Chapter 7

Estimation:Single Population

7.1 Introduction

- So far we have seen how to study the characteristics of samples (sampling distributions)
- Now we can formalize that by discussing *statistical inference*, how to learn about populations from random samples.
- 1. *Estimation* (Chapter 8-9)–Using observed data to make informed "guesses" about unknown parameters
- 2. *Hypothesis Testing* (Chapter 10)– Testing whether a population has some property, given what we observe in a sample.

7.2 Some Principles

- Suppose that we face a population with an unknown parameter.
- A sample statistic which we use to estimate that parameter is called an *estimator*, and when we apply this rule to the sample we have an *estimate* or a *point estimate*. [See *Transparency 8.1*]
- A simple example: Estimate μ by \bar{X} .
- The estimator is \overline{X} and the estimate is a specific number we get when we calculate the sample mean.
- Note the actual value we calculate for the sample mean (like 4.2) is a **realization** of a random variable and is called the **estimate**
- The estimator, \bar{X} is a random variable (i.e. it has a distribution).

Figure 7.1:

7.3 Desirable Properties in Choosing Estimators

7.3.1 Unbiasedness

- An estimator is unbiased if its expectation equals the population parameter.
- for instance, denote the true population parameter by θ and the estimator by $\hat{\theta}$, we say $\hat{\theta}$ is an **unbiased estimator** of θ

$$E[\hat{\theta}] = \theta$$

• Accordingly, we can define **bias** as

$$Bias(\hat{\theta}) = E[\hat{\theta}] - \theta$$

• We have seen that:

$$E[\bar{X}] = \mu \quad and \quad E[s^2] = \sigma^2. \tag{7.1}$$

• Clearly the sample mean and sample variance are unbiased estimators.

7.3. DESIRABLE PROPERTIES IN CHOOSING ESTIMATORS

We can estimate a Population Parameter		with a Sample Statistic (a Point Estimate)	
Mean	μ	x	
Proportion	Р	p	

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 8-6

• The point of unbiasedness is not that we can check this directly, for we do not know the true values of μ and σ^2 .

• The point is that whatever values they take, the **average** of our estimators will equal those values.

• The *sampling distribution* of the estimator is centered over the population parameter.

Figure 7.3:

Chap 8-9

Figure 7.4:

Chap 8-10

Figure 7.5:

7.3.2 Efficiency: Minimum Variance

• A second criterion to apply in choosing an estimator is that it should have as **small** a **sample variance** as possible.

Example:

- Suppose we want to estimate μ and we have two samples to choose from, one with 100 observations and one with 200 observations.
- Because the variance of \bar{X} is σ^2/n we will have a smaller variance by using the larger sample, though both are unbiased.
- We say that the estimator using the larger number of observations is more *efficient*.

7.4 Minimum Variance Unbiased Estimator

• Let $\hat{\theta}$ be an unbiased estimator and let $\tilde{\theta}$ be any other unbiased estimator of θ .

7.5. CONFIDENCE INTERVAL ESTIMATOR

• If $V[\hat{\theta}] \leq V[\tilde{\theta}]$, for any $\tilde{\theta}$, then $\hat{\theta}$ is a minimum variance unbiased estimator of θ .

• We can show that \bar{X} is a minimum variance unbiased estimator of μ .

7.4.1 Relative Efficiency

• The relative efficiency of $\hat{\theta}$ to $\tilde{\theta}$

Relative Efficiency =
$$\frac{V[\hat{\theta}]}{V[\hat{\theta}]}$$

- For the minimum variance unbiased estimator this ratio is always greater than 1.
- The median is less efficient than the sample mean in estimating the population mean

7.5 Confidence Interval Estimator

- So far we have seen simple examples of **point estimates**.
- But often we would like to **estimate a range** which **might** bracket the true parameter.
- These ranges are called **interval estimates or confidence intervals**. [See *Transparency 8.4*].
- A confidence interval extimator for a population parameter is a rule for determining (based on sample information) a range, or interval that is likely to include the parameter.
- The corresponding estimate is called a confidence interval estimate.

Chap 8-3

Figure 7.6:

Chap 8-5

Figure 7.7:

We can estimate a Population Parameter		with a Sample Statistic (a Point Estimate)	
Mean	μ	x	
Proportion	Р	p	

Chap 8-6

Figure 7.8:

Chap 8-18

Figure 7.9:

7.6 Example: Population Variance σ^2 Known

• Let us take an unrealistic but simple example in which we know σ^2 but do not

- Assumptions
 - Population variance s² is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(where $z_{_{\alpha/2}}$ is the normal distribution value for a probability of $\alpha/2$ in each tail)

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 8-19

Figure 7.10:

• Then we know that

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$
(7.2)

- Because the estimator \bar{X} is unbiased, this statistic has a mean of zero.
- We can see from the tabulated, standard normal distribution that there is a probability of .025 that Z < -1.96 and a probability of .025 that Z > 1.96. [See *Transparency 8.3*].
- Let us call the sum of those two cut-off probabilities α .
- And let us call the cut-off points $-Z_{\alpha/2}$ and $Z_{\alpha/2}$.
- Then the area between these points is 0.95 and $\alpha = .05$ (so $Z_{\frac{.05}{2}} = 1.96$)

$$P(-Z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < Z_{\alpha/2}) = 1 - \alpha, \qquad (7.3)$$

• We can (after some careful thinking about inequalities) obtain:

$$P(\bar{X} - Z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}) = 1 - \alpha.$$
(7.4)

• This gives us a 100 (1- α) % confidence interval for the population mean μ :

$$\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

[See Transparencies 8.4 and 8.6].

• Margin of error (the sampling error, the bound, or the interval half width) is given by

$$ME = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Chap 8-20

Figure 7.11:

- the population standard deviation can be reduced (s?)
- The sample size is increased (n?)
- The confidence level is decreased, (1α) ?

Chap 8-21

7.7 Example of a Confidence Interval

- Ten patients are given a sleep inducing drug in clinical trials. The average increase in sleep is $\bar{X} = 1.58$ hours.
- Now suppose, unrealistically, that we know that $\sigma^2 = 1.66$.
- Then with n = 10 our 95 percent confidence interval for μ is:

$$\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1.58 \pm 1.96 \frac{\sqrt{1.66}}{\sqrt{10}} = (.78, \ 2.38)$$
 (7.5)

7.8 Notes and Interpreting Confidence Intervals

- We know that
- $P(\bar{X} Z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}) = 1 \alpha.$ (7.6)

7.8. NOTES AND INTERPRETING CONFIDENCE INTERVALS 17

However from the above example we **cannot** say:

$$P(.78 \le \mu \le 2.38) = .95 \tag{7.7}$$

• Once we have calculated the confidence interval (the realization of a random variable) *μ* is either in or out (ie. **probability is zero or 1**)

7.8.1 Appropriate Interpretation of a Confidence Interval

- Imagine that we select another sample then work out another confidence interval and if we keep taking additional samples (of the same size) then we obtain a set of confidence intervals.
- We can say that 95% of these confidence intervals contain the true μ .
- We do not know whether any particular interval contains μ or not.

7.8.2 Notes on Confidence Intervals

- 1. Notice that the for a given α , the confidence interval is smaller as n (sample size) increases.
- 2. If we wish to make a more confident statement (a smaller α) then the confidence interval must be wider (i.e. $Z_{\alpha/2}$ is larger)
- 3. If σ increases, the confidence interval increases.

Figure 7.13:

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	$\begin{array}{c} \text{Confidence} \\ \text{Coefficient,} \\ 1 - \alpha \end{array}$	$Z_{a/2}$ value	
80%	.80	1.28	
90%	.90	1.645	
95 %	.95	1.96	
98%	.98	2.33	
99%	.99	2.58	
99.8%	.998	3.08	
99.9%	.999	3.27	

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Figure 7.14:

Chap 8-23

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 8-25

Figure 7.15:

7.9. UNKNOWN VARIANCE AND THE STUDENT'S T DISTRIBUTION 21

7.9 Unknown Variance and the student's t distribution

- With this background, we can now take the usual applied situation where we do not know σ .
- If we replace σ by an unbiased estimate, the sample standard deviation in our standardized test statistic we get:

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}} \tag{7.8}$$

- Consider a random sample of n observations
 - with mean \overline{x} and standard deviation s
 - from a normally distributed population with mean μ
- Then the variable

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

follows the Student's t distribution with (n - 1) degrees of freedom

Statistics for Business and Economics, 6e © 2007 Pears on Education, Inc.

Chap 8-29

Figure 7.17:

7.9. UNKNOWN VARIANCE AND THE STUDENT'S T DISTRIBUTION 23

Figure 7.18:

• This statistic is distributed as a t distribution

7.9.1 Notes on the student's t distribution

- 1. If we have many samples, this statistic varies across them for two reasons: because \bar{X} and s both will tend to differ from sample to sample.
- 2. This contrasts with the sample variation in Z which arose only because of variation in \bar{X} .
- 3. This new statistic will be more variable and its distribution will be more dispersed than the normal distribution and it is said to follow student's **t** distribution. [See *Transparency* 8.7].
- 4. The t-distribution is tabulated (Table 8) just like the normal but depends on the **degrees of freedom**, labelled $\nu = n 1$ for this problem. Hence we have a different value for each degrees of freedom.
- 5. The relationship between variables that are t-distributed and normally distributed is:

$$t \Rightarrow Z \quad as \quad n \to \infty \tag{7.9}$$

That is the student's t distribution becomes standard normal for large n. In fact

Figure 7.19:

for $n \ge 30$ the student's t distribution is close to the normal.

- 6. The student's t distribution is symmetric about 0 and like the normal distribution has a single mean, median and mode (at 0).
- 7. The student's t distribution has **thickertails** reflecting the added uncertainty from estimating the variance.

7.10 Confidence Intervals when the Variance is Un-

known

• Now we can form confidence intervals for the population mean when we do not know the population variance.

$$P(\bar{X} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}) = 1 - \alpha.$$
(7.10)

• The confidence interval is:

7.11. NOTES ON CONFIDENCE INTERVALS WITH STUDENT'S T DISTRIBUTION 2

t distribution values

With comparison to the Z value

Confidence Level	t <u>(10 d.f.)</u>	t <u>(20 d.f.)</u>	t <u>(30 d.f.)</u>	Z
.80	1.372	1.325	1.310	1.282
.90	1.812	1.725	1.697	1.645
.95	2.228	2.086	2.042	1.960
.99	3.169	2.845	2.750	2.576

Note: t →Z as n increases

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 8-35

Figure 7.20:

$$\bar{X} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}} \tag{7.11}$$

7.11 Notes on Confidence Intervals with student's t distribution

- 1. The width of the confidence interval will vary with the sample because s varies.
- 2. We have indexed the t as $t_{\alpha/2,n-1}$ to remind you that this value depends on both the confidence level $100(1 \alpha)$ and the degrees of freedom n-1.

7.11.1 Confidence Interval Example with Unknown Variance

- Let us return to the example of drugs.
- Suppose that in our sample of ten trials $\overline{X} = 1.58$ and that s = 1.23. Then $s/\sqrt{n} = .389$.

- The value for the degrees of freedom is $\nu = n 1 = 9$.
- A 95 percent confidence interval implies $\alpha = .05$, and $\alpha/2 = .025$ and from Table VI we find $t_{.025,9} = 2.262$.
- Thus the confidence interval is (.70, 2.46).

Questions and Points to Note

- Why is this wider even though the sample standard deviation is *smaller* than the population standard deviation which we used in the previous example? [See *Transparency 8.8*].
- Suppose that we had n = 20 clinical trials on the drug with the same sample standard deviation.
- Calculate what our confidence interval be? Why should it be smaller, why?
- As we get more observations (n gets bigger) the fact that we do not know the variance and need to estimate it becomes unimportant
- The interpretation of the confidence interval is the same as before: If we construct a large number of confidence intervals then we would expect that 95% of the intervals will bracket the true (unknown) population mean μ .