
Chapter 7

Estimation:Single Population

7.1 Introduction

• So far we have seen how to study the characteristics of samples (sampling distrib-

utions)

• Now we can formalize that by discussing statistical inference, how to learn about

populations from random samples.

1. Estimation (Chapter 8-9)—Using observed data to make informed “guesses” about

unknown parameters

2. Hypothesis Testing (Chapter 10)— Testing whether a population has some property,

given what we observe in a sample.

7.2 Some Principles

• Suppose that we face a population with an unknown parameter.

• A sample statistic which we use to estimate that parameter is called an estimator,

and when we apply this rule to the sample we have an estimate or a point estimate.

[See Transparency 8.1 ]

• A simple example: Estimate  by ̄.

• The estimator is ̄ and the estimate is a specific number we get when we

calculate the sample mean.

• Note the actual value we calculate for the sample mean (like 4.2) is a realization

of a random variable and is called the estimate

• The estimator, ̄ is a random variable (i.e. it has a distribution).
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Point and Interval Estimates

 A point estimate is a single number, 

 a confidence interval provides additional 
information about variability

Point Estimate

Lower 

Confidence 

Limit

Upper

Confidence 

Limit

Width of 
confidence interval

Figure 7.1:

7.3 Desirable Properties in Choosing Estimators

7.3.1 Unbiasedness

• An estimator is unbiased if its expectation equals the population parameter.

• for instance, denote the true population parameter by  and the estimator by ̂, we
say ̂ is an unbiased estimator of 

[̂] = 

• Accordingly, we can define bias as

(̂) = [̂]− 

• We have seen that:

[̄] =   [2] = 2 (7.1)

• Clearly the sample mean and sample variance are unbiased estimators.
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We can estimate a 
Population Parameter …

Point Estimates

with a Sample
Statistic

(a Point Estimate)

Mean

Proportion P

xµ

p̂

Figure 7.2:

• The point of unbiasedness is not that we can check this directly, for we do not know

the true values of  and 2.

• The point is that whatever values they take, the average of our estimators will

equal those values.

• The sampling distribution of the estimator is centered over the population parame-

ter.
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 is an unbiased estimator,       is biased:

1θ̂ 2θ̂

θ̂θ

1θ̂ 2θ̂

Unbiasedness
(continued)

Figure 7.3:
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Bias

 Let      be an estimator of 

 The bias in     is defined as the difference 
between its mean and 

 The bias of an unbiased estimator is 0

θ̂

θ̂

θ)θE()θBias(  ˆˆ

Figure 7.4:
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Consistency

 Let      be an estimator of  

 is a consistent estimator of   if the 
difference between the expected value of     and 
 decreases as the sample size increases

 Consistency is desired when unbiased 
estimators cannot be obtained

θ̂

θ̂
θ̂

Figure 7.5:

7.3.2 Efficiency: Minimum Variance

• A second criterion to apply in choosing an estimator is that it should have as small

a sample variance as possible.

Example:

• Suppose we want to estimate  and we have two samples to choose from, one with

100 observations and one with 200 observations.

• Because the variance of ̄ is 2 we will have a smaller variance by using the

larger sample, though both are unbiased.

• We say that the estimator using the larger number of observations is more efficient.

7.4 Minimum Variance Unbiased Estimator

• Let ̂ be an unbiased estimator and let ̃ be any other unbiased estimator of .
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• If  [̂] ≤  [̃], for any ̃, then ̂ is a minimum variance unbiased estimator

of .

• We can show that ̄ is a minimum variance unbiased estimator of .

7.4.1 Relative Efficiency

• The relative effiiciency of ̂ to ̃

Relative Efficiency =
 [̃]

 [̂]

• For the minimum variance unbiased estimator this ratio is always greater than 1.

• The median is less efficient than the sample mean in estimating the population mean

7.5 Confidence Interval Estimator

• So far we have seen simple examples of point estimates.

• But often we would like to estimate a range which might bracket the true

parameter.

• These ranges are called interval estimates or confidence intervals. [See Trans-

parency 8.4 ].

• A confidence interval extimator for a population parameter is a rule for determining
(based on sample information) a range, or interval that is likely to include the

parameter.

• The corresponding estimate is called a confidence interval estimate.
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Confidence Intervals

Content of this chapter

 Confidence Intervals for the Population 
Mean, µ
 when Population Variance s2 is Known

 when Population Variance s2 is Unknown

 Confidence Intervals for the Population 
Proportion,    (large samples)p̂

Figure 7.6:
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Point and Interval Estimates

 A point estimate is a single number, 

 a confidence interval provides additional 
information about variability
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Figure 7.7:
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We can estimate a 
Population Parameter …

Point Estimates

with a Sample
Statistic

(a Point Estimate)

Mean
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Figure 7.8:
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Confidence Intervals

Population 
Mean

s2 Unknown

Confidence
Intervals

Population
Proportion

s2 Known

Figure 7.9:
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7.6 Example: Population Variance 2 Known

• Let us take an unrealistic but simple example in which we know 2 but do not

know .
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Confidence Interval for µ
(s 2 Known) 

 Assumptions
 Population variance s2 is known

 Population is normally distributed

 If population is not normal, use large sample

 Confidence interval estimate:

(where z/2 is the normal distribution value for a probability of /2 in 
each tail)

n

σ
zxμ

n

σ
zx α/2α/2 

Figure 7.10:
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• Then we know that

 =
̄ − 


√

∼ (0 1) (7.2)

• Because the estimator ̄ is unbiased, this statistic has a mean of zero.

• We can see from the tabulated, standard normal distribution that there is a prob-

ability of .025 that   −196 and a probability of .025 that   196. [See

Transparency 8.3 ].

• Let us call the sum of those two cut-off probabilities .

• And let us call the cut-off points −2 and 2.

• Then the area between these points is 0.95 and  = 05 (so  05
2
= 196)

 (−2 
̄ − 


√

 2) = 1−  (7.3)

• We can (after some careful thinking about inequalities) obtain:

 (̄ − 2

√

   ̄ + 2

√

) = 1−  (7.4)

• This gives us a 100 (1-) % confidence interval for the population mean :

̄ ± 2

√


[See Transparencies 8.4 and 8.6 ].

• Margin of error (the sampling error, the bound, or the interval half width) is given

by

=2

√
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Margin of Error

 The confidence interval,

 Can also be written as

where ME is called the margin of error

 The interval width, w, is equal to twice the margin of 
error

n

σ
zxμ

n

σ
zx α/2α/2 

MEx 

n

σ
zME α/2

Figure 7.11:
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Reducing the Margin of Error

The margin of error can be reduced if 

 the population standard deviation can be reduced (s ?)

 The sample size is increased (n?)

 The confidence level is decreased, (1 – ) ?

n

σ
zME α/2

Figure 7.12:

7.7 Example of a Confidence Interval

• Ten patients are given a sleep inducing drug in clinical trials.The average increase

in sleep is ̄ = 158 hours.

• Now suppose, unrealistically, that we know that 2 = 166.

• Then with  = 10 our 95 percent confidence interval for  is:

̄ ± 2

√

= 158± 196

√
166√
10

= (78 238) (7.5)

7.8 Notes and Interpreting Confidence Intervals

• We know that

•

 (̄ − 2

√

   ̄ + 2

√

) = 1−  (7.6)
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However from the above example we cannot say:

 (78 ≤  ≤ 238) = 95 (7.7)

• Once we have calculated the confidence interval (the realization of a random vari-

able)  is either in or out (ie. probability is zero or 1)

7.8.1 Appropriate Interpretation of a Confidence Interval

• Imagine that we select another sample then work out another confidence interval

and if we keep taking additional samples (of the same size) then we obtain a set of

confidence intervals.

• We can say that 95% of these confidence intervals contain the true .

• We do not know whether any particular interval contains  or not.

7.8.2 Notes on Confidence Intervals

1. Notice that the for a given , the confidence interval is smaller as n (sample size)

increases.

2. If we wish to make a more confident statement (a smaller ) then the confidence

interval must be wider (i.e. 2 is larger)

3. If  increases, the confidence interval increases.
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Finding the Reliability Factor, z/2

 Consider a 95% confidence interval:

z = -1.96 z = 1.96

.951 

.025
2
α
 .025

2
α


Point Estimate
Lower 
Confidence 
Limit

Upper
Confidence 
Limit

Z units:

X units: Point Estimate

0

 Find z.025 = 1.96 from the standard normal distribution table

Figure 7.13:
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Common Levels of Confidence

 Commonly used confidence levels are 90%, 
95%, and 99%

Confidence 
Level

Confidence 
Coefficient, Z/2 value

1.28

1.645

1.96

2.33

2.58

3.08

3.27

.80

.90

.95

.98

.99

.998

.999

80%

90%

95%

98%

99%

99.8%

99.9%

1

Figure 7.14:
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Example

 A sample of 11 circuits from a large normal 
population has a mean resistance of 2.20 
ohms.  We know from past testing that the 
population standard deviation is 0.35 ohms.  

 Determine a 95% confidence interval for the 
true mean resistance of the population.

Figure 7.15:
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2.4068μ1.9932

.2068  2.20

)11(.35/ 1.96  2.20

n

σ
z x









Example

 A sample of 11 circuits from a large normal 
population has a mean resistance of 2.20 
ohms.  We know from past testing that the 
population standard deviation is .35 ohms.

 Solution:

(continued)

Figure 7.16:

7.9 Unknown Variance and the student’s t distribu-

tion

• With this background, we can now take the usual applied situation where we do

not know 

• If we replace  by an unbiased estimate, the sample standard deviation in our

standardized test statistic we get:

 =
̄ − 


√


(7.8)
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Student’s  t  Distribution

 Consider a random sample of n observations

 with mean x and standard deviation s 

 from a normally distributed population with mean  µ

 Then the variable

follows the Student’s t distribution with (n - 1) degrees 
of freedom

ns/

μx
t




Figure 7.17:
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 If the population standard deviation  s is 
unknown, we can substitute the sample 
standard deviation, s

 This introduces extra uncertainty, since  
s  is variable from sample to sample

 So we use the  t  distribution instead of 
the normal distribution

Confidence Interval for µ
(s2 Unknown) 

Figure 7.18:

• This statistic is distributed as a  distrbution

7.9.1 Notes on the student’s t distribution

1. If we have many samples, this statistic varies across them for two reasons: because

̄ and  both will tend to differ from sample to sample.

2. This contrasts with the sample variation in  which arose only because of variation

in ̄.

3. This new statistic will be more variable and its distribution will be more dispersed

than the normal distribution and it is said to follow student’s t distribution. [See

Transparency 8.7 ].

4. The t-distribution is tabulated (Table 8) just like the normal but depends on the

degrees of freedom, labelled  = − 1 for this problem. Hence we have a

different value for each degrees of freedom.

5. The relationship between variables that are t-distributed and normally distributed

is:

⇒   →∞ (7.9)

That is the student’s t distribution becomes standard normal for large n. In fact
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Student’s t Distribution

t0

t  (df = 5)

t  (df = 13)
t-distributions are bell-
shaped and symmetric, but 
have ‘fatter’ tails than the 
normal

Standard 
Normal

(t with df = 8 )

Note:  t       Z  as  n  increases

Figure 7.19:

for  ≥ 30 the student’s t distribution is close to the normal.

6. The student’s t distribution is symmetric about 0 and like the normal distribution

has a single mean, median and mode (at 0).

7. The student’s t distribution has thickertails reflecting the added uncertainty from

estimating the variance.

7.10 Confidence Intervals when the Variance is Un-

known

• Now we can form confidence intervals for the population mean when we do not

know the population variance.

 (̄ − 2−1
√

   ̄ + 2−1

√

) = 1−  (7.10)

• The confidence interval is:
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t distribution values

With comparison to the Z value

Confidence       t                 t                t           Z
Level       (10 d.f.) (20 d.f.) (30 d.f.)  ____

.80    1.372          1.325         1.310      1.282

.90              1.812          1.725         1.697      1.645

.95              2.228          2.086         2.042      1.960

.99              3.169          2.845         2.750      2.576

Note:  t       Z  as  n  increases

Figure 7.20:

̄ ± 2−1
√


(7.11)

7.11 Notes on Confidence Intervals with student’s t

distribution

1. The width of the confidence interval will vary with the sample because  varies.

2. We have indexed the t as 2−1 to remind you that this value depends on both
the confidence level 100(1− ) and the degrees of freedom n-1.

7.11.1 Confidence Interval Example with Unknown Variance

• Let us return to the example of drugs.

• Suppose that in our sample of ten trials ̄ = 158 and that  = 123. Then


√
 = 389.
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• The value for the degrees of freedom is  = − 1 = 9

• A 95 percent confidence interval implies  = 05, and 2 = 025 and from Table

VI we find 0259 = 2262.

• Thus the confidence interval is (70 246).

Questions and Points to Note

• Why is this wider even though the sample standard deviation is smaller than

the population standard deviation which we used in the previous example? [See

Transparency 8.8 ].

• Suppose that we had  = 20 clinical trials on the drug with the same sample

standard deviation.

• Calculate what our confidence interval be? Why should it be smaller, why?

• As we get more observations ( gets bigger) the fact that we do not know the

variance and need to estimate it becomes unimportant

• The interpretation of the confidence interval is the same as before: If we construct

a large number of confidence intervals then we would expect that 95% of

the intervals will bracket the true (unknown) population mean .


