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Abstract
This paper investigates regulations for a bank that is covered by deposit

insurance in a dynamic setting where bankruptcy entails social costs. Regula-
tory policy operates through rules governing the bank’s capital structure and
asset allocation that may be adjusted each period. Throughout, the regulator
must take into account that the bank is better informed about the inherent
risks of its assets (adverse selection) and may forgo unobservable and costly
actions to improve asset quality (moral hazard). I solve the resulting dynamic
contracting problem by extending the approach of Athey, Atkeson, and Kehoe
(2005). The model implies a stationary optimal regulatory policy under which
banks face risk-adjusted capital requirements but also hard-caps on size (by
assets) as well as leverage. In addition, the optimal policy counteracts pro-
cyclical bank behaviour through the use of capital buffers. Overall, the optimal
policy broadly supports major elements of the proposed Basel III regulatory
framework.
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1 Introduction

The recent global financial crisis led to the failure of a large number of
banks around the world. In the United States alone, between 2008 and 2010,
over 300 banks failed and were taken over by the government. By contrast,
only 27 had failed in ten years prior to 2008. The deposit liabilities of the banks
that failed or received government assistance totalled nearly $2 trillion while
losses for failed institutions, borne by the government, exceeded $60 billion.1

Observers have blamed a surge in leverage and excessive risk-taking on the
part of banks, along with inadequate supervision, for these failures. For in-
stance, the largest U.S. commercial banks increased their leverage by moving
roughly $5 trillion in assets into special purpose vehicles to bypass regulations
regarding minimum capital requirements.2 More generally, in the decade pre-
ceding the crisis, regulatory policies were insufficiently adept at coping with the
speed of financial innovation, and consequently, regulators persistently lacked
precise information regarding the nature of bank activities and associated risks.
Meanwhile, government guarantees provided bankers with perverse incentives
to take enormous risks as governments were on the hook for severe losses.3

Another regulatory shortcoming was the lack of attention paid to the dy-
namic nature of bank balance sheet adjustments in response to both business
cycle fluctuations and regulation. For instance, while changes in bank leverage
paralleled business cycle fluctuations, regulation failed to mitigate adverse con-
sequences of pro-cyclicality. More generally, the prevention of credit buildups
and avoidance of the subsequent painful de-leveraging, were not seen as proper
regulatory objectives.

This paper determines the optimal dynamic regulatory policy for insured
deposit-taking banks that persistently have private information regarding credit-
market conditions and their risk-mitigation activities, and where bankruptcy
generates strong externalities. Imperfect information results in mis-priced de-
posit insurance giving banks incentives to maximize profits by increasing the
risk of their loan portfolios to maximize the value of the deposit insurance.
Specifically the paper examines how, under the optimal regulatory policy,
banks choose to adjust their capital and asset structures in response to chang-
ing credit-market conditions. Furthermore, recent proposals for changes to
the current international banking regulatory framework (Basel II), that are

1See See the Federal Deposit Insurance Corporation (FDIC) list of failed banks at http:

//www.fdic.gov/bank/individual/failed/banklist.html and FDIC Failures and Assistance
Transactions at http://www2.fdic.gov/hsob/SelectRpt.asp?EntryTyp=30.

2Reilly (2009).
3For example, deposit insurance or implicit guarantees given to government-sponsored enter-

prises such as Fannie Mae and Freddie Mac in the United States.
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applicable in the context of the model, are evaluated qualitatively against the
optimal regulatory policy.

The main contribution of the paper is the characterization of the optimal
regulatory policy. A key finding is that under the optimal stationary regulatory
policy, banks face restrictions on loan volume, portfolio quality as well as
minimum capital requirements. However, banks with loan portfolios above a
threshold quality level face a strict regulatory regime while banks with lower
quality portfolios are afforded flexibility. Specifically, the loan limit imposed on
higher quality banks does not change with further improvements in the quality
of their portfolios, nor is a reduction in capital permitted. By contrast, for
lower quality banks, an increase in quality raises the allowable loan limit while
raising the capital requirement somewhat. Overall, under the optimal policy,
leverage is (weakly) increasing in loan quality4, banks face risk-based capital
adequacy requirements and must adhere to limits on size (in terms of loan
volume), and leverage.

Qualitatively, the optimal regulatory policy is broadly in line with current
proposed changes to the existing regulatory framework of Basel II. While,
the need for quality-adjusted capital requirements are a standard policy tool,
controls on leverage are broadly consistent with Basel III proposals that seek
to introduce a leverage ratio requirement. Moreover, the size restrictions in
the optimal policy support the broader macro-prudential goal in Basel III
of “leaning against excessive credit growth.”5 In addition, the adjustment
behaviour of banks under the optimal regulatory policy calls for decline in
loan volume but also for declines in capital requirements following an adverse
aggregate shock. This is consistent with the Basel III proposals calling for
banks to maintain capital buffers than can be drawn down following adverse
shocks.

2 Literature

One of the first theoretical models studying the inter-temporal effects of
capital constraints is given by Blum (1999). In a discrete time model he studies
the incentives for asset substitution coming from the reduction in expected
profits imposed by the requirement. In order to raise the amount of equity in
the following period, a bank may find it optimal to increase risk today, in which
case strengthening the requirement would have the opposite effects for which
it was designed, to curb bank risk taking. This paper similarly concludes that

4Leverage is (weakly) pro-cyclical in the terminology of Adrian and Shin (2010).
5http://www.bis.org/speeches/sp101011.htm.
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simple capital constraints may be ineffective in a dynamic setting but does not
characterize the optimal regulatory policy.

A number of papers such as Caleb and Robb (1999), Dangl and Lehar
(2004), Shim (2006) and Zhu (2007) study dynamic models of bank portfolio
choice comparing risk-based capital requirements to risk-insensitive ones in
addressing the moral hazard problem resulting from deposit-insurance. These
papers broadly favour imposing risk-sensitive requirements however do not
address the informational constraints faced by regulator. For instance, in a
continuous time setting Dangl and Lehar (2004) study a model in which the
regulator sets capital requirements as well as an audit policy. Well-adjusted
risk-based capital requirements are optimal and benefit both depositors and
equity holders, as they allow commitment to portfolio choices that increase
the bank’s charter value. In comparison, this paper takes a broader view
of the supervisory role encompassing both capital requirements and portfolio
restrictions nevertheless emphasizing informational constraints as a barrier to
implementing policy. As a result, the regulatory regime differs markedly for
higher quality banks for whom the optimal regulatory policy is inflexible and
not responsive to asset quality.

With respect to the pro-cyclicality of regulatory policy, an early contribu-
tion is Blum and Hellwig (1995).The authors show that rigid capital adequacy
regulation for banks may reinforce macroeconomic fluctuations. Repullo and
Suarez (2010) defend the pro-cyclical nature of policy while offering important
modifications that may help mitigate the severity of credit crunches following
an aggregate shock. In line with their arguments this paper finds that bank
balance sheet adjustments under the optimal policy are pro-cyclical but in
addition, using the characterization of the optimal policy, the optimal adjust-
ments are also determined.

3 Model

Banks emerge to improve upon outcomes in environments plagued by fric-
tions. For instance, banks reduce the informational asymmetries between bor-
rowers and lenders by screening investment projects and monitoring borrowers.
By providing demandable deposits, they also insure consumers against idiosyn-
cratic liquidity risk. Consequently, bank failures generate negative externalities
by exposing bank customers to the underlying frictions. As a result, govern-
ments regulate and monitor the activities of banks to reduce the possibility of
bank default but nevertheless also explicitly guarantee deposits.

To capture the salient feature of this scenario, consider a risk-neutral bank
that raises funds from depositors and outside shareholders to allocate across
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risky loans and reserves.6 Through deposits, the bank provides liquidity ser-
vices and through loans, the bank funds entrepreneurial projects. The bank
has private information regarding the credit-risk of its loan portfolio and can
also raise portfolio quality through costly effort. When the bank is unable
to meet its obligations, as is the case when returns are sufficiently low, the
bank defaults. A defaulting bank imposes social costs on society that are
proportional to bank losses but are not internalized by the bank.

There is a regulator that provides deposit insurance and maximizes social
welfare.7 The presence of the regulator stems from the existence of externalities
imposed on society due to bank failure. The regulator is unable to observe the
effort by the bank manager to improve loan quality (moral hazard) nor the
private information regarding credit-risk on the loans held by bank (adverse
selection). As a result, the relationship between the bank and the regulator is
plagued with a moral hazard problem that interacts with the adverse selection
problem as in Laffont and Tirole (1986). These informational problems result
in mis-priced deposit insurance giving banks incentives to maximize profits by
increasing the risk of their loan portfolios to maximize the value of the deposit
insurance. The regulator imposes restrictions on both the capital structure
and asset structure of the bank to influence bank behaviour.

More specifically, there are four types of actors: depositors, firms, banks
and a regulator. These actors are described in detail below. Figure 1 provides
a summary.

3.1 Investors / Depositors

There is a large number of risk-averse investors or depositors. They are
willing to invest in a risky security for return re > rf where rf is the return
on a risk-less asset, normalized to 1.

3.2 Firms/Investments

The bank has sole access to a number of investment opportunities (or
projects) and is the sole source of outside financing in this economy. The
projects vary in risk and size. The average return on a portfolio of loans in
the amount L is rL where r ∈ [r, r]. Due to its monopoly position in the
lending market, the bank captures all the surplus from loans. Therefore, bank
profits capture rrtotal welfare from loan-making activities. This assumption
is not critical but will simplify the regulator’s welfare maximization problem

6The stage game is an extension of Giammarino, Lewis, and Sappington (1993).
7More generally, guarantees for debt or debt-like instruments issued a financial intermediary.
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InvestorsFirms/
Entrepreneurs

BANK (Quality q)

Liabilities                Asssets
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Equity E                   Reserves R
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Place deposits D in Bank

Borrow L from Bank

Sets a policy (q, L, R, P) for the Bank

Taxes public 
to pay depositors

when Bank defaults
Regulator

Figure 1: Actors
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because including the bank’s profits in the welfare function will be sufficient
to capture total welfare. Therefore, the bank’s gross profit from issuing an
amount of loans L is just rL.

3.3 Bank

The bank holds an outstanding share of equity at the start of the period.
The bank raises deposits D and (outside) equity E by selling a fraction z of
its equity share. It uses these funds to invest L in risky loans while holding R
in reserves. Tt pays a premium P for deposit insurance to the regulator. Thus
the bank equates assets and liabilities as follows:

D + E = L+R+ P (1)

The average gross rate of return, r, on the bank’s loan portfolio is a random
variable with smooth distribution function G(r|q) where q is the quality of the
bank’s loan portfolio. Higher levels of q imply more profits in a first-order
stochastic dominance sense. Formally, G has positive support on [r, r] and
that an increase in q increases returns in a FOSD sense:

Assumption 1. Gq(r|q) ≤ 0 ∀r ∈ [r, r] with strict inequality for some r.

The quality of the loan portfolio, q, is comprised of the “innate” quality θ
and effort e so that q = θ + e. The innate quality θ can be viewed as factors
beyond the control of the bank such as the credit-worthiness of the borrowers
or the state of the financial markets. The bank privately observes this innate
quality while the regulator believes it to be drawn from a distribution F (θ)
with support on Θ ≡ [θ, θ]. On the other hand, effort e, can be viewed as all
the factors within the control of the bank but that are costly to implement
such as risk-management and loan monitoring. The cost of effort is given by
C(e) where C ′, C ′′ > 0. In addition, the processing of loans entails additional
administrative costs γ(L) as a function of loans L where γ′(·), γ′′(·) > 0.

The bank’s revenues after paying depositors for a realization of a return r
on loans are:

rL− γ(L) +R−D − C(e)

The cutoff for returns, rb, below which the banks defaults is given by:

rbL− γ(L) +R−D − C(e) = 0

so that

rb =
D + γ(L)−R+ C(e)

L
(2)
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At the end of the period, the bank pay claims to depositors and shareholders.
If profits exceed D, then depositors are paid in full and the rest of the profits
are distributed among shareholders. If profits are insufficient to pay depositors,
the regulator pays the depositors. As a result, the return to (outside) equity
E is equated with the fraction of expected profits entitled to shareholders.

re(E)E = z

∫ r

rb
[rL− γ(L) +R−D − C(e)]dG(r|q) (3)

The return to equity here is a decreasing function of the amount of equity E
issued (i.e. dre/dE < 0) because a larger equity cushion lowers the risk of
default.

The expected (net) profits for the bank are:

(1− z)
∫ r

rb
[rL− γ(L) +R−D − C(q − θ)]dG(r|q)− P (4)

subject to (1) and (2). Following Giammarino, Lewis, and Sappington (1993),
in equilibrium we assume D = L, so that cheap deposits fund loans, and
E = R so that equity provides a “cushion” for losses. It follows from (1) that
the equilibrium insurance premium P = 0.

3.4 The regulator’s problem

The regulator maximizes social welfare while also providing deposit insur-
ance. He doesn’t observe the effort nor the innate quality of the loan portfolio
and so cannot condition the policies on these variables. However, following
the bank’s report of its innate loan quality, the regulator determines the loan
volume L, reserves R and quality q that the bank must adhere to. Then, the
bank raises outside funds and chooses effort e. Note that as the q = θ + e,
without loss of generality, we can view the bank as choosing q rather than e.
After assets are in place, the regulator carries out an inspection. Following the
inspection, only if {q, L,R} are consistent with regulation, is the bank allowed
to continue operations. The underlying assumption is that inspection conveys
perfect information about the realized quality of the loan portfolio.

Formally, the regulator offers a policy or contract µ(·) = {q(·), L(·), R(·)} to
the bank, where the functions q(·), L(·) and R(·) are all piecewise-C1 functions.
The bank observes the innate loan quality and using a reporting strategy m(θ)
issues a report θ̂ = m(θ) ∈ Θ. The policy for the bank when it reports its
innate loan quality as θ̂ will be denoted by µ(θ̂) = {q(θ̂), L(θ̂), R(θ̂)}. The
timing is summarized below:

In equilibrium, the expected cost of bankruptcy to the regulator (i.e. of
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Bank observes θ

Bank reports quality θ̂

Regulator sets µ(θ̂)

Bank chooses effort

Regulator inspects bank

Returns are realized

Figure 2: Timing

providing insurance) for a bank with innate quality θ is:

S[µ(θ)] ≡ (1 + λ)

[
(1 + b)

∫ rb

r
[rL(θ)− γ(L(θ)) +R(θ)

−L(θ)− C(q(θ)− θ)]dG(r|q(θ))]

The term inside the brackets is the expected loss borne by the regulator when
profits fail to cover the depositor’s claims where we have used D(θ) = L(θ) to
simplify the expression. Here the parameter b captures negative externalities
from bankruptcy that are proportional to losses.8 The government must raise
funds to pay the depositors in the case of default. The parameter λ > 0
is the marginal cost of public funds and captures the deadweight loss from
distortionary taxes levied by the government to pay depositors.

The expected profits of the bank (and thereby the total surplus from lend-
ing) when it has innate quality θ but reports θ̂ is

π[µ(θ̂), θ] ≡
∫ r

rb
[rL(θ̂)− γ(L(θ̂)) +R(θ̂)− L(θ̂)− C(q(θ̂)− θ)]dG(r|q(θ̂))

− re(E)R(θ̂) (5)

where we have used (1) and (3) to simplify the objective. Essentially, the
main source of profits is from loan activities while reserves serve to offset
losses from loans. Deposits, loan issuance costs, interest on equity raised and
deposit insurance premiums are liabilities that must be met before any profit
is registered.

Applying an extended revelation principle9, we can write the regulator’s

8As noted in Giammarino, Lewis, and Sappington (1993), alternative specifications of the social
costs of default are possible. For example, they could be made proportional to the level of loans
issued. These yield qualitatively similar results.

9Myerson (1982) provides a Revelation Principle for environments that feature both adverse
selection and hidden actions such as the one above.
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problem as follows:

max
µ(·)

∫ θ

θ
{S[µ(θ)] + π[µ(θ), θ]}dF (θ) (6)

subject to

π[µ(θ), θ] ≥ 0 (7)

π[µ(θ), θ] ≥ π[µ(θ̂), θ] (8)

for all θ, θ̂ ∈ Θ where S[µ(θ)] + π[µ(θ), θ] is the combined welfare from loan
activities and the provision of deposit insurance for a bank with innate quality
θ that reports truthfully. The first set of constraints are the limited-liability
constraints for the bank. The second set are the incentive compatibility con-
straints, ensuring that a bank of type θ does indeed prefer to report θ rather
than some θ̂ 6= θ.

4 The Optimal Regulation

We first analyze the regulatory problem with complete information in order
to establish a pair of welfare benchmarks. In this scenario, the regulator is able
to perfectly assess the credit risk on the bank’s balance sheet and so is able to
play the role of an external ratings agency. A bank that employs an external
agency to assess its credit risk is said to be following the standardized approach
in assessing such risk. Formally, the standardized policy µS(θ) maximizes
welfare (6) subject to the limited liability constraints (7) without the incentive
constraints (8). It must satisfy the first-order conditions for the regulator’s
problem:

∂S[µS(θ)]

∂µk
+
∂π[µS(θ), θ]

∂µk
= 0 ∀µk = q, L,R. (9)

Clearly, µS(θ) varies directly with the innate quality of the bank’s loan port-
folio, imposing a risk-based capital structure and leverage ratio, L(θ)/R(θ).
Moreover, µS(θ) achieves the highest welfare possible while leaving no surplus
to the bank.

(condition for flatness)
At the other end of the spectrum, the regulator may choose to ignore the

innate loan quality of the bank altogether when setting its policy. Such a
policy imposes a fixed capital structure, fixed asset portfolio and fixed deposit
insurance premium on the bank regardless of the bank’s asset quality. We
label such a policy a full hard-cap policy, denoted µFHC , as it does not permit
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flexibility in any policy variable. Formally, it solves the following problem:

max
µ

∫ θ

θ
{S[µ] + π[µ, θ]}dF (θ) (10)

subject to the limited liability constraints π[µ, θ] ≥ 0. It is clear that this
policy achieves a lower level of welfare than µS(θ).

4.1 Policies and Welfare Under Private Information

When the bank has private information, the regulator must rely on the
bank to provide an overall assessment of its credit-risk. Then, in contrast to the
perfect-information case, the ability of the regulator to adjust the regulatory
regime in accordance with the private information of the bank is curtailed
by the presence of the incentive-constraints. Indeed, this adjustment can be
performed only be surrendering a certain amount of surplus in eliciting the
information.

To solve the regulator’s problem we first replace the global incentive-constraints
(8) with appropriate local versions of them. To this end, we view the bank
as choosing a report θ̂ to solve maxθ̂ π[µ(θ̂), θ)]. The necessary condition for
truthful reporting to be optimal is then:

∑
k

∂π[µ(θ̂), θ]

∂µk

dµk(θ̂)

dθ̂

∣∣∣∣∣
θ̂=θ

=
∑
k

∂π[µ(θ), θ]

∂µk

dµk(θ)

dθ
= 0 (11)

The sufficient condition is equivalent to ∂2π[µ(θ̂),θ)]

∂θ̂∂θ

∣∣∣
θ̂=θ
≥ 0 or

∑
k

∂2π[µ(θ̂), θ]

∂µk∂θ

dµk(θ̂)

dθ̂

∣∣∣∣∣
θ̂=θ

=
∑
k

∂2π[µ(θ), θ]

∂µk∂θ

dµk(θ)

dθ
≥ 0 (12)

Under the following weak single-crossing assumption:

Assumption 2.
∂2π[µ(θ), θ]

∂µk∂θ
≥ 0 (13)

for all k with strict inequality for at least one k.

the local-incentive constraints (11) are equivalent to the incentive-constraints
(8) if and only if the regulatory policy is weakly monotonic: dµk(θ)/dθ ≥ 0 for
all k. We also make the following assumption on the hazard rate:
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Assumption 3.

d

dθ

{
1− F (θ)

f(θ)

}
≤ 0 for all θ ∈ [θ, θ] (14)

Standard techniques10 then ensure that given the assumptions above, the
regulator’s relaxed problem can be written as

max
µ(θ)

∫ θ

θ

[
S[µ(θ)] +

(
1− F (θ)

f(θ)

)
∂π[µ(θ), θ]

∂θ

]
dF (r|q(θ)) (15)

subject to incentive-constraints (11) and the limited liability constraint π[µ(θ), θ] =
0. The necessary conditions for optimality are:

∂S[µ(θ)]

∂µk
+

(
1− F (θ)

f(θ)

)
∂2π[µ(θ), θ]

∂µk∂θ
= 0 ∀k (16)

The above formulation of the problem shows that the regulator choses a policy
that maximizes the virtual social surplus which takes into account the costs of
providing the incentives for the bank to truthfully report its credit risk. As the
credit risk is assessed by the bank, we refer to the optimal policy in this case
as the Internal Rating-Based or IRB policy, denoted µIRB(θ). An important
comparative static result is that µIRBk (θ) is strictly increasing in θ for all k so
that monotonicity conditions are not binding.

Proposition 1. Given assumptions 1 - 3, the optimal policy variables are
increasing in θ and so is leverage:

dµIRBk (θ)

dθ
> 0 for all k and for all θ ∈ Θ

and
d[L(θ)/R(θ)]

dθ
> 0 for all θ ∈ Θ

Proof. The proof follows directly from the proof of Proposition 2 in Giammarino,
Lewis, and Sappington (1993).

From a welfare standpoint, µIRB(θ) yields an equilibrium with the highest
social surplus with private information which is nonetheless smaller than the
surplus achieved by µS(θ).

10See for example the methodology outlined Fundenberg and Tirole (1991). The use of this
methodology also requires making some assumptions on the third derivatives of the profit function
corresponding to A8 in section 7.3 of Fundenberg and Tirole (1991) that we have omitted here for
simplicity.
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5 The Dynamic Setting

We now analyze the infinitely repeated version of the stage-game described
in the previous section. At each t ≥ 0, the regulator offers a policy µt =
{qt, Lt, Rt, Pt}. The bank observes private information concerning loan charac-
teristics, θt ∈ Θ. Then, the bank sends a report θ̂t ∈ Θ regarding its private in-
formation to the regulator resulting in the outcome, µt(θ̂t) = {qt(θ̂t), Lt(θ̂t), Rt(θ̂t), Pt(θ̂t)}.
In order to specify strategies for the bank and the regulator we need to describe
histories on which these strategies may be conditioned. A history at time t is
defined as

ht = (θt, θ̂t, qt, Lt, Rt, Pt)

The history ht is just the bank’s report together with the prescribed policy of
the regulator within period t. The space of all possible period t histories ht is
denoted by Ht. The initial date is t = 0.

Definition 1. The history up to the period t will be denoted by ht ≡ {h0, h1, . . . , ht}.

The set of all possible histories up through time t will be denoted by Ht ≡
H0 × H1 · · · × Ht. The regulator does not observe the history ht because he
does not observe the private information θt each period. Instead, the regulator
only observes

st ≡ (θ̂t, qt, Lt, Rt, Pt) ⊂ ht
in each period t.

Definition 2. We will denote the public history up to date t as st ∈ St which
will be drawn from the set St ≡ S0 × S1 × · · · × St.

As the regulator observes a subset of the bank’s history, that is st ⊂ ht
for every t, we can write the regulator’s history as a function of the bank’s
history: st(ht). To complete the definition of histories we take h−1 = s−1 ≡ ∅
as there is no information prior to period 0.

We can now define strategies for the bank and the regulator that make use
of the histories defined above:

Definition 3. A reporting strategy for the bank is a sequence of functions

m ≡ {mt(θt, h
t−1)}∞t=0 for all ht−1 ∈ Ht−1, θt ∈ Θ

that map the bank’s history ht−1 and period t private information θt into a
report to be sent to the regulator at the beginning of period t.

Definition 4. The regulator offers the bank a sequence of policies

µ ≡ {qt(θ̂t, st−1), Lt(θ̂t, s
t−1), Rt(θ̂t, s

t−1), Pt(θ̂t, s
t−1)}∞t=0
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for all histories st−1 ∈ St−1 and reports θ̂t ∈ Θ, that map the regulator’s
history together with the bank’s message into an outcome.

The regulator observes st−1 prior to setting a regulatory policy in period t
and so can condition the policy on the public history st−1. Obviously he can’t
condition the policy on the private history ht−1 as he doesn’t observe ht−1.
Consequently, the regulator’s policy specifies the quantity of loans, reserves,
insurance premium and loan quality (implicitly giving an effort recommenda-
tion) each period as a function of the public history st−1 and the bank’s period
t message. On the other hand, the bank is free to use the full history ht−1

when considering its choice of report each period.
Any reporting strategy (m) and regulatory policy (µ) generate values, one

each for the bank and the regulator (society). Denote by σ the strategy profile
(m,µ). Then, the value to the bank of following the reporting strategy m
when the regulatory offers a policy µ is equal to the discounted stream of
profits arising from σ at time zero:

Vb(σ) = (1− β)
∞∑
t=0

βtπ[µt(θ̂t, s
t−1), θt] (17)

where the bank uses its reporting strategy m to report θ̂t = mt(θt, h
t−1) ∈ Θ

for all θt ∈ Θ in each period t, and

π[µt(θ̂t, s
t−1), θt] ≡∫ r̄

rb
[rLt(mt(θt, h

t−1), st−1)−γ(Lt(mt(θt, h
t−1), st−1))+Rt(mt(θt, h

t−1), st−1)

− Lt(mt(θt, h
t−1), st−1)]dG(r(q(mt(θt, h

t−1), st−1)))− reRt(mt(θt, h
t−1), st−1)

− rePt(mt(θt, h
t−1), st−1)]− C(q(mt(θt, h

t−1), st−1)− θt),

the time-variant cutoff is given by

rb =
Lt(mt(θt, h

t−1), st−1) + γ(Lt(mt(θt, h
t−1), st−1))−Rt(mt(θt, h

t−1), st−1)

Lt(mt(θt, ht−1), st−1)
.

The corresponding value for the regulator is:

Vr(σ) = (1− β)

∞∑
t=0

∫ θ

θ
βt
[
S[µt(θ̂t, s

t−1)] + π[µt(θ̂t, s
t−1), θt]

]
dF (θt). (18)
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where

S[µt(θ̂t, s
t−1)] ≡ reP (θ̂t, s

t−1)− (1 + b)

∫ rb

r
[rL(θ̂t, s

t−1)− γ(L(θ̂t, s
t−1)) +R(θ̂t, s

t−1)

− L(θ̂t, s
t−1)]dG(r|q(θ̂t, st−1))

The factor (1 − β) normalizes the payoffs to current period units. Future
histories ht and st are generated recursively as follows: in period t, following
history st−1 and the report θ̂t = mt(θt, h

t−1), the regulator responds with the
policy µt(θ̂t, s

t−1) so that the bank’s history ht = (ht−1, θt, θ̂t, µt(θ̂t, s
t−1)).

The regulator’s history is then st = (st−1, θ̂t, µt(θ̂t, s
t−1)).

When the bank reports its private information truthfully each period, that
is mt(θt, h

t−1) = θt for all t ≥ 0, θt ∈ Θ and ht−1 ∈ Ht−1, the social value from
providing deposit insurance is:

Vr(σ) = (1− β)

∞∑
t=0

∫ θ

θ
βt[S[µt(θt, s

t−1)] + π[µt(θt, s
t−1), θt]dF (θt). (19)

The bank’s payoff from following a truthful strategy starting at t = 0:

Vb(σ) = (1− β)
∞∑
t=0

βtπ[µt(θt, s
t−1), θt] (20)

and the payoff when history hk−1 has been realized is:

Vb(σ|hk−1) = (1− β)
∞∑
t=k

βt−kπ[µt(mt(θt, h
t−1|hk−1), st−1), θt].

where the bank’s (truthful) reports are functions of the full history.
We require that the bank’s truthful strategy be optimal from any history

of the regulator sk−1 onwards:

Vb(m,µ|sk−1) ≡(1− β)

∞∑
t=k

βt−kπ[µt(mt(θt, h
t−1|sk−1), st−1|sk−1), θt]

≥(1− β)

∞∑
t=k

βt−kπ[µt(m̂t(θt, h
t−1|sk−1), st−1|sk−1), θt] ≡ Vb(m̂, µ|sk−1)

for any reporting strategy m̂ such that m̂t(θt, h
t−1|sk−1) = θ̂t 6= θt for at least

one t.
The first point to note is that we can restrict attention to public strategies.
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That is, given that the regulator is using public histories to formulate the
policy, the bank cannot do better when using its private history to formulate
its reporting strategy.

Lemma 1. The bank cannot improve upon its payoffs by conditioning its re-
porting strategy on private histories rather than public histories:

(1− β)
∞∑
t=k

βt−kπ[µt(mt(θt, s
t−1|sk−1), st−1|sk−1), θt]

≥ (1− β)
∞∑
t=k

βt−kπ[µt(mt(θt, h
t−1|sk−1), st−1|sk−1), θt] (21)

for all t ≥ k, θ̂t ∈ Θ and histories sk−1 ∈ Sk−1.

Proof. Conditioning history sk−1 enters the incentive constraints only by af-
fecting the payoffs through the history-dependent outcome function µt(·, ·).
These payoffs are identical for all hk−1 that coincide in the sk−1 part once
θk is realized. The bank’s private information on past innate quality realiza-
tions θt affects the present only through the different policies proposed by the
regulator. Imposing a separate constraint for each hk−1 is therefore not more
restrictive.

The intuition is that in equilibrium, only the bank’s current private information
will be relevant for payoffs in the current period. Given the regulator’s policy,
the bank will then find it optimal to report its information truthfully in the
current period regardless of its reports in past periods.

We can now define an equilibrium for the infinitely repeated game in public
strategies (i.e. where both the regulator and the bank condition their strategies
on public histories):

Definition 5. A perfect Bayesian equilibrium (PBE) of the infinitely repeated
game is a reporting strategy, m = {mt(θt, s

t−1)}∞t=0, a regulatory policy, µ =
{µt(θt, st−1)}∞t=0 such that

• the bank prefers to report mt(θt, s
t−1) = θt rather than mt 6= θt, that is

Vb(m,µ|sk−1) ≥ Vb(m̂, µ|sk−1)

• limits on the bank’s liability are met:

π[µt(θt, s
t−1|sk−1), θt] ≥ 0
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for every history sk−1 ∈ Sk−1 and realization of the bank’s private information
θt ∈ Θ and alternative reporting strategy m̂.

The definition effectively ensures that in all perfect Bayesian equilibria,
the regulator is able to illicit truth-telling and participation in equilibrium. As
there will typically be many such equilibria, the mechanism design problem
is to choose a reporting strategy and regulatory policy such that they will
be incentive-compatible, ensure participation and that the resulting outcomes
will maximize social welfare. Restricting ourselves to direct mechanisms, the
dynamic mechanism design problem for the regulator [DRP] can be formulated
as follows:

max
{µt(·,·)}∞t=0

(1− β)
∞∑
t=0

∫ θ

θ
βt[S[µt(θt, s

t−1)] + π[µt(θt, s
t−1), θt]dF (θt) (22)

subject to

Vb(m,µ|sk−1) ≥ Vb(m̂, µ|sk−1) (23)

π[µt(θt, s
t−1|sk−1), θt] ≥ 0 (24)

for all histories sk−1 ∈ Sk−1 and θt, θ̂t ∈ Θ. Moreover, although we have
restricted ourselves to direct mechanisms in the formulation of the regulator’s
problem, this restriction does not limit the set of feasible allocations as the
Revelation Principle holds in this environment. This is shown formally in the
following proposition:

Proposition 2. Given a general reporting space M, consider a reporting
strategy m∗ = {m∗t (θt, st−1)}∞t=0 where m∗t (θt, s

t−1) ∈ M ∀t, an effort strat-
egy η∗ = {η∗t (θt, st−1)}∞t=0 where η∗t (θt, s

t−1) ∈ Θ ∀t, a regulatory policy µ∗ =
{µ∗t (m∗t , η̂t, st−1)}∞t=0 where η̂t is an effort recommendation, that are optimal,
there is a corresponding incentive-compatible direct mechanism in which the
bank obeys the effort recommendation that is also optimal.

Proof. The proof follows from Proposition 2 of Myerson (1982).

5.1 Recursive Formulation of the Regulator’s Prob-
lem

We will use the apparatus of Abreu, Pearce, and Staccehetti (1990) to solve
the regulator’s problem recursively. First, we show how all PBE strategies can
be decomposed into a current period outcome and a continuation strategy.
Then, we show how we can characterize the value associated with each PBE
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in terms of a current period payoff and continuation values. By characterizing
all PBE strategies in terms of values, we can ignore the former and focus on the
latter. This focus on the continuation values permits a recursive formulation
of the dynamic mechanism design problem using these continuation values as
state variables. That is, by using continuation values as state variables we can
show that a version of the principle of optimality holds so that the solution to
the dynamic mechanism design problem can be found by solving an appropriate
static mechanism design problem.

Given any PBE strategy profile σ = (m,µ), we can view this strategy profile
as inducing a first-period outcome (θ0, µ0(θ0, ∅)) (as s−1 is the null history)
and a continuation strategy σ|s0 to be played after the first-period history
s0 = s0 = (θ0, q0, L0, R0, P0). Here,

σ|s0 = {mt(θt, s
t−1|s0), µt(mt, s

t−1|s0)}∞t=1 (25)

where mt(θt, s
t−1|s0) = θt and µt(mt, s

t−1|s0) = µt(θt, s
t−1|s0) are the equilib-

rium strategies prescribed by σ following the history s0.
Then, we can break-down the value from this strategy profile into the sum

of values from the first period outcome and continuation values drawn from
the set of incentive-compatible and limited-liability payoffs. For example, we
can write the value to the regulator from the profile σ as follows:

Vr(σ) = (1− β) [S[µ0(θ0, ∅)] + π[µ0(θ0, ∅), θ0]] + βVr(σ|s0)

where the first term is the value from the equilibrium (i.e. truthful) first-period
strategy and the second term is the value from following the continuation strat-
egy σ|s0. Hence, we can decompose the value associated with any PBE into a
current period value and a continuation value. In fact, we can completely char-
acterize all the PBE in this manner. We prove this formally in the proposition
below:

Proposition 3. If σ is a PBE than so is the continuation strategy σ|s0. More-
over, σ is a PBE if and only if

• for every first period history s0 that is incentive-compatible and satisfies
limited-liability, σ|s0 is a PBE

• (1− β)π[µ0(θ0, ∅), θ0] + βVb(σ|s0) ≥ (1− β)π[µ(θ̂0, ∅), θ0] + βVb(σ|ŝ0) for
all ŝ0 ∈ S0 where ŝ0 = (θ̂0, µ0(θ̂0, ∅)) for all θ0, θ̂0 ∈ Θ.

Proof. We first show that σ|s0 is a PBE given that σ is a PBE. We need
to verify Definition 5 for σ|s0 in the continuation game. Essentially, writing
out the definition of the continuation game and strategy makes this obvious.
Now, if σ is a PBE, then incentive-compatibility in definition 5 implies truthful
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revelation in the first-period. Then, as we have shown above σ|s0 is a PBE.
Finally, if σ|s0 is a PBE and the first period history is incentive-compatible
then σ = (m0, µ0(m0, ∅), σ|s0) is a PBE.

This proposition characterizes all PBE strategies in terms of a first-period
history s0 and continuation values Vb(σ|s0) and Vb(σ|ŝ0) for the bank to induce
it to adhere to the strategy or punish it when it deviates. Now that we have
the characterization of all PBE in terms of values in hand, we would like to
characterize the boundary of the set of values associated with all PBE.

Denote by V the set of values associated with all PBE of the infinitely
repeated game:

V = {Vb(σ) | σ is an PBE }

Obviously, V ⊂ R. Now, as per the proposition, for every PBE σ with first-
period outcome (θ0, µ0(θ0, ∅)) there exist v(θ̂0) ∈ V such that:

(1−β)π[µ0(θ0), ∅|θ0, ∅)]+βv(θ0) ≥ (1−β)π[µ0(θ̂0, ∅|θ0, ∅)]+βv(θ̂0) for all θ0, θ̂0 ∈ Θ

Let σ1(θ0) and σ2(θ̂0) be the PBEs for which v(θ0) = Vb(σ
1(θ0)), v(θ̂0) =

Vb(σ
2(θ̂0)). The PBE that supports the first period outcome (θ0, µ0(θ0, ∅)) is

completed by specifying σ|s0 = σ1(θ0) and σ|ŝ0 = σ2(θ̂0) for all θ0, θ̂0 ∈ Θ.
The values v(θ̂0) ∈ V , for all θ̂0 produce then a PBE σ with value v ∈ V given
by

v = (1− β)π[µ0(θ0, ∅), θ0] + βv(θ0) (26)

Therefore, the construction here maps values v(θ̂0) into a strategy profile σ
with first period outcome (θ0, µ0(θ0, ∅)) and a value v = Vb(σ). To obtain the
set V we apply this construction to all values in a sufficiently large candidate
set W , obtaining a set B(W ). The largest fixed point of the operator B(W )
is then the set V .

Formally, we can encapsulate the above construction in the following notion
of enforceability :

Definition 6. The first-period outcome (θ0, µ0(θ0, ∅)) and the continuation
values w(·) are enforceable by W if

• w(θ̂0) ∈W for all θ̂0 ∈ Θ

• (1−β)π[µ0(θ0, ∅), θ0]+βv(θ0) ≥ (1−β)π[µ0(θ̂0, ∅), θ0]+βv(θ̂0) ∀θ0, θ̂0 ∈ Θ

Of course, wheneverW ⊂ V , the enforceable first-period outcome (θ0, µ0(θ0, ∅))
and continuation values w(·) determine a PBE strategy profile σ and value v
given by (26). We need not characterize the entire set V but can rather focus
on the finding the largest value in V . This largest value will be the value
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achieved by the regulator after solving the dynamic mechanism design prob-
lem. The largest value is the solution to the following static mechanism design
problem:

v̄ = max
µ0(θ0),w(θ0)

∫
(1− β) [S[µ0(θ0, ∅)] + π[µ0(θ0, ∅), θ0] + βw(θ0)] dF (θ0)

subject to the restriction that (θ0, µ0(θ0, ∅)) and w(·) be enforceable by W .

6 The Optimal Dynamic Regulatory Policy

6.1 The optimal mechanism

Rather than characterizing the set W , we will solve the best-value problem
and characterize the optimal mechanism. Following Athey, Atkeson, and Ke-
hoe (2005) we define the mechanism to be static if w(θ) = w̄ for θ and dynamic
if w(θ) < w̄ on a subset of Θ of positive measure. The key result is that un-
der an appropriate set of single-crossing and monotone hazard conditions, the
optimal mechanism is static. This result is a direct extension of Proposition 1
in Athey, Atkeson, and Kehoe (2005) to an environment in which the decision
space11 is multidimensional.

The major steps in the proof as follows. First, we replace the global in-
centive constraints with appropriate local incentive constraints. This requires
assuming that appropriate single-crossing as well as monotonicity conditions
on the regulatory policy variables hold. Typically, one then proceeds to solve
the relaxed problem in which the monotonicity and feasibility constraints are
ignored and then checks to see if these are violated. Despite making an as-
sumption on an appropriately defined hazard-rate, the relaxed problem yields
non-monotonic policy functions meaning that at least one of the ignored con-
straints binds. The constraint that binds turns out to be the feasibility con-
straints and this is shown using the variational approach of Athey, Atkeson,
and Kehoe (2005).

6.2 Preliminaries

Dropping the time subscripts, we can write the regulator’s problem as
follows:

11Following the terminology in section 7.3 of Fundenberg and Tirole (1991), the decision space
here is {q, L,R, P}.
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v̄ = max
µ(θ),w(θ)

∫ θ

θ

[
S̃[µ(θ)] + π̃[µ(θ), θ] + βw(θ)

]
dF (θ) subject to

π̃[µ(θ), θ] + βw(θ) ≥ π̃[µ(θ̂), θ] + βw(θ̂) (27)

π̃[µ(θ), θ] + βw(θ) ≥ 0 (28)

w(θ̂) ∈W (29)

for all θ, θ̂ ∈ Θ where we have used S̃, π̃ to denote (1− β)S, (1− β)π, w(·) is a
piecewise-C1 function and µ(·) is a vector of piecewise-C1 functions.

Following standard methodology12, we will first replace the global incentive-
constraints in (27) with equivalent local versions. To derive these, we can for-
mulate the bank’s problem as choosing a report θ̂ that solves maxθ̂ Φ(θ̂, θ) ≡
π̃[µ(θ̂), θ] + βw(θ̂). The first-order necessary condition for the truthful report
θ̂ = θ to be global incentive-compatible is

∂Φ(θ̂, θ)

∂θ̂

∣∣∣∣∣
θ̂=θ

=
∑
k

∂π̃[µ(θ̂), θ]

∂µk

dµk(θ̂)

dθ̂
+ β

dw(θ̂)

dθ̂

∣∣∣∣∣
θ̂=θ

=
∑
k

∂π̃[µ(θ), θ]

∂µk

dµk(θ)

dθ
+ β

dw(θ)

dθ
= 0 (30)

while the second-order sufficient condition is ∂2Φ(θ̂,θ)

∂θ̂2
≤ 0. Differentiating

the first-order condition at the optimum with respect to θ, we have ∂2Φ(θ̂,θ)

∂θ̂2
+

∂2Φ(θ,θ)

∂θ̂∂θ
|θ̂=θ = 0. Hence, the second-order condition is equivalent to ∂2Φ(θ̂,θ)

∂θ̂∂θ
≥ 0

or ∑
k

∂

∂θ

(
∂π̃[µ(θ), θ]

∂µk

)
dµk(θ)

dθ
≥ 0

We from the following weak single-crossing assumption, Assumption 2, we
have:

∂

∂θ

(
∂π̃

∂µk

)
≥ 0 ∀k (31)

with strict inequality for at least one k. Then, the second-order condition is
satisfied as long as the monotonicity constraints, dµk(θ)

dθ ≥ 0, hold for all k.

12See for example section 7.3 in Fundenberg and Tirole (1991).
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We say an allocation (µ(·), w(·)) is locally incentive-compatible if both (30)
and the monotonicity constraints hold. Furthermore, we have just shown that
the allocation (µ(·), w(·)) is incentive-compatible in the sense of (27) if and
only if it is locally incentive-compatible. Note that when the bank is risk-

neutral, Assumption 2 is automatically satisfied as ∂
∂θ

(
∂π̃
∂q

)
= C ′′(·) > 0 and

∂
∂θ

(
∂π̃
∂L

)
= ∂

∂θ

(
∂π̃
∂R

)
= ∂

∂θ

(
∂π̃
∂P

)
= 0 so that only (30) and the monotonicity

constraints are needed for incentive-compatibility.
We will now incorporate the local incentive constraints (30) into the regu-

lator’s objective. First, denote the value at the optimum to a bank of type θ
by U(θ) where:

U(θ) = π̃[µ(θ), θ] + βw(θ). (32)

Notice that U(θ) is piecewise-C1 as both π̃[µ(θ), θ] and w(θ) are piecewise-C1

and that:

U ′(θ) =
∂

∂θ
π̃[µ(θ), θ] + β

dw(θ)

dθ

=
∂π̃

∂θ
+
∑
k

∂π̃[µ(θ), θ]

∂µk

dµk
dθ

+ β
dw(θ)

dθ

=
∂π̃

∂θ

where the last line follows from the local incentive-compatibility requirement
(30). Integrating from θ to θ we have:

U(θ)− U(θ) =

∫ θ

θ

∂π̃[µ(z), z]

∂θ
dz (33)

Using this result, we can first rewrite the continuation values as:

βw(θ) ≡ U(θ) +

∫ θ

θ

∂π̃[µ(z), z]

∂θ
dz − π̃[µ(θ), θ] (34)
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Then, we can rewrite the regulator’s objective as follows:∫ θ

θ

[
S̃[µ(θ)] + π̃[µ(θ), θ] + βw(θ)

]
f(θ)dθ

=

∫ θ

θ

[
S̃[µ(θ)] +

∫ θ

θ

∂π̃[µ(z), z]

∂θ
dz + U(θ)

]
f(θ)dθ

=

∫ θ

θ

[
S̃[µ(θ)] + U(θ)

]
f(θ)dθ +

∫ θ

θ

∫ θ

θ

(
∂π̃[µ(z), z]

∂θ
dz

)
f(θ)dθ

= U(θ) +

∫ θ

θ

[
S̃[µ(θ)] +

(
1− F (θ)

f(θ)

)
∂π̃[µ(θ), θ]

∂θ

]
f(θ)dθ

after an integration by parts. We now make the following joint assumption on
the distribution of types and the welfare function:

Assumption 4.

∂S̃[µ(θ)]

∂µk
+

(
1− F (θ)

f(θ)

)
∂2π̃[µ(θ), θ]

∂µk∂θ
(35)

is strictly decreasing in θ for at least one k.

This assumption states that the marginal benefit of increasing any one of
the policy variables is decreasing with the bank’s innate quality. In other
words, tightening the policy for banks with low innate quality portfolios, for
instance by raising their reserve requirements or realized loan quality, improves
welfare more than similar increases aimed at higher quality banks. This as-
sumption is motivated by the observation that prior to the recent financial
crisis, society would probably have benefited more from tighter regulatory pol-
icy vis-a-vis banks with high-risk portfolios such as Bears Sterns or Lehman
Brothers than corresponding policy towards banks with safer portfolios.

We can now view the regulator’s formal problem as choosing a regulatory
policy µ(·) that maximizes welfare given by

U(θ) +

∫ θ

θ

[
S̃[µ(θ)] +

(
1− F (θ)

f(θ)

)
∂π̃[µ(θ), θ]

∂θ

]
f(θ)dθ (36)

subject to the following monotonicity, feasibility and limited-liability con-
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straints:

dµk/dθ ≥ 0 for all k

w(θ) ≡ U(θ)/β +

∫ θ

θ

∂π̃[µ(z), z]

∂θ
dz − π̃[µ(θ), θ]/β ≤ w̄ for all θ ∈ Θ

π̃[µ(θ), θ] + βw(θ) = 0.

The main result is as follows:

Proposition 4. Under Assumptions 2 and 4, the optimal mechanism is static,
that is w(θ) = w̄ for all θ ∈ Θ.

6.3 Proving that the optimal mechanism is static

The standard approach to the above mechanism design problem is to first
solve the relaxed problem and then verify that the monotonicity and feasibility
constraints hold for the solution to that problem. As we show below, this
approach fails here because the solution to the relaxed problem violates one
of the constraints. To demonstrate this we analyze the first-order conditions
to the regulator’s problem. In order to derive these, consider the perturbed
policy µ(θ) + δh(θ) where h(θ) is a vector of piecewise-C1 functions, δ is a
small number and µ(θ) is assumed to be optimal. Welfare under this perturbed
policy is denoted by g(δ) where

g(δ) =

∫ θ

θ

[
S̃[µ(θ) + δh(θ)] +

(
1− F (θ)

f(θ)

)
∂π̃[µ(θ) + δh(θ), θ]

∂θ

]
f(θ)dθ

For the policy µ(θ) to be optimal, welfare should remain unchanged for small
perturbations around it. Formally: g′(0) = 0 or∫ θ

θ

∑
k

[
S̃[µ(θ)]

∂µk
+

(
1− F (θ)

f(θ)

)
∂2π̃[µ(θ), θ]

∂µk∂θ

]
hkf(θ)dθ = 0 (37)

for all vectors of piecewise-C1 functions h(θ). The integral in (37) can be zero
for all such h(θ) only if the integrand is zero at all θ ∈ Θ. Formally,[

S̃[µ(θ)]

∂µk
+

(
1− F (θ)

f(θ)

)
∂2π̃[µ(θ), θ]

∂µk∂θ

]
= 0 (38)

for all k and all θ ∈ Θ. These are the necessary first-order conditions for the
solution to the regulator’s problem. To interpret them notice that for example
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when µk = q, the LHS of the first-order condition[
S̃[µ(θ)]

∂q
+

(
1− F (θ)

f(θ)

)
∂2π̃[µ(θ), θ]

∂q∂θ

]

is the marginal increase in welfare from regulating an increase in the quality
of the bank’s loan portfolio. Under Assumption 4, this marginal increase in
welfare is greater for banks of low innate quality than for those with high innate
quality. Therefore, a policy that is decreasing with innate quality policy is
optimal. Such a policy however violates the monotonicity constraint dq/dθ ≥
0. Hence, the solution to the relaxed problem is invalid.

In fact, the constraint that is binding is the feasibility constraint w(θ) ≤ w̄.
To show this we adapt the variational approach in Athey, Atkeson, and Kehoe
(2005). The key idea is that as long as µ(θ) is strictly increasing in any one
policy variable, we can find a variation that improves welfare by flatten it. We
then use this idea to show that w(θ) must a step function because it weren’t
then incentive-compatibility would require µ(θ) to be strictly increasing in
some policy variable so that a welfare improving variation would exist. Finally,
we show that w(θ) is also continuous so that it must be constant.

We would like to show that the feasibility constraint binds. The analy-
sis of the relaxed problem suggests that whenever µ(θ) is increasing in some
direction, a variation that reduces the policy for higher types in that direc-
tion and increases it for lower types should be welfare improving. This idea is
formalized in the following lemma:

Lemma 2. Let (µ(θ), w(θ)) be an allocation where both dµk
dθ > 0 and Assump-

tion 4 are satisfied for at least one k on the interval (θ1, θ2). Then, there is a
variation that improves welfare, assuming that it is feasible.

Proof. Let µ(θ) be the optimal policy. Consider the following alternate policy:

µ̃(θ) =

{
µ̃ if θ ∈ (θ1, θ2)
µ(θ) otherwise

where µ̃ is a vector of constants with typical element

µ̃k =

∫ θ2
θ1
µk(θ)f(θ)dθ

F (θ2)− F (θ1)
.

Of course, µ̃k is just the conditional mean of µk(θ) for on the interval (θ1, θ2).
Whenever, dµk(θ)/dθ > 0, the alternate policy differs from the old one by
reducing µ(θ) in the policy variable µk when the latter is above its conditional
mean and raising it when it is below. We say µ̃(θ) is flatter than µ(θ), possibly
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along more than one policy variable. Now, consider the following variation of
µ(θ) that mixes the two policies:

µ(θ; a) = aµ̃(θ) + (1− a)µ(θ) for a ∈ [0, 1]

With this variation we can analyze the marginal effect of flattening µ(θ). The
value to the bank under this variation is:

U(θ; a) = U(θ) +

∫ θ

θ

∂π̃[µ(z; a), z]

∂θ
dz (39)

and the continuation values are:

w(θ; a) = U(θ) +

∫ θ

θ

∂π̃[µ(z; a), z]

∂θ
dz − π̃[µ(θ; a), θ]. (40)

Welfare under this variation is given by:

V (a) =

∫ θ

θ

[
S̃[µ(θ; a)] +

(
1− F (θ)

f(θ)

)
∂π̃[µ(θ; a), θ]

∂θ

]
f(θ)dθ + U(θ)

=

∫ θ

θ

[
S̃[aµ̃(θ) + (1− a)µ(θ)]

+

(
1− F (θ)

f(θ)

)
∂π̃[aµ̃(θ) + (1− a)µ(θ), θ]

∂θ

]
f(θ)dθ + U(θ)
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Then the change in the welfare from a small variation is:

dV (0)

da
=

∫ θ

θ

∑
k

[
∂S̃

∂µk
[µ̃k(θ)− µk(θ)] +

(
1− F (θ)

f(θ)

)
∂2π̃

∂µk∂θ
[µ̃k(θ)− µk(θ)]

]
f(θ)dθ

=

∫ θ2

θ1

∑
k

[
∂S̃

∂µk
[µ̃k − µk(θ)] +

(
1− F (θ)

f(θ)

)
∂2π̃

∂µk∂θ
[µ̃k − µk(θ)]

]
f(θ)dθ

=

∫ θ2

θ1

∑
k

[µ̃k − µk(θ)]

[
∂S̃

∂µk
+

(
1− F (θ)

f(θ)

)
∂2π̃

∂µk∂θ

]
f(θ)dθ

= [F (θ2)− F (θ1)]
∑
k

∫ θ2
θ1

[µ̃k − µk(θ)]
[
∂S̃
∂µk

+
(

1−F (θ)
f(θ)

)
∂2π̃
∂µk∂θ

]
f(θ)dθ

[F (θ2)− F (θ1)]

= [F (θ2)− F (θ1)]
∑
k

E

{
[µ̃k − µk(θ)]

[
∂S̃

∂µk
+

(
1− F (θ)

f(θ)

)
∂2π̃

∂µk∂θ

]}

= [F (θ2)− F (θ1)]
∑
k

Cov

{
µ̃k − µk(θ),

[
∂S̃

∂µk
+

(
1− F (θ)

f(θ)

)
∂2π̃

∂µk∂θ

]}

where the expectation and covariance are being taken with respect to the
conditional density f(θ)/[F (θ2)− F (θ1)] and the last line follows from noting
that E[µ̃k − µk(θ)] = 0 for all k by construction.

Now, to see that this marginal change in welfare is positive, recall that

from Assumption 4 that
[
∂S̃
∂µk

+
(

1−F (θ)
f(θ)

)
∂2π̃
∂µk∂θ

]
is strictly decreasing in θ and

dµk/dθ > 0 for at least one k, say k
′
. Then, also notice that µ̃k − µk(θ) is

also decreasing, by construction, on the interval (θ1, θ2) for all k including k
′
.

Therefore, the k
′

term in the sum of the covariance terms is positive implying
that the sum of the covariances is positive as the other terms are either also
positive or zero. Thus the marginal increase in welfare from the variation is
also positive.

Therefore, as long as µ(θ) is strictly increasing in some policy variable,
we can construct a welfare-improving variation by flattening µ(θ) along that
variable. We will now use this idea to show that w(θ) must be a step-function.
The proof is by contradiction and the argument is as follows: if the optimal
w(θ) is not a step-function then we can show that µ(θ) must increasing in at
least one policy variable but that then we can find a variation (i.e. by flattening
µ(θ)) that improves welfare, so a w(θ) that is not a step-function could not
have been optimal. In the following lemma we present this argument formally
while also establishing that such a variation is always feasible.
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Lemma 3. Given Assumption 4, w(θ) is a step-function.

Proof. Suppose w(θ) is not a step-function. Then, the incentive-compatibility
condition expresses the derivate of w(θ) in terms of the derivatives of the policy
function: ∑

k

∂π̃[µ(θ), θ]

∂µk

dµk
dθ

+
dw(θ)

dθ
= 0.

As µk(θ) is a piecewise-C1 function for all k, this implies that w(θ) is also a
piecewise-C1 function. Then, w(θ) is differentiable everywhere except on a set
of measure zero so we can always find an interval over which dw/dθ is strictly
positive or negative. This entails that over this interval the feasibility con-
straint must be slack or w(θ) ≤ w̄ − ε for some ε > 0. Incentive-compatibility
also implies that whenever dw(θ)/dθ 6= 0 and ∂π̃/∂µk 6= 0 for some k, then
the monotonicity constraint for µk is strict: dµk(θ)/dθ > 0. Appealing then to
the previous lemma, there exists a variation that improves welfare (assuming
that it is feasible) so that any w(θ) that is not a step-function could not be
optimal.

To ensure that the variation we have constructed is feasible, we need to
adjust the continuation values in such way that w(θ; a) ≤ w̄ for some a ∈ [0, 1].
The continuation values under the variation are given by (40). Notice that we
can rewrite them as

βw(θ; a) =

{
βw(θ) for θ ≤ θ1

βw(θ) + ∆(a) for θ > θ1
(41)

where ∆(a) is given by

∆(a) =

∫ θ

θ1

[
∂π̃[µ(z; a), z]

∂θ
− ∂π̃[µ(z), z]

∂θ

]
dz. (42)

Whenever, ∆(a) ≤ 0 for θ ≥ θ2, the continuation values from the variation
are equal to or lower than the continuation values for µ(θ) outside the inter-
val (θ1, θ2). An increase in continuation values then only occurs on (θ1, θ2).
However, recall that w(θ) ≤ w̄ − ε on this interval and as π̃ is continuous we
can find a small enough a ∈ [0, 1] so that w(θ; a) ≤ w̄. Therefore, the welfare-
improving variation we constructed above is feasible. The intuition behind
this procedure is that potentially raising the continuation values for types on
the interval (θ1, θ2), by at most ∆(a), weakens their incentives to report their
types as above θ2. To fix this, we can lower the continuation values for all
types above θ2 by ∆(a). Now, whenever ∆(a) ≥ 0 for θ ≥ θ2, we can apply an
analogous variation that gives us the same result. As it adds no new insights
we relegate the discussion of this case to Appendix B.
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Having shown that w(θ) is a step-function, if we can show that it is contin-
uous we know that it must be constant. Optimally then necessitates that this
constant be w̄. The continuity of both µ(θ) and w(θ) is shown in the lemma
below, the proof of which we relegate to Appendix C as it is largely technical
in nature.

Lemma 4. Given Assumptions 2 and 4, µk(θ) is continuous for all k. Also,
w(θ) is continuous and therefore w(θ) = w̄ for all θ ∈ Θ.

Proof. See Appendix C.

6.4 Characterizing the Optimal Policy

We can now characterize the optimal regulatory policy. To suitably narrow
the class of optimal policies, we can impose the following necessary conditions
derived earlier:

1. µk(θ) is continuous for all k

2. µk(θ) is weakly increasing for

3. given that the optimal mechanism is static, w(θ) = w̄, from (30) opti-
mality requires that µ(θ) satisfy∑

k

∂π̃[µ(θ), θ]

∂µk

dµk(θ)

dθ
= 0 (43)

From the last condition, it is clear that the optimal policy potentially consists
of flat regions in one or more policy variables (i.e. where dµk

dθ is zero for one
or more k) together with non-flat regions for the other policy variables. We
systematically analyze these cases via the following sequence of lemmas.

Lemma 5. When the optimal policy is flat everywhere, dµk(θ)/dθ = 0 for all
k and θ ∈ Θ, it must be the µFHC policy.

Proof. When dµk/dθ = 0 for all k on the entire interval [θ, θ], the optimal pol-
icy is of the form µ∗ = {q∗, L∗, R∗, P ∗} where q∗, L∗, R∗ and P ∗ are constants.
Thus, the incentive-constraints (43) hold trivially and

µ∗ = arg max
µ

∫ θ

θ
[S̃[µ] + π̃[µ, θ] + βw̄]dF (θ) s.t. π̃[µ, θ] ≥ 0 for all θ ∈ Θ.

so that from (10) it is clear that µ∗ coincides with µFHC as βw̄ is a constant.
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When the optimal policy is not µFHC , there are potentially a large number
of cases to consider as the policy can fail to be flat in many ways. The next
result simplifies much of the analysis. It states that a policy that is flat in a
limited set of policy variables cannot be optimal over any interval as the IRB
policy is welfare improving over such a policy.

Lemma 6. Under assumptions 2, 3 and 4, if dµk/dθ > 0 for some but not all
k on I ⊂ Θ, then we can find an alternative policy that improves welfare on I
and for which dµk/dθ > 0 for all k, namely the IRB policy.

Proof. First, it is useful to define the set of partially-flat optimal policies.
Consider a policy µ(θ). Let KI

0 (µ) be the set of policy variables of µ that are
flat over the set I. That is, KI

0 (µ) = {k : dµk/dθ = 0 for θ ∈ I}. When KI
0 (µ)

is not the empty set, we say µ is a partially-flat policy. As an example, consider
KI

0 = {R} so that the policy is of the form µ(θ) = {q(θ), L(θ), R, P (θ)}. Now,
the set of partially-flat optimal policies consists of all policies that are flat in
some variable and solve the regulator’s problem. For example, the policy µL(θ)
given by

µL(θ) = arg max
q(θ),L(θ),R,P (θ)

∫ θ

θ
[S̃[q(θ), L(θ), R, P (θ)]+π̃[q(θ), L(θ), R, P (θ), θ]+βw̄]dF (θ)

s.t. π̃[q(θ), L(θ), R, P (θ), θ] ≥ 0 and (43) holds for all θ ∈ Θ.

is a partially-flat optimal policy.
Now, if a policy is flat in some variables and is optimal over some interval I

then it must coincide with one of the partially-flat optimal policies for not-flat
variables over I. Note that this is a direct result of the incentive-constraint
(43). However, as we are limiting the admissible policies to those that are
flat in some variables, selecting policies from from a larger admissible set (i.e.
those that may not be flat in any variable) will yield higher welfare. That
is, we can engineer a welfare improving relative to the partially-flat optimal
policy by using the IRB policy over I. For instance, in the example above,
allowing R(θ) to vary with θ is welfare-improving (over all intervals) as the
optimal policy is then the IRB policy. Moreover, from Proposition 1 we know
that the policy variables for the IRB policy are strictly increasing. Therefore,
no partially-flat policy can be optimal over any interval.

The main result regarding the characterization of the optimal policy can
be stated as follows:
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Proposition 5. Unless µ(θ) is flat everywhere (and thus equal to µFHC), the
optimal policy is of the following form:

µ(θ) =

{
µIRB(θ) if θ ∈ [θ, θ

′
)

µIRB(θ
′
) if θ ∈ (θ

′
, θ]

(44)

Proof. If the optimal policy is not µFHC , then given the lemmas above the
optimal policy must coincide with the IRB policy over some interval. That
is, dµk/dθ > 0 for all k on some I ⊂ [θ, θ]. This is clear from observing that
when w(θ) = w̄ is imposed, the optimal policy solves a problem that is an
affine transformation of the problem solved by the IRB policy so that both
must satisfy (43).

On the rest of the interval, as dµk/dθ = 0 for all k in order for (43) to
hold, the optimal policy is flat. In fact, the subset on which µ(θ) = µIRB

is a connected set. If the set was disconnected, the optimal policy would be
discontinuous contrary to what was shown in Lemma 4. To see this last point,
note that between the two disconnected segments where the optimal policy
coincides with the IRB policy, it would be flat. Thus, the optimal policy
would need to jump up at the start of the second segment in order to coincide
again with µIRB(θ) as the latter is strictly increasing in θ. Thus, µ(θ) has the
following form:

µ(θ) =


µ1 = µIRB(θ1) if θ ∈ [θ, θ1)

µIRB(θ) if θ ∈ [θ1, θ
′
)

µ2 = µIRB(θ
′
) if θ ∈ (θ

′
, θ]

(45)

We need to now show that θ1 = θ. To see this consider an alternate policy
µ̃(θ) that is has the same form as µ(θ) above except that it lowers θ1. Then,
µ̃(θ) improves welfare for all types θ < θ1 as µIRB(θ) is strictly increasing in
θ. Formally, the change in welfare from lowering θ1 is given by:
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dV

dθ1
=

d

dθ1

[∫ θ

θ
[S̃[µ(θ)] +

(
1− F (θ)

f(θ)

)
∂π̃[µ(θ), θ]

∂θ
+ βw̄]dF (θ)

]

=
d

dθ1

[∫ θ1

θ
[S̃[µIRB(θ1)] +

(
1− F (θ)

f(θ)

)
∂π̃[µIRB(θ1), θ]

∂θ
+ βw̄]dF (θ)

+

∫ θ

θ1

[S̃[µIRB(θ)] +

(
1− F (θ)

f(θ)

)
∂π̃[µIRB(θ), θ]

∂θ
+ βw̄]dF (θ)

]

=
d

dθ1

[
[S̃[µIRB(θ1)] +

(
1− F (θ)

f(θ)

)
∂π̃[µIRB(θ1), θ1]

∂θ
+ βw̄]f(θ1)

]
+

∫ θ1

θ

d

dθ1

[
S̃[µIRB(θ1)] +

(
1− F (θ)

f(θ)

)
∂π̃[µIRB(θ1), θ]

∂θ
+ βw̄]

]
dF (θ)

− d

dθ1

[
[S̃[µIRB(θ1)] +

(
1− F (θ)

f(θ)

)
∂π̃[µIRB(θ1), θ1]

∂θ
+ βw̄]f(θ1)

]
=

∫ θ1

θ

∑
k

[(
∂S̃[µIRB(θ1)]

∂µk
+

(
1− F (θ)

f(θ)

)
∂2π̃[µIRB(θ1), θ]

∂µk∂θ

)
∂µIRBk (θ1)

∂θ

]
dF (θ)

To see that this change is positive note that
∂µIRB

k (θ1)
∂θ > 0 for all k as the IRB

policy is strictly increasing. Also µIRB(θ1) is suboptimal at θ < θ1, so from

(16) ∂S̃[µIRB(θ1)]
∂µk

+
(

1−F (θ)
f(θ)

)
∂2π̃[µIRB(θ1),θ]

∂µk∂θ
< 0 for all k. Finally, as dF (θ) > 0

and dθ1 < 0 (we are decreasing θ1),

dV =

(∫ θ1

θ

∑
k

[(
∂S̃[µIRB(θ1)]

∂µk

+

(
1− F (θ)

f(θ)

)
∂2π̃[µIRB(θ1), θ]

∂µk∂θ

)
∂µIRBk (θ1)

∂θ

]
dF (θ)

)
dθ1 > 0

7 Policy Implications

The first implication of the characterization of the optimal regulatory policy
is that all banks face a limit on loan volume and must adhere to quality and
capital requirements. The second implication is that the regulatory policy
for banks below the threshold quality level θ′ will feature the same degree
of flexibility as in the static environment. Namely, loan volume, quality and

32



capital requirements will increase with the quality of the bank’s portfolio, as
per Proposition 1. Moreover, loan volume will increase more rapidly than
capital requirements so that leverage increases with quality as well. The third
implication is that for banks that have portfolios of higher quality than θ′, the
regulatory policy is very rigid. Although they are allowed to issue the highest
quantity of loans, they are not permitted to exceed that amount irrespective
of improvements to loan quality. Hence, regulation can be seen as imposing
a maximum size on banks by assets, namely L(θ). Moreover, further quality
improvements also do not permit a decrease in the capital requirement so that
effectively regulation can also be seen as imposing a cap on leverage given by
L(θ)/R(θ). Overall, leverage is weakly increasing in quality as it increase for
all θ < θ′ and is capped for all θ > θ′. Thus, in the terminology of Adrian and
Shin (2010), leverage is weakly pro-cyclical.

The optimal regulatory policy is broadly in line with Basel III. First, it
supports risk-based capital requirements for all banks. Second, it finds sup-
port a broad supervisory role that sets regulation concerning both the asset
and liability sides of the bank’s balance sheet while allowing banks the use of
internal risk-based models for assessing credit-risk. Third, it supports the use
of leverage as an additional measure of inherent bank risk as leverage in the
model evolves directly with quality. Finally, through the use of loan volume
caps the optimal policy also support the Basel III goal of protecting against
excessive credit buildup.

7.1 Cyclical Adjustments

Both the academic literature and policy makers have noted13 that de-
leveraging by all banks through fire-sales of assets at the same time may
exacerbate the credit problems following an aggregate adverse shock.14 As
a result, a key provision of Basel III is the requirement for banks to maintain a
capital buffer that can be drawn down in bad times so as to avoid excessive de-
clines in credit. The optimal regulatory policy also incorporates the notion of
a capital buffer in mitigating de-leveraging by banks. Furthermore, by design,
it also spells out the optimal capital and asset structure to be held following
an adverse shock by through carefully balancing the social costs of avoiding
default against the social costs of bankruptcy.

In the model, a bank’s innate quality can be interpreted as factors that
affect credit-worthiness but that are beyond the control of the bank. A natural

13For a discussion of these issues see Hanson, Kashyap, and Stein (forthcoming).
14A number of such implications have been termed “pro-cyclical” effects of regulatory policy.

See Wellink (2010).
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way to interpret θ is as the aggregate state of the economy. The state affects all
entrepreneurs simultaneously and so banks are able to ascertain it as a result
of their intermediation role while the regulator learns the state with a delay.
Then, given an innate quality θt in period t, a realization of θt+1 > θt in period
t+ 1 would be interpreted as a positive aggregate shock while a realization of
θt+1 < θt would be viewed as an adverse aggregate shock. Then, comparing the
behaviour of banks with innate qualities θt and θt+1 under the optimal policy,
provides a means for understanding the adjustments that would be required
following a positive or adverse aggregate shock. For instance, the balance sheet
adjustments required by the optimal regulatory policy after an adverse shock
are a reduction in the size and quality of the loan portfolio and a reduction in
capital in the amount R(θt)−R(θt+1). Effectively, banks hold a capital reserve
buffer, by design, of R(θ). In addition, loans would decline by L(θt)−L(θt+1)
while portfolio quality would also suffer. As leverage also decreases following
an adverse shock, loans are reduced more than capital. The important point
to note here is that the process of de-leveraging that is typically observed in
economic downturns following severe adverse shocks is mitigated by declines in
the capital requirement or in other words through the maintenance of a capital
buffer.

8 Conclusion

This paper has investigated the optimal regulatory policy for deposit-taking
institutions in a dynamic setting. It has found that the optimal policy is
stationary and requires controls on both the asset and liability side of the
bank’s balance sheet. Specifically, it requires banks to adhere to a risk-adjusted
capital requirement, a quality requirement along with limits on loan volume.
Furthermore, policy accords lower quality banks a limited degree of flexibility
in adjusting their balance sheets in response to quality improvements. Such
flexibility is markedly absent for higher quality banks.

The optimal regulatory policy also dictates a hard-caps on loan volume
and leverage across all banks. This is in broad agreement with the Basel III
goals of limiting excessive credit buildup and the use of leverage as an addi-
tional risk measure. Regulatory policy also characterizes the optimal balance
sheet adjustment strategy for banks following (independent and identically
distributed) aggregate shocks over time. Specifically, banks will optimally ad-
just their balance sheets through reductions in both loan volume and capital
nevertheless leading to a decline in leverage. This adjustment process fully
takes into account the social costs stemming from declines in the availability
of credit as a result of bank de-leveraging following an adverse aggregate shock.
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The reductions in capital as part of the adjustment process accord well with
the proposals for capital buffers to counteract pro-cyclicality in the Basel III
framework.
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A Feasibility

When ∆(a) ≥ 0 we cannot use the variation described earlier. In this case,
we must resort to an alternative variation. Notice that to maintain incentives
after applying the variation, we can either change the promised values of banks
with type above θ1 or change the continuation values for all types below θ2.
To see the later, note that given U ′(θ) = ∂π̃[µ(θ), θ]∂θ, by integrating down
from θ to θ, we have:

U(θ) = U(θ)−
∫ θ

θ

∂π̃[µ(z), z]

∂θ
dz (46)

Let µ(θ) be the optimal policy. Again, consider the following alternate policy:

µ̃(θ) =

{
µ̃ if θ ∈ (θ1, θ2)
µ(θ) otherwise

To ensure that the variation we have constructed is feasible, we need to adjust
the continuation values in such way that w(θ; a) ≤ w̄ for some a ∈ [0, 1]. The
continuation values under the variation are given by:

w(θ; a) = U(θ)−
∫ θ

θ

∂π̃[µ(z; a), z]

∂θ
dz − π̃[µ(θ; a), θ]. (47)

Notice that we can rewrite them as

βw(θ; a) =

{
βw(θ) for θ ≤ θ1

βw(θ)−∆(a) for θ > θ1
(48)

where ∆(a) is given by

∆(a) =

∫ θ

θ1

[
∂π̃[µ(z; a), z]

∂θ
− ∂π̃[µ(z), z]

∂θ

]
dz. (49)

From there we can see that we can now use this variation whenever ∆(a) ≤ 0
as we can apply this variation to reduce the promised values below θ1 and
leave all other promised values unchanged.

B Proof that w(θ) is continuous

MAYBE PUT THIS IN THE BODY OF THE TEXT.
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