\theta}]}{V[\hat{\theta}]}
$$

- For the minimum variance unbiased estimator this ratio is always greater than 1.
- The median is less efficient than the sample mean in estimating the population mean

7.5 Confidence Interval Estimator

- So far we have seen simple examples of **point estimates**.
- But often we would like to **estimate a range** which **might** bracket the true parameter.
- These ranges are called interval estimates or confidence intervals. [See Transparency 8.4].
- A confidence interval extimator for a population parameter is a rule for determining (based on sample information) a range, or interval that is likely to include the parameter.
- The corresponding estimate is called a confidence interval estimate.

Figure 7.6:

Figure 7.7:

Figure 7.8:

Figure 7.9:

7.6 Example: Population Variance σ^2 Known

• Let us take an unrealistic but simple example in which we know σ^2 but do not

- **Assumptions**
	- Population variance s^2 is known
	- **Population is normally distributed**
	- **If population is not normal, use large sample**
- Confidence interval estimate:

$$
\left|\overline{\mathsf{x}}-\mathsf{z}_{\alpha/2}\frac{\sigma}{\sqrt{\mathsf{n}}}<\mu<\overline{\mathsf{x}}+\mathsf{z}_{\alpha/2}\frac{\sigma}{\sqrt{\mathsf{n}}}\right|
$$

(where $z_{\alpha/2}$ is the normal distribution value for a probability of $\alpha/2$ in each tail)

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 8-19

Figure 7.10:

• Then we know that

$$
Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1). \tag{7.2}
$$

- Because the estimator \bar{X} is unbiased, this statistic has a mean of zero.
- We can see from the tabulated, standard normal distribution that there is a probability of .025 that $Z < -1.96$ and a probability of .025 that $Z > 1.96$. [See Transparency 8.3].
- Let us call the sum of those two cut-off probabilities α .
- And let us call the cut-off points $-Z_{\alpha/2}$ and $Z_{\alpha/2}$.
- Then the area between these points is 0.95 and $\alpha = .05$ (so $Z_{\frac{.05}{2}} = 1.96$)

$$
P(-Z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < Z_{\alpha/2}) = 1 - \alpha,\tag{7.3}
$$

• We can (after some careful thinking about inequalities) obtain:

$$
P(\bar{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha. \tag{7.4}
$$

• This gives us a 100 (1- α) % confidence interval for the population mean μ :

$$
\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
$$

[See Transparencies 8.4 and 8.6].

• Margin of error (the sampling error, the bound, or the interval half width) is given by

$$
ME = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
$$

Figure 7.11:

- The sample size is increased $(n?)$
- The confidence level is decreased, (1α) ?

7.7 Example of a Confidence Interval

- Ten patients are given a sleep inducing drug in clinical trials.The average increase in sleep is $\bar{X} = 1.58$ hours.
- Now suppose, unrealistically, that we know that $\sigma^2 = 1.66$.
- Then with $n = 10$ our 95 percent confidence interval for μ is:

$$
\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1.58 \pm 1.96 \frac{\sqrt{1.66}}{\sqrt{10}} = (.78, 2.38)
$$
\n(7.5)

7.8 Notes and Interpreting Confidence Intervals

• We know that

•

 $P(\bar{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{2}})$ $\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ $\left(\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$ (7.6)

7.8. NOTES AND INTERPRETING CONFIDENCE INTERVALS 17

However from the above example we cannot say:

$$
P(.78 \le \mu \le 2.38) = .95 \tag{7.7}
$$

• Once we have calculated the confidence interval (the realization of a random variable) μ is either in or out (ie. **probability is zero or 1**)

7.8.1 Appropriate Interpretation of a Confidence Interval

- Imagine that we select another sample then work out another confidence interval and if we keep taking additional samples (of the same size) then we obtain a set of confidence intervals.
- We can say that 95% of these confidence intervals contain the true μ .
- We do not know whether any particular interval contains μ or not.

7.8.2 Notes on Confidence Intervals

- 1. Notice that the for a given α , the confidence interval is smaller as n (sample size) increases.
- 2. If we wish to make a more confident statement (a smaller α) then the confidence interval must be wider (i.e. $Z_{\alpha/2}$ is larger)
- 3. If σ increases, the confidence interval increases.

Figure 7.13:

 Commonly used confidence levels are 90%, 95%, and 99%

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 8-23

Figure 7.14:

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Statisti cs for Business and Econom ics, 6e © 2007 Pearson Education, Inc. Chap 8-25

Figure 7.15:

7.9. UNKNOWN VARIANCE AND THE STUDENT'S T DISTRIBUTION 21

7.9 Unknown Variance and the student's t distribution

- With this background, we can now take the usual applied situation where we do not know σ .
- If we replace σ by an unbiased estimate, the sample standard deviation in our standardized test statistic we get:

$$
t = \frac{\bar{X} - \mu}{s / \sqrt{n}}\tag{7.8}
$$

- **Consider a random sample of n observations**
	- with mean \bar{x} and standard deviation s
	- \blacksquare from a normally distributed population with mean \upmu
- Then the variable

$$
t = \frac{\overline{x} - \mu}{s/\sqrt{n}}
$$

follows the Student's t distribution with (n - 1) degrees of freedom

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 8-29

Figure 7.17:

7.9. UNKNOWN VARIANCE AND THE STUDENT'S T DISTRIBUTION 23

Figure 7.18:

This statistic is distributed as a t distribution

7.9.1 Notes on the student's t distribution

- 1. If we have many samples, this statistic varies across them for two reasons: because \overline{X} and s both will tend to differ from sample to sample.
- 2. This contrasts with the sample variation in Z which arose only because of variation in X .
- 3. This new statistic will be more variable and its distribution will be more dispersed than the normal distribution and it is said to follow student's t distribution. [See Transparency 8.7].
- 4. The t-distribution is tabulated (Table 8) just like the normal but depends on the degrees of freedom, labelled $\nu = n-1$ for this problem. Hence we have a different value for each degrees of freedom.
- 5. The relationship between variables that are t-distributed and normally distributed is:

$$
t \Rightarrow Z \quad as \quad n \to \infty \tag{7.9}
$$

That is the student's t distribution becomes standard normal for large n. In fact

Figure 7.19:

for $n \geq 30$ the student's t distribution is close to the normal.

- 6. The student's t distribution is symmetric about 0 and like the normal distribution has a single mean, median and mode (at 0).
- 7. The student's t distribution has thickertails reflecting the added uncertainty from estimating the variance.

7.10 Confidence Intervals when the Variance is Un-

known

• Now we can form confidence intervals for the population mean when we do not know the population variance.

$$
P(\bar{X} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}) = 1 - \alpha.
$$
 (7.10)

The confidence interval is:

7.11. NOTES ON CONFIDENCE INTERVALS WITH STUDENT'S T DISTRIBUTION 25

t distribution values

With comparison to the Z value

Note: $t \rightarrow Z$ as n increases

Statisti cs for Business and Econom ics, 6e © 2007 Pearson Education, Inc. Chap 8-35

Figure 7.20:

$$
\bar{X} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \tag{7.11}
$$

7.11 Notes on Confidence Intervals with student's t distribution

- 1. The width of the confidence interval will vary with the sample because s varies.
- 2. We have indexed the t as $t_{\alpha/2,n-1}$ to remind you that this value depends on both the confidence level $100(1 - \alpha)$ and the degrees of freedom n-1.

7.11.1 Confidence Interval Example with Unknown Variance

- Let us return to the example of drugs.
- Suppose that in our sample of ten trials $\overline{X} = 1.58$ and that $s = 1.23$. Then $s/\sqrt{n} = .389.$
- The value for the degrees of freedom is $\nu = n 1 = 9$.
- A 95 percent confidence interval implies $\alpha = 0.05$, and $\alpha/2 = 0.025$ and from Table VI we find $t_{.025,9} = 2.262$.
- Thus the confidence interval is $(.70, 2.46)$.

Questions and Points to Note

- Why is this wider even though the sample standard deviation is *smaller* than the population standard deviation which we used in the previous example? [See Transparency 8.8].
- Suppose that we had $n = 20$ clinical trials on the drug with the same sample standard deviation.
- Calculate what our confidence interval be? Why should it be smaller, why?
- As we get more observations $(n \text{ gets bigger})$ the fact that we do not know the variance and need to estimate it becomes unimportant
- The interpretation of the confidence interval is the same as before: If we construct a large number of confidence intervals then we would expect that 95% of the intervals will bracket the true (unknown) population mean μ .