Section A [15 marks in total]

1. [5 marks] Allan has just signed up for internet service, S. His plan provides that he gets 500 minutes per month for a flat fee of \$15, with all minutes beyond 500 charged at the rate of \$.10 (i.e., 10 cents) per minute. Allan has \$100 per month to spend on internet service and all other goods, G. Draw and appropriately label Allan's budget constraint. Allan has chosen to spend \$30 on internet service and \$70 on all other goods. If his utility function is given by U = S + 10G, is Allan maximizing his utility? Explain.

Indifference curves are linear with slope of - 1/10. Utility maximizing choices lie along budget line with slope = -1/10

Combination where Allan spends \$70 on other goods & buys 650 minutes of service is on this segment and is a utility maximizing choice

2. [5 marks] The market for premium cheese is characterized by a demand function of the form $Q^D = 4,000 - 300P$ and s supply function of the form $Q^S = 200P - 1,000$, where Q is quantity and P is price. Calculate the equilibrium values of price and quantity and determine the elasticity of demand at the equilibrium.

Equilibrium:
$$Q^{0} = Q^{5}$$
 $4000 - 300P = 200P - 1000$
 $500P = 5000 \longrightarrow P = 10$

Sub into Q^{0} : $Q = 4,000 - (300)(10) \longrightarrow Q = 1000$
 $E_{0} = \frac{dQ}{dP} \cdot \frac{P}{Q^{0}} = (-300) \cdot \frac{(10)}{(1000)} \longrightarrow E_{0} = -3$

3. [5 marks] Margerite likes novels, N, and tea, T, with her preferences defined by the utility function $U(N, T) = Min \{5N : T\}$. Draw and appropriately label two of Margerite's indifference curves. Please put N on the horizontal axis.

Section B [45 marks in total]

- 1. Donna is a jazz singer who dines out frequently when she is on the road. Consumes dinners, D, and wine, W, according to the utility function $U(D, W) = D^{1/2}W$. The price of a dinner is P_D , the price of wine is P_W , and her income is I.
 - a) [5 marks] Derive Donna's demand functions for dinners and wine.

b) [5 marks] If Donna's income is \$200, the price of a dinner is \$20 and the price of a glass of wine is \$10, calculate Donna's optimal consumption bundle.

$$D = \frac{200}{3} = \frac{200}{60} \rightarrow \boxed{D = 3.33}$$

$$W = \frac{(2)(200)}{(3)(10)} = \frac{400}{30} \rightarrow W = 13.33$$

c) [5 marks] If the price of a dinner increases to \$25, calculate Donna's new optimal bundle and the income and substitution effects of the price change.

New optimal bundle is
$$0' = \frac{200}{(3)(25)} \Rightarrow \boxed{D' = 2.67}$$

 $W' = \frac{(200)(2)}{(3)(10)} \Rightarrow \boxed{W' = 13.33}$

Need original utility level to find decomposition bundle $U = D^{1/2}W = (3.33)^{1/2}(13.33) = (1.82)(13.33) = 24.26$

At decomp bundle must have $\frac{W}{2D} = \frac{25}{10}$ so $W = \frac{500}{10} \Rightarrow 5D = W$

Also on original that lity so $24.26 = (D^{1/2})(5D) \rightarrow D^{1.5} = 4.85 \rightarrow D = (4.85)$ At decomp bundle D = 2.88 (see back)

2. Mats has 16 hours per day to allocate between work and leisure, R. Mats has a utility function defined over two goods, leisure and a composite consumption good, C, with a price of one. The utility function is of the form U(R, C) = Min{6R; C}. Mats receives a wage of \$10 per hour when he works.

a) [5 marks] Draw and appropriately label Mats budget constraint. Write an equation that describes the future value form of this budget constraint:

Description dead! Commot do this here.

Entire 5 marks for drawing correctly.

IF do write budget equation it is

C=160-10R

(c) continued

Suls = original bundle - Dat decomphendle = [3.33-2.88] = .45 [Suls effect is decrease of .45 in D]

Inc = decompliandle - Final bundle = [2.88-2.67] = .21

Inc effect is decrease of .21 in D

- b) [5 marks] Derive Mats' optimal bundle of leisure and consumption.
- -> budget constraint: C=160-10R
- -> Opt condin for perf comp where two arguments in U Fr are equal so where C=6R
- -> sub into constraint -> 6 R=160-10R -> 16R=160

c) Mats has been offered a choice by his boss. Mats can continue to freely choose his hours of work and be paid \$10 per hour or he can move to a new job that pays him \$15 per hour, but requires that he must work 8 hours per day. Which would Mats prefer? Explain.

Preser one yielding higher utility

Existing job -> U=Min Ecroc} = Min Eco; 60} -> U=60

New job must work 8 hours 50 R=8 => C=(8)(15) = 120

New job -> U=Min {6R; C} = Min {48;120} -> U=48

Mats preser existing job ble higher utility

- 3. Ricardo has \$200 in income and is considering spending the income on one of two lotteries, A and B. For lottery A, there is a 70% probability that Ricardo will end with a final income of \$0 and a 30% probability that he will end with a final income of \$700. For lottery B, there is a 50% probability that he will end with a final income of \$60 and a 50% probability that he will end with a final income of \$360.
 - a) [5 marks] Show that the two lotteries have the same expected value, but different degrees of riskiness.

$$EV_A = (.7)(0) + (.3)(700) = 0 + 210 = 210$$
 Same EV
 $EV_B = (.5)(60) + (.5)(360) = 30 + 180 = 210$

-> Calculate variance of outcomes for each.

Riskiness of A (1) Risking

$$\frac{(210-0)^2}{(210-700)^2} = 0 \times .7 = 0$$

$$(210-700)^2 = 240,100 \times .3 = 72,030$$

Variance = 0+72,030

$$\frac{Riskiness uf 13}{(210-60)^2 = 22,500 \times .5} = 11,225$$

$$(210-360)^2 = 22,500 \times .5 = 11,225$$

b) [5 marks] Suppose that Ricardo is a risk-averse person with a utility of income function given by $U(I) = I^{1/2}$, where I is his income. Will Ricardo prefer to keep his initial \$200 or would he prefer one of the two lotteries? Explain.

Keep \$200 with certainty U= I'2 = U200 = 14.14

$$U = I^{1/2} = U_{200} = 14.14$$

Expected utility for A+B

$$EU_{A}=(.7)V_{0}+(.3)V_{700}=0+7.94=7.94$$

 $EU_{B}=(.5)U_{60}+(.5)U_{360}=3.87+9.49=13.36$

Ricardo would prefer to keep his 200 1/c this Choice yields highest utility

c) [5 marks] If the winning outcome for lottery A were to increase from to \$525, would it be the preferred choice for Ricardo? Explain. Calculate expected utility of new version of A -> A'

vitter EUA' = (.7) VO + (.3) V525 = 0 + 6.87 = 6.87

would not except this lottery uses | EUB' = (.5)(60)+(.5)(525) = 3.87+11.46 = 15.33 16 Hery | -> would now prefer B to sure thing b/c highest EU

Accept either answer