Chapter 6

Sampling and Sampling Distributions

6.1 Definitions

- A statistical population is a set or collection of all possible observations of some characteristic.

- A sample is a part or subset of the population.

- A random sample of size n is a sample that is chosen in such a way as to ensure that every sample of size n has the same probability of being chosen.

- A parameter is a number describing some (unknown) aspect of a population. (i.e. μ)

- A statistic is some function of the sample observations. (i.e. \bar{X})

- The probability distribution of a statistic is known as a sampling distribution. (How is \bar{X} distributed)

- We need to distinguish the distribution of a random variable, say \bar{X} from the realization of the random variable (i.e. we get data and calculate some sample mean say $\bar{X} = 4.2$)
CHAPTER 6. SAMPLING AND SAMPLING DISTRIBUTIONS

Populations and Samples

- **A Population** is the set of all items or individuals of interest
 - **Examples:**
 - All likely voters in the next election
 - All parts produced today
 - All sales receipts for November

- **A Sample** is a subset of the population
 - **Examples:**
 - 1000 voters selected at random for interview
 - A few parts selected for destructive testing
 - Random receipts selected for audit

Figure 6.1:
Figure 6.2:
Note on Statistics

- The value of the statistic will change from sample to sample and we can therefore think of it as a random variable with its own probability distribution.

- \bar{X} is a random variable

- Repeated sampling and calculation of the resulting statistic will give rise to a distribution of values for that statistic.
A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population.
Chapter Outline

- Sampling Distributions
 - Sampling Distribution of Sample Mean
 - Sampling Distribution of Sample Proportion
 - Sampling Distribution of Sample Difference in Means

Figure 6.4:
6.2 Important Theorems Recalled

Suppose X_1, X_2, \ldots, X_n are independent with $E[X_i] = \mu_i$ and $V[X_i] = \sigma_i^2 \; \forall i = 1, 2, \ldots, n$.

Suppose $Y = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n + b$, then:

$$E[Y] = E\left[\sum a_i X_i + b\right] = a_1 E[X_1] + a_2 E[X_2] + \cdots + a_n E[X_n] + b$$

$$= a_1 \mu_1 + \ldots a_n \mu_n + b$$

$$= \sum a_i \mu_i + b$$

and

$$V[Y] = V\left[\sum a_i X_i + b\right] = a_1^2 V[X_1] + a_2^2 V[X_2] + \cdots + a_n^2 V[X_n] .$$

$$= a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \cdots + a_n^2 \sigma_n^2$$

$$= \sum a_i^2 \sigma_i^2 \text{ because of independence}$$

and if X_i is normal $\forall i$, i.e. $X_i \sim N(\mu_i, \sigma_i^2)$ independently $\forall i$:

$$Y \sim N\left(\sum a_i \mu_i + b, \sum a_i^2 \sigma_i^2\right)$$

6.3 Frequently used Statistics

6.3.1 The sample mean

- Let X_1, X_2, \ldots, X_n be a random sample of size n from a population with mean μ and variance σ^2. The sample mean is:
\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

1. The **expected value of the sample mean** is the population mean:

\[E[\bar{X}] = E\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} (\mu + \mu + \ldots + \mu) = \mu \]

2. The **variance of the sample mean** (\(X_i \)s independent):

\[V[\bar{X}] = V\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{1}{n^2} \sum_{i=1}^{n} V(X_i) \]

\[= \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{\sigma^2}{n}. \]

3. If we do not have **independence** it can be shown that

\[V[\bar{X}] = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right) \text{ where } N \text{ is the population size} \]

\[\left(\frac{N-n}{N-1} \right) \text{ is called the correction factor} \]

and if \(N \) is large relative to \(n \) then \(\left(\frac{N-n}{N-1} \right) \Rightarrow 1 \) so that \(V[\bar{X}] = \frac{\sigma^2}{n} \)

Note on Sample Mean

1. The use of the formulas for expected values and variances of sums of random variables that we saw in chapter 5.

2. The variance of the sample mean is a **decreasing** function of the sample size.

3. The **standard deviation of the sample mean** (under independence)

\[\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \]
6.3.2 The sample variance

- Let X_1, X_2, \ldots, X_n be a random sample of size n from a population with variance σ^2.
- The sample variance is:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

1. $E[s^2] = \sigma^2$ (we omit the proof)

6.4 Sampling distribution of the Sample Mean

Sampling from a Normal Population

- Let \overline{X} be the sample mean of an independent random sample of size n from a population with mean μ and variance σ^2.
- Then we know that $E[\overline{X}] = \mu$ and $V[\overline{X}] = \frac{\sigma^2}{n}$.
- If we further specify the population distribution as being normal, then

$$X_i \sim N(\mu, \sigma^2) \text{ for all } i$$

and we can write:

$$\overline{X} \sim N \left(\mu, \frac{\sigma^2}{n} \right).$$

6.5 Equation for the Standardized Sample Mean

Since $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$ we can ask what transformation can give us to a standard normal

- Generically the approach is ALWAYS

$$Z = \frac{\text{Random Variable-Mean of Random Variable}}{\text{Standard Deviation of Random Variable}}$$

- What does that mean for \overline{X}:
• Random Variable = \bar{X},

• Mean of Variable = $E[\bar{X}] = \mu$

• Standard Deviation of Variable = $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

• Put it all together

\[Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}. \]
Z-value for Sampling Distribution of the Mean

- Z-value for the sampling distribution of \(\bar{X} \):

\[
Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}
\]

where:
- \(\bar{X} \) = sample mean
- \(\mu \) = population mean
- \(\sigma \) = population standard deviation
- \(n \) = sample size

Figure 6.5:
Example of Standardizing for Sample Mean

The lengths of individual machined parts coming off a production line at Morton Metalworks are normally distributed around their mean of $\mu = 30$ centimeters. Their standard deviation around the mean is $\sigma = .1$ centimeter. An inspector just took a sample of $n = 4$ of these parts and found that \bar{X} for this sample is 29.875 centimeters. What is the probability of getting a sample mean this low or lower if the process is still producing parts at a mean of $\mu = 30$?

Answer

- Given the population is normally distributed with mean $\mu = 30$ and standard deviation $\sigma = .1$, we know that $X_i \sim N(30,.1^2)$ for all i, so

\[\bar{X} \sim N(30,.1^2/n). \]

Now want to apply our transformation stuff:
6.5. EQUATION FOR THE STANDARDIZED SAMPLE MEAN

\[P(\bar{X} \leq 29.875) = P(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq \frac{29.875 - 30}{1/\sqrt{n}}) \]

\[= P(Z \leq \frac{29.875 - 30}{1/\sqrt{4}}) = P(Z \leq -2.50) = .0062. \]

Questions: 7.3.

6.5.1 Sampling from a Non Normal Distribution

- We have seen that we can obtain the exact sampling distribution for the sample mean if the individual \(X_i \) are all independent normal variates.

- What happens when the \(X_i \)'s are not normally distributed?
Developing a Sampling Distribution

- Assume there is a population ...
- Population size $N=4$
- Random variable, X, is age of individuals
- Values of X: 18, 20, 22, 24 (years)

Figure 6.7:
Developing a Sampling Distribution

Summary Measures for the Population Distribution:

\[
\mu = \frac{\sum X_i}{N}
\]

\[
= \frac{18 + 20 + 22 + 24}{4} = 21
\]

\[
\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}} = 2.236
\]

Figure 6.8:
6.5.2 The Central Limit Theorem

Now consider all possible samples of size $n = 2$.
Developing a Sampling Distribution

Sampling Distribution of All Sample Means

16 Sample Means

<table>
<thead>
<tr>
<th>1st Observation</th>
<th>2nd Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>18 20 22 24</td>
</tr>
<tr>
<td>20</td>
<td>19 20 21 22</td>
</tr>
<tr>
<td>22</td>
<td>20 21 22 23</td>
</tr>
<tr>
<td>24</td>
<td>21 22 23 24</td>
</tr>
</tbody>
</table>

Sample Means Distribution

P(\bar{X})

(no longer uniform)

Figure 6.10:
Let X_1, X_2, \ldots, X_n be an independent random sample having identical distribution from a population of any shape with mean μ and variance σ^2.

Then if n is large:

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

approximately for large n

and similarly we can use the same transformation to standard form:

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

approximately for large n

Notes on the Central Limit Theorem

1. This result holds only for large n and we refer to such results as holding asymptotically. In this case we say that \bar{X} is asymptotically normally distributed

2. We have a short-hand way to write that the distribution of X_i is independently and identically (iid) distributed with mean μ and variance σ^2

$$X_i \sim i.i.d(\mu, \sigma^2)$$

3. Identically implies that $E[X_i] = \mu$ and $V[X_i] = \sigma^2$ for all i. That is the distribution of each observation ($i = 1, \ldots, n$) is the same.
As the sample size gets large enough... the sampling distribution becomes almost normal regardless of shape of population.
Example

- Suppose a population has mean $\mu = 8$ and standard deviation $s = 3$. Suppose a random sample of size $n = 36$ is selected.

- What is the probability that the sample mean is between 7.8 and 8.2?

Figure 6.12:
Example From Transformation to Standard Form when Sampling from a Non-Normal Distribution

- The delay time for inspection of baggage at a border station follows a bimodal distribution with a mean of $\mu = 8$ minutes and a standard deviation of $\sigma = 6$ minutes. A sample of $n = 64$ from a particular minority group has a mean of $\bar{X} = 10$ minutes.

- Is there evidence that this minority group is being detained longer than usual?

- How likely is it that a sample mean of $\bar{X} \geq 10$ if the population mean is 8?

Answer:

- Note from the question that this population from which we are sampling is non-normal.

- We know this is from the word bimodal since the normal has one mode.
• If the X_i are iid, then by applying (or invoke) the central limit theorem:

$$P(\bar{X} \geq 10) \approx P(Z \geq \frac{10 - 8}{6/\sqrt{64}})$$

$$= P(Z \geq 2.67) = .0038,$$

approximately.

Questions: NCT 7.11, 7.18, 7.19, &7.20.

6.6 Sampling Distribution: Differences of Sample Means $\bar{X}_1 - \bar{X}_2$

• Let \bar{X}_1 and \bar{X}_2 be the means of two samples from two separate and independent populations.

$$E[\bar{X}_1] = \mu_1 \quad V[\bar{X}_1] = \frac{\sigma_1^2}{n_1}$$

$$E[\bar{X}_2] = \mu_2 \quad V[\bar{X}_2] = \frac{\sigma_2^2}{n_2}$$

Since \bar{X}_1 and \bar{X}_2 are independent:

$$E[\bar{X}_1 - \bar{X}_2] = E[\bar{X}_1] - E[\bar{X}_2] = \mu_1 - \mu_2$$

$$V[\bar{X}_1 - \bar{X}_2] = V[\bar{X}_1] + V[\bar{X}_2] = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

6.6.1 Normal Case for $\bar{X}_1 - \bar{X}_2$

If $X_{1,i}$ are i.i.d. as $N(\mu_1, \sigma_1^2)$, $X_{2,i}$ are i.i.d. as $N(\mu_2, \sigma_2^2)$, and X_1 and X_2 are independent,

then we have an exact normal result for any sample size:

$$\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}).$$

• Recall a linear combination of normals is normal
6.6. **SAMPLING DISTRIBUTION: DIFFERENCES OF SAMPLE MEANS** $\bar{X}_1 - \bar{X}_2$

6.6.2 Non Normal Case for $\bar{X}_1 - \bar{X}_2$

If $X_{1,i}$ are i.i.d. with mean μ_1 and variance σ_1^2, $X_{2,i}$ are i.i.d. with mean μ_2 and variance σ_2^2, and X_1 and X_2 are independent, then using the central limit theorem, for large n_1, and n_2

$$\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$ approximately or asymptotically

6.6.3 Example of Difference of Means with Non-Normal Population

Suppose that right-handed (RH) students have a mean IQ of 80 units with variance 1,400 and left-handed (LH) students have a mean IQ of 80 with variance 1,320. What is the probability that the sample mean IQ of RH students will be at least 5 units higher than the sample mean IQ of LH students if we take a sample of 100 RH students and 120 LH students?

Answer: Let $X_{1,i}$ be the IQ of the ith RH student and $X_{2,i}$ be the IQ of the ith LH student.

$$\mu_1 = 80, \quad \sigma_1^2 = 1400, \quad n_1 = 100$$

$$\mu_2 = 80, \quad \sigma_2^2 = 1320, \quad n_2 = 120$$

and we want to find $P(\bar{X}_1 - \bar{X}_2 \geq 5)$.

Since n_1 and n_2 are both large we can apply the central limit theorem,

$$\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$ approximately

here:

$$\mu_1 - \mu_2 = 80 - 80 = 0 \quad \text{and} \quad \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = 25$$

Note: Formula for the standardizing transformation is:

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sigma_{\bar{X}_1 - \bar{X}_2}}$$
where

\[
\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.
\]

So that

\[\bar{x}_1 - \bar{x}_2 \sim N(0, 25) \text{ approximately}\]

\[P(\bar{x}_1 - \bar{x}_2 \geq 5) = P(Z \geq 1) = .1587\]
6.7 Sampling Distribution of Sample Proportion

Let X be a binomially distributed random variable (the number of successes in n trials).

- Recall the sample proportion is
 $$\hat{p} = \frac{X}{n}$$
 is the fraction of successes in n trials.

- In Chapter 6 we used the normal approximation to the binomial as the number of trials got large ($n\pi(1 - \pi) \geq 9$)

- This is another application of the **Central Limit Theorem**
 $$E(X) = \mu = n\pi$$ and $$Var(X) = \sigma^2 = n\pi(1 - \pi).$$

- So we might ask what is the $E[p]$ and $V[p]$

- $$E[\hat{p}] = E\left[\frac{X}{n}\right] = \frac{E[X]}{n} = \frac{n\pi}{n} = \pi$$

- Recall trials are independent so that
 $$V[\hat{p}] = V\left[\frac{X}{n}\right] = \frac{V[X]}{n^2} = \frac{n\pi(1 - \pi)}{n^2} = \frac{\pi(1 - \pi)}{n}$$

- So we apply the generic formula

$$Z = \frac{\text{Random Variable-Mean of Random Variable}}{\text{Standard Deviation of Random Variable}}$$

- What is mean for \hat{p}
 - Random Variable is \hat{p},
 - Mean of Variable is $E[\hat{p}] = p$

- Standard Deviation of Variable is $\sigma_p = \sqrt{\frac{p(1-p)}{n}}$

- Put it all together

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \text{ for large } n$$
6.8 Sampling Distribution of Sample Proportion: $\hat{p}_1 - \hat{p}_2$

- Consider two independent populations.

1. Population 1:

 \[X_1 = \text{number of successes}, \ n_1 = \text{number in sample 1}, \ \text{so } \hat{p}_1 = \frac{X_1}{n_1}. \]

 Recall

 \[E[\hat{p}_1] = p_1 \]

 and

 \[V[\hat{p}_1] = \frac{\pi_1(1 - \pi_1)}{n_1}. \]

2. Population 2:

 \[X_2 = \text{number of successes} \]

 \[n_2 = \text{number in sample 2} \]

 \[\hat{p}_2 = \frac{X_2}{n_2} \]

 \[V[\hat{p}_2] = \frac{p_2(1 - p_2)}{n_2} \]

3. Form Difference of Sample Proportion: $\hat{p}_1 - \hat{p}_2$

 - If n_1 and n_2 are large, i.e. $n_1p_1(1 - p_1) \geq 9$ and $n_2p_2(1 - p_2) \geq 9$ then:

 \[\hat{p}_1 - \hat{p}_2 \sim N(p_1 - p_2, \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}) \text{ approximately.} \]

 - This is another application of the central limit theorem

Questions: NCT 7.21, 7.22, 7.27 & 7.36.

Omit Sampling Distribution of the Sample Variance