
Chapter 7

Estimation:Single Population

7.1 Introduction

• So far we have seen how to study the characteristics of samples (sampling distrib-

utions)

• Now we can formalize that by discussing statistical inference, how to learn about

populations from random samples.

1. Estimation (Chapter 8-9)—Using observed data to make informed “guesses” about

unknown parameters

2. Hypothesis Testing (Chapter 10)— Testing whether a population has some property,

given what we observe in a sample.

7.2 Some Principles

• Suppose that we face a population with an unknown parameter.

• A sample statistic which we use to estimate that parameter is called an estimator,

and when we apply this rule to the sample we have an estimate or a point estimate.

[See Transparency 8.1 ]

• A simple example: Estimate  by ̄.

• The estimator is ̄ and the estimate is a specific number we get when we

calculate the sample mean.

• Note the actual value we calculate for the sample mean (like 4.2) is a realization

of a random variable and is called the estimate

• The estimator, ̄ is a random variable (i.e. it has a distribution).
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Point and Interval Estimates

 A point estimate is a single number, 

 a confidence interval provides additional 
information about variability

Point Estimate

Lower 

Confidence 

Limit

Upper

Confidence 

Limit

Width of 
confidence interval

Figure 7.1:

7.3 Desirable Properties in Choosing Estimators

7.3.1 Unbiasedness

• An estimator is unbiased if its expectation equals the population parameter.

• for instance, denote the true population parameter by  and the estimator by ̂, we
say ̂ is an unbiased estimator of 

[̂] = 

• Accordingly, we can define bias as

(̂) = [̂]− 

• We have seen that:

[̄] =   [2] = 2 (7.1)

• Clearly the sample mean and sample variance are unbiased estimators.
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We can estimate a 
Population Parameter …

Point Estimates

with a Sample
Statistic

(a Point Estimate)

Mean

Proportion P

xµ

p̂

Figure 7.2:

• The point of unbiasedness is not that we can check this directly, for we do not know

the true values of  and 2.

• The point is that whatever values they take, the average of our estimators will

equal those values.

• The sampling distribution of the estimator is centered over the population parame-

ter.
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 is an unbiased estimator,       is biased:

1θ̂ 2θ̂

θ̂θ

1θ̂ 2θ̂

Unbiasedness
(continued)

Figure 7.3:
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Bias

 Let      be an estimator of 

 The bias in     is defined as the difference 
between its mean and 

 The bias of an unbiased estimator is 0

θ̂

θ̂

θ)θE()θBias(  ˆˆ

Figure 7.4:
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Consistency

 Let      be an estimator of  

 is a consistent estimator of   if the 
difference between the expected value of     and 
 decreases as the sample size increases

 Consistency is desired when unbiased 
estimators cannot be obtained

θ̂

θ̂
θ̂

Figure 7.5:

7.3.2 Efficiency: Minimum Variance

• A second criterion to apply in choosing an estimator is that it should have as small

a sample variance as possible.

Example:

• Suppose we want to estimate  and we have two samples to choose from, one with

100 observations and one with 200 observations.

• Because the variance of ̄ is 2 we will have a smaller variance by using the

larger sample, though both are unbiased.

• We say that the estimator using the larger number of observations is more efficient.

7.4 Minimum Variance Unbiased Estimator

• Let ̂ be an unbiased estimator and let ̃ be any other unbiased estimator of .
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• If  [̂] ≤  [̃], for any ̃, then ̂ is a minimum variance unbiased estimator

of .

• We can show that ̄ is a minimum variance unbiased estimator of .

7.4.1 Relative Efficiency

• The relative effiiciency of ̂ to ̃

Relative Efficiency =
 [̃]

 [̂]

• For the minimum variance unbiased estimator this ratio is always greater than 1.

• The median is less efficient than the sample mean in estimating the population mean

7.5 Confidence Interval Estimator

• So far we have seen simple examples of point estimates.

• But often we would like to estimate a range which might bracket the true

parameter.

• These ranges are called interval estimates or confidence intervals. [See Trans-

parency 8.4 ].

• A confidence interval extimator for a population parameter is a rule for determining
(based on sample information) a range, or interval that is likely to include the

parameter.

• The corresponding estimate is called a confidence interval estimate.
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Confidence Intervals

Content of this chapter

 Confidence Intervals for the Population 
Mean, µ
 when Population Variance s2 is Known

 when Population Variance s2 is Unknown

 Confidence Intervals for the Population 
Proportion,    (large samples)p̂

Figure 7.6:
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Point and Interval Estimates

 A point estimate is a single number, 

 a confidence interval provides additional 
information about variability
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Figure 7.7:
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We can estimate a 
Population Parameter …

Point Estimates

with a Sample
Statistic

(a Point Estimate)

Mean

Proportion P

xµ

p̂

Figure 7.8:
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Confidence Intervals

Population 
Mean

s2 Unknown

Confidence
Intervals

Population
Proportion

s2 Known

Figure 7.9:
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7.6 Example: Population Variance 2 Known

• Let us take an unrealistic but simple example in which we know 2 but do not

know .
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Confidence Interval for µ
(s 2 Known) 

 Assumptions
 Population variance s2 is known

 Population is normally distributed

 If population is not normal, use large sample

 Confidence interval estimate:

(where z/2 is the normal distribution value for a probability of /2 in 
each tail)

n

σ
zxμ

n

σ
zx α/2α/2 

Figure 7.10:
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• Then we know that

 =
̄ − 


√

∼ (0 1) (7.2)

• Because the estimator ̄ is unbiased, this statistic has a mean of zero.

• We can see from the tabulated, standard normal distribution that there is a prob-

ability of .025 that   −196 and a probability of .025 that   196. [See

Transparency 8.3 ].

• Let us call the sum of those two cut-off probabilities .

• And let us call the cut-off points −2 and 2.

• Then the area between these points is 0.95 and  = 05 (so  05
2
= 196)

 (−2 
̄ − 


√

 2) = 1−  (7.3)

• We can (after some careful thinking about inequalities) obtain:

 (̄ − 2

√

   ̄ + 2

√

) = 1−  (7.4)

• This gives us a 100 (1-) % confidence interval for the population mean :

̄ ± 2

√


[See Transparencies 8.4 and 8.6 ].

• Margin of error (the sampling error, the bound, or the interval half width) is given

by

=2

√

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Margin of Error

 The confidence interval,

 Can also be written as

where ME is called the margin of error

 The interval width, w, is equal to twice the margin of 
error

n

σ
zxμ

n

σ
zx α/2α/2 

MEx 

n

σ
zME α/2

Figure 7.11:
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Reducing the Margin of Error

The margin of error can be reduced if 

 the population standard deviation can be reduced (s ?)

 The sample size is increased (n?)

 The confidence level is decreased, (1 – ) ?

n

σ
zME α/2

Figure 7.12:

7.7 Example of a Confidence Interval

• Ten patients are given a sleep inducing drug in clinical trials.The average increase

in sleep is ̄ = 158 hours.

• Now suppose, unrealistically, that we know that 2 = 166.

• Then with  = 10 our 95 percent confidence interval for  is:

̄ ± 2

√

= 158± 196

√
166√
10

= (78 238) (7.5)

7.8 Notes and Interpreting Confidence Intervals

• We know that

•

 (̄ − 2

√

   ̄ + 2

√

) = 1−  (7.6)
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However from the above example we cannot say:

 (78 ≤  ≤ 238) = 95 (7.7)

• Once we have calculated the confidence interval (the realization of a random vari-

able)  is either in or out (ie. probability is zero or 1)

7.8.1 Appropriate Interpretation of a Confidence Interval

• Imagine that we select another sample then work out another confidence interval

and if we keep taking additional samples (of the same size) then we obtain a set of

confidence intervals.

• We can say that 95% of these confidence intervals contain the true .

• We do not know whether any particular interval contains  or not.

7.8.2 Notes on Confidence Intervals

1. Notice that the for a given , the confidence interval is smaller as n (sample size)

increases.

2. If we wish to make a more confident statement (a smaller ) then the confidence

interval must be wider (i.e. 2 is larger)

3. If  increases, the confidence interval increases.
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Finding the Reliability Factor, z/2

 Consider a 95% confidence interval:

z = -1.96 z = 1.96

.951 

.025
2
α
 .025

2
α


Point Estimate
Lower 
Confidence 
Limit

Upper
Confidence 
Limit

Z units:

X units: Point Estimate

0

 Find z.025 = 1.96 from the standard normal distribution table

Figure 7.13:
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Common Levels of Confidence

 Commonly used confidence levels are 90%, 
95%, and 99%

Confidence 
Level

Confidence 
Coefficient, Z/2 value

1.28

1.645

1.96

2.33

2.58

3.08

3.27

.80

.90

.95

.98

.99

.998

.999

80%

90%

95%

98%

99%

99.8%

99.9%

1

Figure 7.14:
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Example

 A sample of 11 circuits from a large normal 
population has a mean resistance of 2.20 
ohms.  We know from past testing that the 
population standard deviation is 0.35 ohms.  

 Determine a 95% confidence interval for the 
true mean resistance of the population.

Figure 7.15:
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2.4068μ1.9932

.2068  2.20

)11(.35/ 1.96  2.20

n

σ
z x









Example

 A sample of 11 circuits from a large normal 
population has a mean resistance of 2.20 
ohms.  We know from past testing that the 
population standard deviation is .35 ohms.

 Solution:

(continued)

Figure 7.16:

7.9 Unknown Variance and the student’s t distribu-

tion

• With this background, we can now take the usual applied situation where we do

not know 

• If we replace  by an unbiased estimate, the sample standard deviation in our

standardized test statistic we get:

 =
̄ − 


√


(7.8)



22 CHAPTER 7. ESTIMATION:SINGLE POPULATION

Stat isti cs for Business and Econom ics, 6e © 2007 Pearson Education, Inc. Chap 8-29

Student’s  t  Distribution

 Consider a random sample of n observations

 with mean x and standard deviation s 

 from a normally distributed population with mean  µ

 Then the variable

follows the Student’s t distribution with (n - 1) degrees 
of freedom

ns/

μx
t




Figure 7.17:
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 If the population standard deviation  s is 
unknown, we can substitute the sample 
standard deviation, s

 This introduces extra uncertainty, since  
s  is variable from sample to sample

 So we use the  t  distribution instead of 
the normal distribution

Confidence Interval for µ
(s2 Unknown) 

Figure 7.18:

• This statistic is distributed as a  distrbution

7.9.1 Notes on the student’s t distribution

1. If we have many samples, this statistic varies across them for two reasons: because

̄ and  both will tend to differ from sample to sample.

2. This contrasts with the sample variation in  which arose only because of variation

in ̄.

3. This new statistic will be more variable and its distribution will be more dispersed

than the normal distribution and it is said to follow student’s t distribution. [See

Transparency 8.7 ].

4. The t-distribution is tabulated (Table 8) just like the normal but depends on the

degrees of freedom, labelled  = − 1 for this problem. Hence we have a

different value for each degrees of freedom.

5. The relationship between variables that are t-distributed and normally distributed

is:

⇒   →∞ (7.9)

That is the student’s t distribution becomes standard normal for large n. In fact
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Student’s t Distribution

t0

t  (df = 5)

t  (df = 13)
t-distributions are bell-
shaped and symmetric, but 
have ‘fatter’ tails than the 
normal

Standard 
Normal

(t with df = 8 )

Note:  t       Z  as  n  increases

Figure 7.19:

for  ≥ 30 the student’s t distribution is close to the normal.

6. The student’s t distribution is symmetric about 0 and like the normal distribution

has a single mean, median and mode (at 0).

7. The student’s t distribution has thickertails reflecting the added uncertainty from

estimating the variance.

7.10 Confidence Intervals when the Variance is Un-

known

• Now we can form confidence intervals for the population mean when we do not

know the population variance.

 (̄ − 2−1
√

   ̄ + 2−1

√

) = 1−  (7.10)

• The confidence interval is:



7.11. NOTESONCONFIDENCE INTERVALSWITH STUDENT’S TDISTRIBUTION 25

Stat isti cs for Business and Econom ics, 6e © 2007 Pearson Education, Inc. Chap 8-35

t distribution values

With comparison to the Z value

Confidence       t                 t                t           Z
Level       (10 d.f.) (20 d.f.) (30 d.f.)  ____

.80    1.372          1.325         1.310      1.282

.90              1.812          1.725         1.697      1.645

.95              2.228          2.086         2.042      1.960

.99              3.169          2.845         2.750      2.576

Note:  t       Z  as  n  increases

Figure 7.20:

̄ ± 2−1
√


(7.11)

7.11 Notes on Confidence Intervals with student’s t

distribution

1. The width of the confidence interval will vary with the sample because  varies.

2. We have indexed the t as 2−1 to remind you that this value depends on both
the confidence level 100(1− ) and the degrees of freedom n-1.

7.11.1 Confidence Interval Example with Unknown Variance

• Let us return to the example of drugs.

• Suppose that in our sample of ten trials ̄ = 158 and that  = 123. Then


√
 = 389.
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• The value for the degrees of freedom is  = − 1 = 9

• A 95 percent confidence interval implies  = 05, and 2 = 025 and from Table

VI we find 0259 = 2262.

• Thus the confidence interval is (70 246).

Questions and Points to Note

• Why is this wider even though the sample standard deviation is smaller than

the population standard deviation which we used in the previous example? [See

Transparency 8.8 ].

• Suppose that we had  = 20 clinical trials on the drug with the same sample

standard deviation.

• Calculate what our confidence interval be? Why should it be smaller, why?

• As we get more observations ( gets bigger) the fact that we do not know the

variance and need to estimate it becomes unimportant

• The interpretation of the confidence interval is the same as before: If we construct

a large number of confidence intervals then we would expect that 95% of

the intervals will bracket the true (unknown) population mean .


