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Abstract

In this paper we investigate the effects of capital gains tax and transaction cost on asset bubbles.
We construct a model of asset bubbles by incorporating purchases into the framework of Abreu and
Brunnermeier (2003) so that capital gains can be evaluated. The capital gains tax helps deflate the
bubble, but we find that the capital loss tax credit tends to offset this deflating effect. Under a perfect
tax credit, the tax has no effect on the size of the bubble at all. Therefore dealing with bubbles
with capital gains tax not only requires imposing the tax, but also tightening policies on tax credits.
Besides that the transaction cost and the return from the outside option help reduce the bubble, we
also find that a low transaction cost or a small outside option has a very large marginal effect on the
bubble. This implies that when a central bank further lowers interest rates when they are already very
low, this policy change can have a dramatic inflating effect on bubbles. To show that our results can
be empirically tested, we compare several historical bubbles in different countries. We normalize the
size of a bubble by its associated belief dispersion so that we can examine the effects of other factors
such as taxes and transaction costs. We also propose a method to infer the belief dispersion from the
price path of an actual bubble in the absence of explicit data on the belief.

1 Introduction

Since the 2008 US subprime mortgage crisis, housing prices in certain major cities outside the United States

have been steadily increasing at speeds higher than their historical norms, including those in London (UK),

Vancouver, Toronto, Beijing, Shanghai, Hong Kong1, and most capital cities in Australia. For example,

house prices in London rose by 18% in 2013 alone. The upsurging prices have raised serious concerns that

bubbles are developing in these cities. Although the ongoing discussion on macroprudential policies might

help regulate domestic financial practitioners, these policies seem to be ineffective when international

“hot money” and private investors contribute greatly to the bubbles, and there is no consensus on the

∗I am grateful to James Bergin and Frank Milne for numerous valuable comments. I thank Ruqu Wang, Marco Cozzi,
Rui Gao, Steve Kivinen, Marie-Louise Vierø, Tianyi Wang, Jan Zabojnik, Chenggang Zhou, and participants in CEA and
department seminars at Queen’s. All errors are my own.
†Department of Economics, Queen’s University, Kingston, Ontario, Canada. sheny@econ.queensu.ca
1Housing prices in hundreds of smaller cities in China are also inflating rapidly.



implementation of these policy tools. A different choice would be a tax. There is a large literature on the

effects of financial transaction taxes on price volatilities, but to our knowledge the effectiveness of taxes

on asset bubbles, especially capital gains tax, has not been studied in the existing literature.

With or without economic theories, governments and lawmakers are ready to intervene, or have already

done so. Chancellor George Osborne of the British Parliament said that as of April 2015 he would introduce

a capital gains tax on future gains made by non-residents who sell residential properties in the United

Kingdom2. In 2013 the Chinese government introduced a 20% tax on capital gains from selling residential

properties if a family owns multiple properties. There is an urgent need to assess the effectiveness of these

tax policies on reducing bubbles.

We evaluate the effects of capital gains tax and transaction costs on asset bubbles. Our model in-

corporates purchases into the framework of Abreu and Brunnermeier (2003) (henceforth AB2003). When

the asset fundamental rises, privately informed rational traders purchase the asset from behavioral agents,

which continuously drives up the price. Each rational trader has incomplete knowledge about the new

fundamental value and does not know how many others have a higher (or lower) belief. This belief dis-

persion is such that there is no common knowledge about the emergence of a bubble when the price rises

above the fundamental value. As the price continues to rise, traders with the lowest belief stop purchasing

and simply hold while others are buying. As the price is further driven up, low-belief traders start to

sell, intermediate-belief traders stop buying and hold, and only high-belief traders are still buying. When

traders with the highest belief stop buying, the bubble bursts.

In the unique equilibrium a bubble exists, and traders ride the bubble and try to make a profit from

buying and selling. Upon the bursting, low-belief traders have already exited the market while others are

caught in the crash. Each trader uses a trigger strategy that consists of two price thresholds: a selling

price and a stop-buy price. The optimal selling strategy trades off the marginal price appreciation with

the marginal risk of being caught in the crash. The stop-buy strategy dictates that a trader should not

buy the asset if the expected after-tax profit is negative.

A trader with a profit is subject to a capital gains tax, while a trader with a loss is entitled to a

tax credit.3 The most favorable treatment of tax credits is refunding the trader an amount of the loss

multiplied by the tax rate, which we call a perfect tax credit.4 But in most countries the credits can only

2See Chancellor George Osborne’s Autumn Statement 2013 speech on 5 December 2013 at the UK Parliament.
3The capital loss tax credit is also called capital loss deduction or tax carryover. It aims to reduce the tax burden when

tax payers incur capital losses and help smooth fluctuations in their incomes so that the tax is levied on a long-term average
base.

4This is also called a symmetric tax treatment or full loss refundability in the tax literature. Symmetry means an investor
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be used to offset past or future gains, instead of an immediate refund, and there are restrictions on how

gains can be offset, such as time restrictions, ceilings and inclusion rates.5 We use a single parameter (the

inclusion rate) to summarize these restrictions and allow it to vary from no credit at all to a perfect tax

credit.

Our paper presents two main results. The first is that the tax credit can offset the deflating effect of

capital gains tax on bubbles and when the tax credit is perfect, the tax has no effect on bubbles at all.

The capital gains tax can reduce bubbles in our model because, intuitively, it widens the relative payoff

difference between fleeing and being caught. This increased difference makes traders behave more cautiously

by selling early to secure their gains. The lowered selling strategy then squeezes the stop-buy strategy

downwards, which bursts the bubble early. The credit, on the other hand, serves as a compensation to a

trader’s loss such that the loss is also “taxed” and becomes smaller. It thus reduces the payoff difference

and traders become less concerned about being caught. They behave aggressively by selling at high prices,

which in turn encourages buying at higher prices and the bubble is inflated. Under a perfect tax credit,

this compensatory effect completely neutralizes the effect of the tax, even when we raise the tax to 100%!

This result suggests that to deflate a bubble with capital gains tax, a tax authority should not only impose

or raise the tax, but also examine its tax credit policies and refrain from granting overly favorable tax

credits on capital losses.

The second result is that, while it may not be surprising that a transaction cost or outside option

(returns from alternative investment opportunities) can reduce bubbles, their marginal effects on bubbles

are very large when they are small. When the cost or the outside option rises slightly from zero, a small gap

between buying and selling is required (the profit margin). But since the bubble could burst in between

this gap, a larger gap (profit margin) is needed to compensate the risk. A larger gap in turn means a

larger probability of bursting in between, which in turn requires an even larger gap. Hence a small cost or

outside option can significantly push down the stop-buy strategy and deflate bubbles. This result backs

the practice in some countries to reserve financial transaction taxes at very low rates. If we interpret the

outside option as the interest on treasure bonds, for instance, then conversely it implies that lowering

interest rates when they are already low has a significant inflating effect on bubbles. This argument is

pays the tax whenever a profit occurs and receives a refunding whenever a loss occurs.
5In the United States, an individual who incurs capital losses can use the credit to offset any taxable income up to $3000

each year, and carry the unused credit forward indefinitely. A corporation can only offset capital gains (not other profit) with
capital losses and carry it 3 years backward and 5 years forward, without a dollar limit. In Canada the tax code is similar,
except that there is no $3000 limit on individuals, but only 50% of the capital gains/losses are included in the tax base for
both individuals and corporations, and the tax credit can be carried 3 years backward and forward indefinitely.
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supported by the timing of the Federal Reserve’s low interest rate policies and the housing bubble in the

United States between 2001 and 2008 and their potential causality. It also warns that the Bank of Canada’s

recent move of lowering the interest rate from 1% to 0.75% (a counter measure to the oil price plunge) will

further inflate the Canadian housing market.

To show that our results are empirically testable, we measure and compare four historical asset bubbles

in different jurisdictions and fit them into the theoretical results. There is no consensus on how to compare

different bubbles because there are numerous economic variables that could affect a bubble. We believe

that the belief dispersion about the asset fundamental is the primary and intrinsic cause of the wildly

distinctive sizes of these bubbles. Thus we normalize the size of a bubble by its associated belief dispersion

so that we can compare the effects of other factors (taxes, transaction costs, etc.) on these bubbles. In

the absence of explicit data on belief dispersion, we propose to use the largest price drop before the final

crash as a proxy for the start of rational traders’ attack on the bubble. In our model we can infer the belief

dispersion from the price associated with this initial attack, since the latter is a function of the former.

Given a sample size of four, however, our analyses are mainly descriptive and merely serve as a first step

to testing the model. Besides the two main results, our model also generates other empirically testable

predictions.

The framework of AB2003 is shown to be consistent with recent empirical studies of stock market

data. Temin and Voth (2004) show that a major investor in the South Sea Bubble knew that a bubble

was in progress and nonetheless invested in the stock and hence was profiting from riding the bubble.

Brunnermeier and Nagel (2004) and Griffin et al. (2011) both study the tech bubble in the late 1990s.

They show that instead of correcting the price bubble, hedge funds turned out to be the most aggressive

investors. They profited during the upturn and unloaded their positions before the downturn.

Our model is also related to a large literature that studies the effects of taxes on asset prices. Con-

stantinides (1983) shows that investors have incentives to sell assets with losses immediately and secure

tax credits while deferring the selling of assets with gains to put off tax payment. His research focuses on

trading under stochastic shocks whereas we focus on trading with private beliefs facing asset bubbles and

crashes. In terms of the effects of the transaction tax on the volatility of asset prices, Westerhoff and Dieci

(2006) show that the transaction tax can stabilize prices, whereas others suggest that the tax actually

amplifies volatility (e.g. Lanne and Vesala (2010)). Empirical evidences show that the ability of the tax

to reduce volatility is very limited (e.g. Umlauf (1993) and Hu (1998)).

The research on the effects of taxes on bubbles, on the other hand, is scarce. Scheinkman and Xiong
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(2003) show that the financial transaction tax can substantially reduce speculative trading volume, but

has only a limited impact on the size of the bubble. Our paper explicitly models an asset bubble and

evaluates the effects of capital gains tax on trading behavior and the size of bubble, and is complementary

to the above literature in understanding the effects of taxes on financial markets.

From a modeling perspective, our paper is related to a quickly growing literature on bubbles. For

surveys, refer to Brunnermeier (2008), Brunnermeier (2001), Brunnermeier and Oehmke (2012) and Xiong

(2013). AB2003 relies on the asynchronous timing of awareness to generate bubbles, whereas we transform

the uncertainty from time to value/price and remove the sequential awareness assumption. Our model

allows for any continuous and strictly increasing price path instead of a exogenous exponential price path.

We also add purchases to their framework such that the price keeps increasing exactly because rational

traders are buying. The bubble bursts in our model when no one wants to buy, which is in contrast to

AB2003, where a threshold in accumulated sales triggers the bursting.

Doblas-Madrid (2012) removes behavioral agents from the framework of AB2003 and instead uses

idiosyncratic liquidity shocks to force rational traders to sell to generate trades. The price is determined

in equilibrium every period and agents also update their belief when facing the noisy price. This feature

is difficult to apply to our setting because we do not have any noise in the price6.

The remainder of this paper is organized as follows. Section 2 introduces the model. Section 3 shows

that a trader’s strategy space can be reduced, which gives us a simple game to solve. In Section 4 we solve

a trader’s problem, characterize the equilibrium and discuss several policy implications associated with the

results. Section 5 studies several historical bubbles, measures and compares them and shows how to test

the main results of the model. Section 6 concludes.

2 The model

There is one asset (henceforth the asset) with a total supply Q. Time t is continuous and at t = 0 the

asset’s fundamental value jumps up from p0 to θ and does not change henceforth. θ is uniformly distributed

on [p0,∞)7 and is unobservable. Without loss of generality, we assume p0 = 0. There are two types of

agents: risk neutral rational traders (henceforth traders) and a large passive behavioral agent (or a pool

of behavioral agents), though the latter is not our primary interest. All shares of the asset are held by the

6To conceal the very first strategic sale in our model, one must assume that there is an extra amount of money injected
to balance the strategic sale at that moment, which can be difficult to justify.

7The improper uniform distribution on [0,∞) has a well defined posterior belief when we specify how signals are distributed.
The uniform prior distribution gives tractable solutions and is adapted from Li and Milne (2014).
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passive agent at the beginning. Rational traders have an outside investment option. The outside option

provides a constant profit R ≥ 0, which is common knowledge and uncorrelated with θ. A trader cannot

hold the asset and the outside option at the same time and cannot switch to the other if she has bought

one. Capital gains from both the asset and the outside option are subject to a capital gains tax, and a

trader will choose the asset only when its expected profit is strictly higher than the outside option. At

this moment we restrict that R = 0. In Section 4.6 we discuss the implication of strictly positive R. Each

trader is infinitesimal and, without loss of generality, a trader’s asset position is restricted and normalized

to [0, 1].8

The passive agent has an inverse asset supply function

p = α(Dr) (1)

where p is the price that is publicly observable, Dr is the total shares held by all traders (the aggregate

position of all traders) and α(·) is a continuous, strictly increasing function. When the fundamental value

jumps up, traders start to buy the asset from the passive agent. This drives up the price continuously

because, as shares are sold to traders, the passive agent keeps raising the price. This behavior can be

interpreted as portfolio diversification requirements that make the risky asset more valuable to the passive

agent when its weight decreases in her portfolio. Or it can be interpreted as an adverse selection problem

where, when traders with private information keep buying the asset, it is natural for the uninformed passive

agent to respond by raising the price, as in Kyle (1985). Similar behavioral asset supplies have also been

adopted by De Long et al. (1990), where passive investors supply the asset at an increasing price when

rational speculators are buying, and by Brunnermeier and Pedersen (2005) and Carlin et al. (2007), where

long-term investors sell the asset when strategic traders’ buy-back pushes up the price.

When the price rises above the fundamental value, we say a bubble emerges. When the price is driven

so high that no one wants to buy any more, the price stops rising. Denote this random stopping price

pT and the time T . If pT > θ at this moment, it will be clear shortly that the existence of the bubble

becomes common knowledge and the bubble bursts at pT endogenously.9 We also assume that the price

can be arbitrarily high when traders’ aggregate position approaches Q, i.e. lim
Dr−→Q

α(Dr) = ∞. This rules

out the possibility that the asset price cannot catch up to its fundamental value simply because shares are

running out.

8Limited short selling of the asset is allowed for traders.
9In a nutshell, given the strategy profile of all types of traders, pT is a function of θ. Thus everyone can perfectly infer θ

from the stopping price pT .
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After entering the market, a trader can buy and sell the asset at any time. A trader’s purchases and

sales cannot be observed by others. Since each trader is infinitesimal, her transaction is executed instantly

at the spot price. After the bursting, the price is fixed at θ and the passive agent is willing to buy the

asset only at this price. All traders who still hold the asset have to liquidate at this price. In the end, no

trader holds the asset and all shares go back to the passive agent.

Each trader receives a private signal v that is uniformly distributed on [θ − η
2
, θ + η

2
]. We call a trader

with signal v a type v trader or trader v. There is enough mass of traders (potentially infinite) for each

type v.10 Let Φ(θ|v) denote the cumulative distribution function of the belief of a trader v conditioned on

v, and φ(θ|v) the corresponding probability density function. Given a signal v, the posterior belief of a

trader is that θ is uniformly distributed on [v − η
2
, v + η

2
]. Therefore φ(θ|v) = 1

η
and Φ(θ|v) =

θ−(v− η
2

)

η
.11

Figure 1 depicts the posterior belief about θ for traders v, v′ and v′′. These different posterior beliefs reflect

θ

φ(θ|v)

v

φ(θ|v′)

v′

φ(θ|v′′)

v′′

φ(θ|v) φ(θ|v′) φ(θ|v′′)
Legend:

Figure 1: Posterior beliefs

different opinions about the asset fundamental value. A trader is not sure about her position among the

population [θ − η
2
, θ + η

2
], i.e., a trader does not know how many others’ signals are lower or higher than

hers. This is an important element in the model because the lack of common knowledge about “what all

others are thinking about” prevents traders from perfectly coordinating with each other. In contrast, in

the standard literature with a common posterior belief, perfect coordination rules out the existence of the

bubble by backward induction.

Traders enter the market gradually and steadily due to an exogenous friction that is not modeled here.

This friction is simply in order to achieve a gradual upward price path before the crash. Without this

friction the bubble still exists, but the run-up becomes instantaneous: all traders rush into the market all

at once at the beginning and push the price up to the peak infinitely fast, the bubble bursts and the price

10This is to rule out the possibility that the price cannot catch up to its fundamental value simply because we are running
out of buyers.

11When θ < η, traders with v < η
2 have a truncated belief support because θ cannot be below zero. This causes these

traders to have different strategies. As explained in Section 4 these traders are not important and thus we ignore these
traders. When θ < η

2 , some traders will receive negative signals, but this is perfectly compatible with the assumption that
θ ≥ 0.
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then plummets back. Such a friction could arise because traders need time to sell their other assets first

or to wait for the maturity of other investments to buy this one, or simply because they did not notice

this asset earlier. With this friction, traders enter the market in a continuous stream. We assume that the

newcomers are always confident enough about the asset value and in particular the highest type, θ + η
2
,

is entering at every instant.12 If we let u(t, v) denote the mass of traders entering the market at time t

with signal v, then u(t, θ + η
2
) > 0, ∀t > 0. Thus the price is smoothly increasing13 and there will be no

ambiguity when the price stops rising at the peak when all traders cease buying. We can thus simplify

the bursting of the bubble as a vertical drop right at the peak.14 But beyond that u(t, θ + η
2
) > 0, traders

(and the behavioral agent) have no knowledge about u(t, v). Thus traders anticipate a smooth and strictly

increasing price path before the crash, and are unaware when some of them start to sell strategically since

they do not know the shape of the path.15 This unawareness parallels and simplifies traders’ uncertainty

in a real market about other traders’ behavior when facing a noisy price, and complex belief updating (if

traders have some partial knowledge) is avoided, so that we can focus on our main targets.

A trader incurs a fixed transaction cost c each time she changes her position, irrespective of the price

or the volume of the transaction.A trader’s profit before tax is thus determined by her purchase prices

and sale prices, minus the transaction costs. There is a capital gains tax of rate τ , which is levied when

a trader has a realized profit (after deducting the fixed transaction cost). If the trader incurs a loss, then

she is entitled to a tax credit. We summarize complex tax credit policies (such as ceilings and expirations)

into a single parameter τc, which can vary between 0 and τ . When a trader has a realized capital loss L,

she gets a refund τcL.16 A more lenient tax credit policy, such as a longer period within which the credits

can be used, corresponds to a higher τc. The capital loss tax credit is said to be perfect when τc = τ .

To rule out the possibility that some types of traders never stop buying so that the bubble grows

forever, we assume that the size of the bubble has an upper bound B. Once p − θ > B, the bubble

bursts exogenously. We are only interested in the endogenous bursting, so B is large enough.17 Lastly, a

12This guarantees that the bubble will not burst accidentally and prematurely. It is actually simpler to imagine that the
newcomers always have a full support [θ − η

2 , θ + η
2 ], though this is not necessary.

13Our model allows an arbitrary price path, as long as it is continuous and strictly increasing.
14As we can observe in real markets in Section 5.1, there are usually gradual but short downturns after the peaks but

before the largest crashes. Facing noisy prices, some traders are uncertain about the coming of the final downturns within
this period.

15We assume that u(t, v) is large enough so that it outweighs the strategic exiting. Alternatively we can assume that there
is no market entry friction but all traders finance their purchase by borrowing and there is friction on the availability of loans.
The loans are available in a stream. By allowing transferring of rational sellers’ repayment directly to rational buyers who
are borrowing, the stream of loans can also achieve a smoothly increasing price path that is irresponsive to strategic sales.

16Constantinides (1983) models the tax credit in a similar way.
17We will show that in the equilibrium with endogenous bursting the size of the bubble size is finite and constant so that

B is never binding.
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technical assumption is that all traders selling exactly at the instant when the bubble bursts receive the

full pre-crash price.

Figure 2 shows a simple example of the dynamics. In each panel, traders’ types (signals) are contin-

uously distributed between θ − η
2

and θ + η
2

along the horizontal axis, given θ, while the vertical axis is

the mass density for each type of traders. The shaded area is the mass of traders who hold the asset.

If we assume that every buyer holds the same amount of shares (which will turn out to be the case in

equilibrium), the shaded area is proportional to Dr. In panel (a) at t = 0, no one has entered the market

yet. In panel (b), some traders have entered and bought. In panel (c), the price is high enough such that

low types are no longer buying but simply hold (the shaded area of “hold” freezes and does not rise any

more), while the rest are entering and buying. In panel (d), the price is even higher such that not only

does “no-buy” spread to higher types of traders, low types now start to sell. The highest types, however,

are still buying. In panel (f), the “no-buy” finally reaches the highest type, θ+ η
2
, who stops buying. As a

result, no one buys any more and the price stops rising and the bubble bursts. Note that in Figure 2, we

have assumed that all traders use a trigger strategy, where a trader will not restart buying once she has

stopped buying and she will never re-enter the market once she has sold. This strategy will turn out to be

the equilibrium strategy.

3 Preliminary analysis

In this section, we define the equilibrium, impose two technical assumptions on traders’ strategies and

show that the dynamic game can be simplified to a static-like game by reducing traders’ strategy space.

We will establish that in equilibrium traders use trigger strategies (Proposition 3.1) and their decisions are

strictly increasing (Lemma 3.1). Readers who are not interested in these details can jump to Section 4.

Definition 3.1. A trading equilibrium is a Perfect Bayesian Nash equilibrium in which traders hold the

(correct) belief: whenever a trader v is not buying (temporarily or permanently), she (correctly) believes

that all traders with signal equal to or smaller than v are not buying.

This definition imposes a natural assumption on traders’ equilibrium beliefs, without which it will be

difficult to characterize an equilibrium.

With the positive fixed transaction cost c, a trader will trade only a finite number of times. Due to

the linearity of the problem and the cost c, it is optimal for traders to either hold the maximum long

position or not hold any asset at all. At any given price, a trader’s asset value is linear in her position.
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buy

trader
type

number of
traders

θ − η
2

θ + η
2

(a) t = 0

buy

θ − η
2

θ + η
2

(b)

hold

buy

θ − η
2

θ + η
2

(c)

sell

hold

buy

θ − η
2

θ + η
2

(d)

sell

hold

buy

θ − η
2

θ + η
2

(e)

sell

hold

θ − η
2

θ + η
2

(f) t = T , bubble bursts

Figure 2: Dynamics of the mass of shareholders

With the transaction cost, if buying is profitable, then it is optimal to buy to the maximum long position;

conversely, if selling is profitable, then it is optimal to sell all shares18. Hence, the space of a trader’s asset

position in equilibrium reduces to {0, 1}.

Because we assumed a simple linear tax rate, a trader’s profit or losses realized after sales (whether in the

current tax year or previous years) and realized tax payments and benefits are all sunk and will not affect her

future decisions. The trading history affects her decisions only when she is currently holding the asset and

whether she can sell before the crash is uncertain, i.e. her most recent purchase price may affect her selling

decision. At any given price, a trader who has entered the market has three options: buy to the maximum

long position (buy), not change her current position (hold), and sell all her shares (sell). Let A(p, v, h, Pp)

denote the strategy of an in-market trader v at price p with position h ∈ {0, 1} and the most recent purchase

price Pp. Pp is relevant only when h = 1. Then A is defined on [0,∞) × [−η
2
,∞) × {0, 1} × [0,∞) →

{buy, hold, sell}.

Definition 3.1 immediately implies the following corollary, which states that when trader v is not buying,

then all types weakly lower than v are not buying, and when she is buying, all types weakly higher than

18See Appendix A and proof of Lemma 1 in AB2003 for details.
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her are still buying, irrespective of trading histories or current positions.19 This is because the belief in

Definition 3.1 must be correct for all types of traders.

Corollary 3.1. A(p, v, h, Pp) 6= buy =⇒ A(p, v′, h′, P ′p) 6= buy, ∀v′ ≤ v and ∀p, h, Pp, h′, P ′p;

A(p, v, h, Pp) = buy =⇒ A(p, v′, h′, P ′p) = buy,∀v′ ≥ v and ∀p, h, Pp, h′, P ′p.

Corollary 3.1 implies that traders’ strategies are symmetric in the sense that traders with the same

signal are either all buying or all not buying. Now we can formally define the bursting price pT :

pT = inf{p|A(v, p, h, Pp) 6= buy,∀v ∈ [θ − η

2
, θ +

η

2
],∀h and ∀Pp}

That is, the bubble bursts when no one wants to buy.

Let P ∗b (v) denote the price at which the action of trader v is not buy for the first time. Let P ∗s (v, Pp)

denote the price at which trader v sells her shares for the first time, given her purchase price Pp (since her

position is either 0 or 1 and this is the first-time sale, Pp is well defined.). By definition, Pp < P ∗b (v) ≤

P ∗s (v, Pp),∀v and ∀Pp.

To derive an equilibrium, we need two technical assumptions:

Assumption 3.1. P ∗b (v) is continuous in v, ∀v and differentiable ∀v > η
2
, and P ∗s (v, Pp) is continuous in

both v and Pp.

Lemma 3.1. P ∗b (v) is strictly increasing in v, ∀v ≥ η
2
.

Then the inverse function P ∗−1
b (v), ∀v ≥ η

2
, is well defined.

Assumption 3.2. A trader cannot switch actions more than once in one instant.

Then we have the following proposition.

Proposition 3.1. (Trigger-strategy): In equilibrium, if an in-market trader’s action is not “buy”, she will

never restart buying again. If a trader has sold her shares, she will never return to the market.

Proposition 3.1 implies that when the highest type θ + η
2

decides to stop buying for the first time at

P ∗b (θ+ η
2
), all other types have already done so. Since no one is buying at this moment, the bubble bursts

at pT = P ∗b (θ + η
2
). Let Θ(pT ) ≡ P ∗−1

b (pT ) − η
2
. Then if the bubble bursts at pT , the realized θ must be

Θ(pT ). This is how everyone can perfectly infer θ from the bursting price pT .

19For the ease of description, we allow a trader with asset position 1 to use action buy, though she is not able to further
increase her holding due to the limit.
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Proposition 3.1 further reduces a trader’s strategy space to {P ∗b (v), P ∗s (v, Pp)}. After t = 0, traders

keep entering the market and buying the asset. If a trader v has bought the asset at price Pp (< P ∗b (v)),

she holds and waits until the price rises to P ∗s (v, Pp) then she sells all her shares and will never restart

buying again. If she has not entered the market, then at price P ∗b (v) she will no longer try to enter the

market. Readers can review the price dynamics under this strategy profile in Figure 2 and a sketch of

traders’ strategies and where they end up in Figure 3.20

Pb(v)

Ps(v, ·)

v

price

θθ− η
2

θ+ η
2

bursting price pT

fled caught

Figure 3: Traders’ strategies and outcomes

4 Reduced-form game

From Lemma 3.1 and Proposition 3.1 we know that for an arbitrary θ and the signal profile generated

by θ, the bursting price is fully determined by the stop-buy strategy P ∗b (·), if all other traders follow this

strategy.21 Therefore, given P ∗b (·), a trader needs to best respond to it. This is the reduced-form game we

discuss in this section.

After time T if a trader v sells before the crash, she gets the selling price. Otherwise, she gets the

post-crash price θ. Now we solve the individual trader’s problem backwards, starting with her sale decision.

Consider a trader v who has bought at price Pp and plans to sell at Ps. Let ω(Pp, Ps) denote her expected

profit. Then, given that all other traders follow a strategy P ∗b (·), trader v would like to maximize ω(Pp, Ps)

by choosing an optimal selling price Ps,

max
Ps

ω(Pp, Ps) (2)

20As this is a sketch, the effect of Pp on Ps is not depicted here.
21Since pT = P ∗b (θ + η

2 )

12



This gives her optimal selling strategy P ∗s (v, Pp).

Knowing her selling plan, trader v should buy the asset until the price reaches a level of Pb such that

ω(Pb, P
∗
s (v, Pb)) = (1− τ)R = 0 (3)

i.e. she should stop buying at price Pb.
22 Then as long as ω(Pp, P

∗
s (v, Pp)) > 0 under the current price Pp,

trader v should keep buying. In an equilibrium it must be that Pb(·) = P ∗b (·).

All traders are ready to stop buying at P ∗b (·) if they have not bought yet. But once a trader has bought

(of course below P ∗b (·)), then she is no longer a concern to others because all that matters is the stop-buy

decisions of those who have not bought yet (and are entering or waiting to enter the market). Recall that

the crash is triggered by stop-buy decisions (of the highest type of traders). Call a trader v a break-even

trader if she has not bought yet and finds that buying at the current price Pp and selling optimally at

P ∗s (v, Pp) gives a zero expected profit so that she decides to stop buying at Pp. Only break-even traders

are important to identify the bursting price and the size of the bubble. So the equilibrium is defined

by equations (2) and (3). Now we focus on the strategies of break-even traders. The price at which

a break-even trader stops, Pb, is just her stop-buy strategy P ∗b (v). We can write a break-even trader’s

(planned) selling strategy as P ∗s (v, P ∗b (v)), though she never actually buys (so her selling strategy never

gets implemented).

To better understand ω(Pp, Ps), we write it semantically as follows (not considering any tax yet).

ω(Pp, Ps) =

∫
Θ(Ps)

v− η
2

[
post-crash profit

]
φ(θ|v)dθ+

[
pre-crash profit

]
× Prob

[
sell before the crash

]

The first term is trader v’s expected post-crash profit, in which case the bubble bursts before she sells. The

probability of selling before the crash is the subjective probability that θ > Θ(Ps).
23 Since a trader can

only sell at price θ after the crash, her post-crash profit in the brackets depends on θ. The second term

is her expected pre-crash profit, in which case θ is higher than Θ(Ps) so that trader v will be able to sell

before the crash.

To write ω(Pp, Ps) formally, let Gpre = Ps − (Pp + 2c) denote a trader’s pre-crash sale profit (before

tax), and Gpost = θ − (Pp + 2c) denote the trader’s post-crash sale profit (before tax, negative in case of

22The bubble will not burst below Pb(v) for trader v according to Corollary 3.1. Pb is unique because in equilibrium ω(·, ·)
decreases in its first variable, and the second variable, P ∗s at its optimum, does not affect ω due to the envelope theorem.

23The upper bound of the integral is Θ(Ps) because the trader will be caught in the crash if Ps > pT = P ∗b (θ + η
2 ). If we

inverse P ∗b (·) and rearrange, then equivalently, she will be caught in the crash if Θ(Ps) > θ. Intuitively, if the realized θ is
smaller than Θ(Ps), then the majority of the population have signals lower than v and v is too high.
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loss). A trader is taxed only if Gpre > 024 or Gpost > 0 and not taxed otherwise. She also receives a tax

benefit −τcGpost if Gpost < 0.

Since the purchase price Pp affects the taxability of Gpost, ω(Pp, Ps) has two different possible forms

depending on Pp. When Pp is high enough such that Θ(Ps)− (Pp + 2c) < 0, Gpost is always negative and is

non-taxable.25 In this case, given that all other traders follow strategy P ∗b (·), trader v’s expected profit is

NT trader: ω(Pp, Ps) = (1− τc)

∫
Θ(Ps)

v− η
2

Gpostφ(θ|v)dθ + (1− τ)Gpre [1− Φ(Θ(Ps)|v)] (4)

We call a trader who faces such an expected profit an NT trader. When a trader’s purchase price Pp is

low enough such that Pp + 2c < Θ(Ps), it is possible that the post-crash sale is profitable and taxable.26

In this case the expected payoff is27

T trader: ω(Pp, Ps) = (1−τc)

∫
Pp+2c

v− η
2

Gpostφ(θ|v)dθ+(1−τ)

∫ Θ(Ps)

θ=Pp+2c

Gpostφ(θ|v)dθ +Gpre [1−Φ(Θ(Ps)|v)]

 (5)

We call a trader who faces such an expected profit a T trader. A trader must be either a T trader or an

NT trader.

Because the bursting is triggered by break-even traders, we say that the bubble is an NT (T ) bubble

if break-even traders are NT (T ) traders.28 It turns out that both types of bubbles exist but each belongs

to a different zone in the parameter space (see Figure 8). Since all historical bubbles we explore are NT

bubbles, the parameters (τ and c) associated with the T bubble are less likely to be observed in practice

and the characterization of the two types of bubbles are similar, we relegate the T bubble to Appendix D.

By conjecturing that P ∗s (v, Pp) and P ∗b (v) are linear in v, we can solve for the unique equilibrium

strategies of break-even traders in an NT bubble from equations (2), (3) and (4), and have the following

proposition:29

Proposition 4.1. (Equilibrium with NT bubble) When c
η
< 3−2

√
2

2
and

 τ < τTNT1 and 0 ≤ τc ≤ τ or

τ > τTNT1 and τ 1
c ≤ τc ≤ τ

,

there exists a unique trading equilibrium in which the bubble size is B = η
2

+DNT > 0, the bubble bursts at

24In equilibrium, pre-crash sales always give positive profits. A pre-crash sale is a scheduled sale. If a trader buys at Pp
and sells at planned Ps and incurs a loss, then he will not buy at Pp.

25Given P ∗b (·), the highest Gpost a trader can have is when θ = Θ(Ps), i.e. the bubble bursts right before she sells. If this
Gpost is still negative, Gpost is always negative.

26This happens when θ > Pp + 2c.
27In the first integral the post-crash sale incurs a loss and is not taxable, and there is a tax benefit; in the second integral

the post-crash sale is profitable and taxable. The third term is the expected payoff from selling before the crash, which is
also taxable.

28In equilibrium all break-even traders are either all NT or all T traders.
29This corresponds to an interior solution of equation (2).
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θ +B and all the break-even traders are NT traders with P ∗b (v) = v +DNT

P ∗s (v, P ∗b (v)) = v + η
1−τc

[
hNT + 2(τ−τc)

1−2τ+τc
dNT

]
where DNT ≡ η

1−τc (hNT − dNT ), hNT ≡ 1
2
[1 − 2τ + τc] − (τ − τc)

2c
η

, dNT ≡
√

4c
η

(1− 2τ + τc)(1− τ),

τTNT1 ≡ 1
2
−

4c
η

(1− 2c
η

)2
and τ 1

c ≡ 2τ − 1 + 8(1− τ)
2c
η

(1+ 2c
η

)2
.

Non-break-even traders’ strategies will be characterized in Section 4.4. For traders with v ≤ η
2
, their

strategies do not affect, but are rather determined by, strategies of those with v > η
2

and are more

complicated while less important, so we omit the characterization.

The equilibrium strategies in an NT bubble are depicted in Figure 4. The two solid lines, P ∗s (v, P ∗b (v))

and P ∗b (v), are break-even traders’ strategies,30 which is a special case of Figure 3. The selling and stop-buy

strategies of all traders (break-even and non-break-even) always increase in her signal. Low-belief traders

(signals in the lower range of [θ − η
2
, θ + η

2
]) always flee the market before the crash, while the rest are

caught.

v

p

v + η
2

v − 2c−DNT

P ∗s (v, P ∗b (v))

P ∗b (v)

η
2

Figure 4: Equilibrium strategies with an NT bubble

The bubble size is B = η
2

+ DNT , which is a constant and does not depend on the realization of θ. It

can be verified that B increases in the belief dispersion η and the tax credit rate τc and decreases in the

tax rate τ and the fixed transaction cost c. The first relationship, ∂B
∂η

> 0, is consistent with AB2003.

Now we depict the latter three relationships: ∂B
∂τc

> 0, ∂B
∂τ

< 0 and ∂B
∂ c
η
< 0 in Figure 5 and 6 (measured

in normalized bubble size) and discuss their implications. In both figures, the dark (red) surface in the

upper area represents NT bubbles and the light (blue) surface in the lower area represents T bubbles. In

particular the two main results of our paper are related to the third and the fourth relationship and are

30Dashed lines are about non-break-even traders’ strategies. See Section 4.4.
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explained in Section 4.2 to 4.3.

B
h

Figure 5: Normalized bubble size (c = 0.01,
R = 0)

View 1 View 2

Figure 6: Normalized bubble size (τc = 0, R = 0)

4.1 ∂B
∂τ < 0

The intuition of how tax affects rational traders’ decisions is as follows. The capital gains tax is distor-

tionary in that the tax is effectively imposed only on pre-crash transactions for NT traders and selling

strategies are distorted downward. This can be seen from the first-order condition of (4) w.r.t. Ps,

1− τ =
[
(1− τ)Gpre − (1− τc)GΘ

post

] 1

P ∗
′

b (P ∗−1
b (Ps))

φ(Θ(Ps)|v)

1− Φ(Θ(Ps)|v)
(6)

where GΘ
post ≡ Θ(Ps)− Pp − 2c. The first-order condition can be interpreted in terms of marginal benefit

and cost. Consider a trader who wants to sell at Ps+ δ instead of Ps. On the left-hand side is the marginal

benefit (1 − τ)δ (the after-tax price appreciation). On the right-hand side is the marginal cost of being

caught in the crash, which equals the profit difference31 multiplied by the probability or hazard rate of

bursting between Ps and Ps + δ. Dividing both sides by δ and letting δ → 0, we have equation (6). If we

normalize this first-order condition by dividing 1− τ on both sides, we have 1 =
[
Gpre − 1−τc

1−τ G
Θ
post

]
1

P ∗
′

b

φ
1−Φ

.

We call

Gpre −
1− τc
1− τ

GΘ
post (7)

the normalized payoff difference between pre- and post-crash. See Figure 7 for the equilibrium selling

strategy P ∗s1 determined by hazard rate h1 and normalized payoff difference npd1 under tax rate τ1.32 If

31The first term in the brackets is the pre-crash profit, which is always positive and taxable, and the second term is
post-crash payoff, which is negative for an NT trader.

32Our equilibrium is different than the endogenous equilibrium in AB2003 in that the hazard rate in AB2003 is a constant
because their bubble is triggered by a fixed fraction of sale, while in our model the fraction of traders caught in the crash
varies with the gap between P ∗s and P ∗b so that the hazard rate is not a constant.
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Ps

h1

1/npd1

h2

1/npd2

P ∗s1P ∗s2

Figure 7: Equilibrium P ∗s determined by the payoff difference and hazard rate under different tax rates

τ increases from τ1 to τ2, the normalized payoff difference tends to increase. Then a break-even trader

has to lower her Ps (Gpre = Ps − Pp − 2c falls) so that the first-order condition still holds and her Ps is

optimal.33 Intuitively, facing a larger payoff difference between fleeing and being caught due to a rise in

the tax, break-even traders behave more cautiously and conservatively by selling early and securing their

gains sooner.34 See Figure 7 for the equilibrium selling strategy P ∗s2 under a higher tax rate τ2.

The change in a break-even trader’s selling decision then transmits to her stop-buy decision. Since a

break-even trader’s expected profit (4) is zero, a rise in tax, combined with a fall in Ps, will force Pp to

decrease.35 Intuitively, a rise in tax distorts a break-even trader’s selling decision Ps downwards, and a

lower Ps reduces the profit margin and in turn squeezes the stop-buy decision Pb downwards, which bursts

the bubble early.

When evaluating the effects of taxes on asset prices empirically, usually two forces that move the prices

in opposite directions are considered: the lock-in effect (a rise in tax causes traders to defer selling and

thus tends to reduce supply and raise the price) and the capitalization effect (a rise in tax discourages

buying and thus tends to reduce demand and lower the price). In our model the behavior agent is part

of the supply side and does not respond to the tax incidence and thus there is no lock-in effect on them.

However, the absence of lock-in effect from the behavioral agent is not why the tax can deflate the bubble

in our model. The driving force of asset bubbles is rational traders in our model as well as in the real

world (as demonstrated by Griffin et al. (2011) and Brunnermeier and Nagel (2004)). It is their responses

to the tax incidence that deflate bubbles. In particular, that they stop buying early when facing a higher

33If we do not take into account the equilibrium response of P ∗b (·), then clearly a rise in τ increases the normalized payoff
difference. Recall that GΘ

post < 0. In equilibrium, while a break-even trader’s Ps indeed decreases, the final effects of a rise
in τ are that the hazard rate rises while the normalized payoff difference decreases and their product remains unity.

34This does not conflict with the lock-in effect in that the lock-in effect applies to traders who have already bought with a
given purchase cost while break-even traders are those who have not bought whose stop-buy strategies vary with the tax.

35In addition, the probability of being caught is also higher in equilibrium.
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tax bursts the bubble prematurely.36

4.2 ∂B
∂τc

> 0 and the ineffectiveness of the tax under perfect tax credit

The tax credit rate, τc, works in the opposite direction to the tax rate τ and serves as a compensation to

the loss from being caught in the crash. In particular, the post-crash loss Gpost in the first-order condition

(6) is scaled by a factor 1− τc. So the tax credit is a “tax” on Gpost, which reduces the loss. If τc increases,

the normalized payoff difference decreases. With a smaller payoff difference, traders care less about being

caught and behave more aggressively by selling at higher prices. A higher Ps then enlarges the profit

margin and encourages buying at higher prices, which allows the bubble to grow larger. This suggests that

weakening tax credits has an effect similar to raising the tax rate in deflating bubbles. This result can be

useful when raising the tax is difficult or infeasible for economic or political reasons.

A special case is that the tax credit is perfect, i.e. τc = τ . In this case the equilibrium is simplified to

P ∗b (v) = v +
η

2
−
√

4cη and P ∗s (v) = v +
η

2
, with a bubble B = η −

√
4cη.37 Notice that now the bubble

stays at its tax-free level and is unaffected by the capital gains tax, even if we impose a 100% capital

gains tax! This is because the first-order condition becomes 1 − τ =
[
(1 − τ)Gpre −(1 − τ)Gpost

]
1

P ∗
′

b

φ
1−Φ

,

which, after normalization, is exactly the same as without tax. Hence the perfect tax credit provides a

perfect compensation to the loss in crash, reduces the payoff difference between pre- and post-crash and

restores it to its tax-free level. It induces high selling prices and encourages aggressively high purchase

prices. Traders behave as if there is no tax and the tax credit entirely neutralizes the deflating effect of

the tax. In Figure 5 this corresponds to the horizontal top edge of the dark (red) surface, where τc = τ

and the bubble is not responsive to the increasing tax rate.

A 28% capital gains tax was introduced in the United Kingdom on April 6, 2015, on gains from

residential property by overseas investors that, most analysts believe, targets the potential housing bubble

in London that has been growing since 2009. To take the advantage of this policy change to its full

extent, our paper suggests that a tax authority should examine its policies on tax credit before imposing

or increasing the tax rate, because an overly favorable tax credit can entirely offset the deflating effects of

the tax and leave the bubble unaffected, no matter how much the tax rate is raised.38 Measures to limit

36If we allow the behavioral agent to respond to a tax rise by deferring or even suspending selling and if we allow the
price to rise, the price will still be driven to the same level at the peak of the bubble and then crashes, because the crash is
triggered by rational traders and their stop-buy strategies are not affected by the behavioral agent.

37This equilibrium requires that 2c
η < 1

2 . The difference between NT and T traders disappears, since equation (4) is

equivalent to (5) when τc = τ . Break-even and non-break-even traders both sell at P ∗s (v) = v + η
2 .

38One clarification is that this suggestion should be viewed as an ad hoc tax policy instead of a long-run, regular optimal
tax policy. For those who believe that capital gains taxes should be calculated on the basis of long-run average (net) capital
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the tax credits include reducing the tax credit rate τc, setting or tightening the dollar limit on the tax

credit and shortening the duration within which tax credits can be carried forward or backward.

4.3 ∂B
∂c < 0 and the large marginal effect of a small c

An increase in c directly erodes the profit margin between Ps and Pb and a break-even trader has to lower

Pb to make a profit.39 This lowered stop-buy strategy therefore deflates the bubble.

One implication arising from our model is that the transaction cost can have an arbitrarily large

marginal effect on the bubble when the cost approaches zero: limc→0
∂B
∂c

= −∞ (see Figure 6 View 2).

Notice that this result does not depend on τ or τc. In addition, it does not even depend on the assumptions

about belief and signal distributions in our model. The reason is as follows. When c = 0, the selling price

and stop-buy price of a break-even trader coincide, i.e. P ∗b (v) = P ∗s (v, P ∗b (v)). In this case a break-even

trader does not need a margin at all between her Ps and Pb.
40 When c increases slightly from zero, 2c

is the minimal gap between purchase and selling prices for a break-even trader, if no risk of crash is

considered. But since it is always possible that the bubble bursts in between this gap, a trader needs

a larger profit margin/gap to compensate for the risk. This leads to a lower Pb. A larger gap means a

higher probability of bursting in between, which requires an even larger gap. Hence the stop-buy strategy

is lowered dramatically by a small transaction cost, which deflates the bubble significantly.41

The large marginal effect of the transaction cost on bubbles justifies the practice of implementing

financial transaction taxes at very low rates. Although we use a fixed transaction cost instead of a

proportional tax, every trader holds the same amount of the asset in our model and the effect of a fixed cost

is quite close to that of a proportional transaction tax. Since the 1970s many countries have experimented

with financial transaction taxes on trades of shares, bonds, currencies and derivatives. As mentioned

earlier, empirical evidences show that these taxes tend to reduce trading volumes but not price volatilities,

and some countries have decided to abolish the tax. Other countries42 nevertheless still maintain these

gains, weakening the tax credit may seem unfair because, without the tax credit, investors are taxed whenever they have
gains and are left alone when they incur losses, and hence the tax is not based on long-run average gains. So our suggestion
is to apply this policy only when there is strong concern that a bubble may be in progress in a specific market. In this paper
we do not intend to find an optimal tax policy that can automatically deflate bubbles when they arise and otherwise does
not interfere with the market.

39Under an imperfect tax credit, selling price Ps actually rises in response to a rise in c. This can be seen from the fact
that the change in normalized payoff difference (7) will be widened since 1−τc

1−τ > 1. The net effect of c on Pb is nevertheless
negative. Under a perfect tax credit Ps is invariant in c.

40With a zero profit margin, the tax has no effect.
41But Pb will not be shifted downwards infinitely, since the bubble size is also decreasing as P ∗b (·) decreases and the loss

of being caught in the crash diminishes. There is a stop-buy price where the expected profit equals zero. So this marginal
effect decreases in c.

42There were about 40 countries in 2011 that imposed financial transaction taxes.
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taxes at low rates. For example, the United States currently levies a 0.0034% tax on stock transactions, the

United Kingdom levies a 0.5% tax on share purchases and Japan has a 0.1−0.3% tax on stock transactions,

and these countries are among those which have experienced the most notorious bubbles in history.

4.4 Non-break-even traders

In fact, all traders who have already bought the asset are non-break-even traders. An NT bubble actually

includes both NT and T traders: those whose purchase prices are not too low are NT traders, and those

who entered the market very early and bought the asset at very low prices (so it would be possible to make

a profit even if caught in the crash) are T traders. v− 2c−DNT is the dividing line between the purchase

prices of T and NT traders. Non-break-even traders’ selling strategies are

P ∗s (v, Pp)=


1

1−2τ+τc

[
(1−τ)v−(τ−τc)Pp+ η

1−τc [(1−τ)hNT +(τ−τc)dNT ]
]
, if Pp>v−2c−DNT (NT trader)

v + η
2
, if Pp < v − 2c−DNT (T trader)

(8)

Non-break-even NT traders’ selling prices span between v + η
2

and P ∗s (v, P ∗b (v)), while all T traders sell

exactly at v + η
2
. See Figure 4.

4.5 NT bubble, T bubble and no bubble

The NT bubble emerges when τc is high while τ and c
η

are low. When τc, τ and c
η

are moderate, the unique

equilibrium involves a T bubble.43 There also exists a unique trading equilibrium without a bubble when

τc is low while τ and c
η

are high. See Appendix D and E, respectively. Figure 8 depicts the parameter space

partitioned by the existence and type of bubble. The space of NT bubble is enclosed by dark (red) surfaces

and the space of T bubble between light (blue) and dark (red) surfaces. Outside light (blue) surfaces no

bubble exists.

4.6 The outside option R and the interest rate policy

The effect of R is similar to that of c. When R > 0, the main change to Proposition 4.1 is that dNT ≡√
4c+2R
η

(1− 2τ + τc)(1− τ). See other changes in Appendix F.

In an NT bubble, it can be verified that the size of the bubble also decreases in the outside option, i.e.

∂B
∂R

< 0. This result means that high returns from outside investment opportunities help deflate a bubble.

43It may feel counterintuitive that when τ and c are very low break-even traders always incur losses, while when τ and c
are moderate break-even traders can possibly make a profit. This is because, when τ and c are very low, only a small gap
between buy and sale prices is required for break-even and the stop-buy price is close to the selling price. With such small
profit margin, however, a break-even trader must incur a loss if caught in the crash, even if θ turns out to be high (θ = v+ η

2 ),
which makes her an NT trader.
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Figure 8: In the c
η

- τ - τc space (R = 0)

Conversely a deterioration of these returns reduce the opportunity costs of riding the bubble and thus can

induce a larger bubble. The potential housing bubbles that we have observed since 2009 in major cities

outside the United States are partially the result of arbitrageurs switching their investments from US real

estate markets plagued by the subprime mortgage crisis.

Similar to the transaction cost c, the outside option R also has a large marginal effect on the bubble

when R and c are small: lim
R→0,c→0

∂B
∂R

= −∞, though this marginal effect decreases in both R and c. If

we interpret R as an interest rate (on treasury bill, for instance), then when a central bank sets a very

low interest rate, this could inflate bubbles significantly in certain markets, as suggested by the Federal

Reserve’s low interest rate policy after 2001 and the rise of the housing bubble in the United States until

2008.44 Thus central banks often face a dilemma: low interest rates help fight unemployment and recessions

(in the case of the United States, it was the recession after the tech bubble), but also sow the seeds for

the next round of recession. The bank of Canada lowered the rates after the 2008 financial crisis and has

maintained an overnight rate at 1% since 2010. In January 2015, the Bank surprisingly further lowered the

rate to 0.75%, partially to fight the adverse effect of the oil price plunge in 2014. Our model warns that

further lowering the interest rate, when it is at an already very low level, will have a disproportionately

inflating effect on housing prices. This could be especially dangerous when there is strong suspicion that

a large housing bubble already exists in Canada at this time.

44Although there is no agreement that Federal Reserve’s low interest rate policy during 2001-2005 indeed caused the housing
bubble that burst in 2008, the timing of the housing price run-up and bursting roughly coincide with the declining and rising
of the federal funds rate.
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5 Empirical discussion

5.1 Effects of τ , c and R: measuring and comparing historical bubbles

In this section we discuss how to empirically test the results of our model. In our model the tax rate τ , tax

credit rate τc, transaction cost c and outside option R are potential policy tools, while the belief dispersion

η is more intrinsic in a bubble. Ideally if we have data on many historical asset bubbles, we would like to

test whether these variables have the relationship with B as described in Proposition 4.1. If a nonlinear test

is difficult, then at least we should be able to test whether we have ∂B
∂τ

< 0, ∂B
∂τc

> 0, ∂B
∂c
< 0 and ∂B

∂R
< 0.

But given that assent bubbles are not high frequency events and that the cause and the environment for

each bubble can be different, we collect data on only 4 bubbles and our discussion is mainly restricted to

the data collect. We first explain how to identify the size and parameters of a historical bubble. Then we

explain the normalization of the bubble sizes by the belief dispersion so that we can compare the effects of

controllable parameters. In the end we explore and apply our method to four historical bubbles and try

to fit the empirical results into the theoretical results.

The four historical events of (purported) bubbles we will explore are the 1929 stock market crash,

Japan’s asset bubble in the 1980s, the Internet Bubble in the late 1990s and the Bitcoin Bubble in 2013.45

For the three former events, we use major stock indexes as the asset price in our model. To identify the

size of a bubble, we define the run-up as a period of time up to the moment when the price hits its peak.

The actual size of a bubble is measured from the peak to the average price within a certain period of time

after the peak. This is because the price path after the peak is usually quite noisy and usually involves

a series of crashes and small bouncebacks so that the initial crash following the peak does not necessarily

reflect the asset fundamental value. On the other hand it usually takes time for the price to reach the

bottom and rational traders have opportunities to sell before the bottom. In addition at the bottom there

often exists a downward price overshooting, which suggests that the market has overacted. Therefore we

use an average price to balance these considerations and we set the length of this period as half of the

length of the run-up. The actual price paths of these events are presented in Figure 9, where in each panel

the vertical dashed line is the peak that delimits the run-up and the crash and the horizontal line is the

average post-crash price we adopt.

For each bubble we identify parameters τ , τc, c, R and η. We also need to determine whether a bubble

is an NT or T bubble based on its parameter values (it turns out that all of them are NT bubbles). For

45In this paper we do not attempt to judge whether these events are indeed bubbles or not.
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(a) 1929 Stock Market Crash: S&P Stock Index
Source: CRSP
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(b) Japan’s Asset Bubble: Nikkei 225 Stock Index
Source: Federal Reserve Bank of St. Louis
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(c) Tech Bubble: Technology Stock Index
Source: calculated by data from CRSP
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(d) Bitcoin Bubble 2013: Bitcoin Price Index
Source: blockchain.info, bitcoin.org

Figure 9: Price index paths of historical bubble events

the capital gains tax rate τ , we try to identify the main contributors of a bubble and then find out the

appropriate tax rate that applies to them. The tax credit rate τc is more complicated in that the most

relevant restriction on credit is time, and the perceived equivalent credit rate depends on a trader’s past

gains and her expectation for future gains that will offset this loss before the credit expires.46 In most cases

the perceived equivalent credit rate should be imperfect because of the possibility of credit expiration.47

But the empirical study on this effective equivalent credit rate is essentially nonexistent; therefore we will

calculate under two extreme assumptions, no credit and perfect credit, and compare the results. If we

have a larger sample of bubbles, we can test whether longer expiration dates or higher ceilings for credits

result in larger bubbles. The trading cost usually includes three components: broker’s commission, bid-ask

spread and the market impact cost. For simplicity we only consider broker’s commission. Since c in our

46Cooper and Knittel (2006) examine the fraction of tax credits actually claimed by US firms between 1993 and 2003. They
show that about 25-30% are never claimed because of credit expiration or failure to generate profit/bankruptcy. Unfortunately
their data does not include capital loss, only operation losses.

47Unless the investor has gains in previous years (within the allowed period) that can entirely offset this loss. There is also
an interest loss if credits are carried forward.
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model is a fixed cost, we set c equal to the commission rate times the asset price at the peak of the bubble.

This is because the cost and the market entry decision near the peak are more relevant to the bursting.

For the outside option, R, we use the return from the treasury bond for an economy-wide bubble, and the

return from major stock indexes for a single asset bubble, multiplied by the asset price at the peak.48

The belief dispersion η in a real market is usually very difficult to identify. We do not have data on

investors’ beliefs about the asset fundamentals in these historical events, so we try to infer them from the

price dynamics as follows. Theoretically all major price events are caused by either exogenous shocks or

trading strategies governed by investors’ beliefs (or both). In a real market when major pessimistic traders

start to sell, the impact can be felt. In the model rational traders first start selling when the price rises

to P ∗s (θ − η
2
), which is the selling strategy of the lowest type, θ − η

2
.49 Thus we use the largest percentage

price drop (in the data, before the peak) which does not coincide with major exogenous shocks as a proxy

for the initial attack of rational traders. This point is indicated by a circle in each panel of Figure 9. The

drop is measured in a period with a length of 1
20

of the run-up. Alternatively we can use the price where

the trading volume suddenly drops as P ∗b (θ − η
2
), the price at which the lowest type first stops buying. In

either case, we can infer the belief dispersion by inverting the function P ∗−1
s (·) or P ∗−1

b (·).50 Note that in

our model these two prices do not depend on whether traders’ signals are symmetrical about θ or not.51

For all events of bubbles, their parameters as well as actual bubble sizes are listed in Table 1. B under

the Data column is the bubble size measured from data. η in both the Perfect Credit and No Credit (NT

Bubble) columns are inferred belief dispersions. B
η

under the Theory column is the theoretical B calculated

from the inferred η, then divided by the η. B
η

under the Data column is the measured B divided by the

inferred η.

To identify the effects of policy parameters on bubbles, we need to eliminate other factors’ contributions

to the variation in the bubble size. Our model (and AB2003) suggests that the belief dispersion η is intrinsic

in bubbles and is likely to be the primary explanatory variable of the wild variation in their size. Hence we

normalize bubble size by belief dispersion and use B
η

to identify effects of policy parameters on bubbles.

Before we present the results, we briefly review some aspects of these historical events.

48Ideally R is calculated from the intended holding period of the highest type of traders when they are indifferent between
the outside option and the asset with bubble. Considering the investor sentiment around the peak and the length of the
run-up, we use a 1-month to 6-month return from the outside option before the bursting.

49In our model traders do not know about this because we assume that they have no knowledge of the price path at all.
50This method has an interesting implication that, ex post, the earlier the price drop emerges, the larger the belief

dispersion, and hence the larger the bubble there will be.
51Traders’ strategies will offset any shift in the signal distribution about θ, so that the two price levels are invariant to this

shift. But the two prices do depend on the shape of the distribution (which is uniform in our model).

24



Parameters Data Perfect Credit No Credit(NT Bubble)

c R τ B η c
η

R
η

Theory Data
η c

η
R
η

Theory Data

B
η

B
η

B
η

B
η

1929 0.0179 0.0471 0.12 3.82 5.25 0.00341 0.00897 0.823 0.728 5.33 0.00336 0.00884 0.735 0.717
Japan 0.0355 0.0730 0.375 2.33 3.62 0.00979 0.0201 0.718 0.644 4.37 0.00811 0.0167 0.518 0.534
Tech 0.00557 0.0144 0.35 2.02 3.26 0.0017 0.0044 0.874 0.622 3.47 0.0016 0.0042 0.595 0.583

Bitcoin 6.28 4.58 0.25 130 272 0.0231 0.0168 0.725 0.479 299 0.0209 0.0153 0.532 0.436

Table 1: Summary of parameters and results of historical bubbles

1929 Stock Market Crash The 1929 Stock Market Crash in the United States was rooted in the

great economic growth in the 1920s, technology innovations (large-scale use of automobiles, telephones,

motion pictures, electricity, etc.) and the differentiated opinion about how long this trend can sustain. We

measure the bubble in the S&P index and define the run-up as an 8-year period from August 24, 1921, to

September 3, 1929. The index at the beginning is normalized to 1 and 5.97 at the peak. The average index

within the 4-year period after the peak is 2.14 and the actual size of the bubble is therefore measured as

5.97-2.14=3.83. The largest price drop (within a period of 90 trading days) started with an index value

of 1.64 on March 22, 1923 with a percentage drop of 17.3%. The broker commission rates around 1929

were about 0.3%,52 which gives c = 0.3% × 5.97 = 0.0179. The 3-month return from a 3-month treasury

bond at June 1929 was 3.16%, which gives R = 3.16%
4
× 5.97 = 0.047. We treat the main contributors of

the bubble as corporations and hence use the corporate tax rate 12%.53 The capital loss carryover was

first introduced in the Revenue Code 1939, and was restricted to individuals only, and we were not able

to find any information about capital loss carryover around 1929. Under the assumption of a perfect tax

credit and no credit, we calculate η from B = 3.82 or P ∗s (θ − η
2
) = 1.64, respectively. Then we calculate

the theoretical B by using this inferred η. Then we normalize both actual and theoretical bubble sizes by

the inferred η.

The calculations for all other events are the same as explained above.

Japan’s Asset Bubble in the 1980s Japan experienced an “economic miracle” that lasted more than

three decades up to the end of 1989. In the 1970s and 1980s Japanese automobiles gained significant market

shares in the United States and consumer electronics products started to dominate global markets. In the

1980s, the rapid accumulation of wealth by both corporations and households, as well as the uncontrolled

money supply and credit expansion, greatly encouraged speculative trading and inflated real estate and

stock market prices. Evidences show that corporations and investors’ opinions and expectations about

52See Jones (2002).
53At that time the tax codes did not differentiate operation gains and capital gains.
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stock prices were highly differentiated54. The crashes in stock and real estate markets contributed to what

many call the Lost Decade. Although the inflation in the stock market and real estate are intertwined, the

former burst a year ahead of the latter and so we choose to study the stock market to rule out the potential

causality. We define the run-up from January 1, 1982, to Dec 29, 1989, and measure the bubble in Nikkei

225 index. Normalizing the index at the beginning of the run-up to 1, the index reached a record high of

5.07 at the peak. The average index value within a period of 4 years after the peak is 2.73. For the largest

price drop within a period of 180 trading days, we ruled out the episode coinciding the 1987 stock market

crash in the United States and adopt the next largest one, which started with an index value of 2.47 on

August 20, 1986, and has a 19.7% drop. We use a commission rate of 0.7% for security transactions,55 and

adopt a corporate tax rate 37.5%, 56 as the main contributors of stock market bubble were corporations.57

R is calculated from an average of 3-month treasury bond yields between September and December of

1989, which is 5.76%. Unfortunately we were not able to find information about capital loss carryover

around the late 1980s.

Tech Bubble in the late 1990s In the 1980s and 1990s, the growth in computer ownership and

usage and the emergence of the internet ignited unprecedented anticipation and imagination about how

information technology could change our life. Investment decisions were not based on current profit or

sales, but purely on the anticipation of further rises and many technology companies in the United States

were significantly overvalued. This bubble burst in the early 2000 and the technology sector in the United

States suffered significant losses. We define the run-up as from January 2, 1997, to March 24, 2000, and

replicate the technology stock index in Griffin et al. (2011)58, on which we measure the bubble. At the

peak the index is 5.5 times that at the beginning. The average index value within a period of 18 months

after the peak is 3.48. For the largest price drop within 60 days in the run-up, we exclude the one in

January 2000 arising from tax deferral concerns and the episodes coinciding with the Russian sovereign

debt default and the failure of Long-Term Capital Management. Instead, we use the next largest one,

which started with an index value 2.66 on July 16, 1999, with an 18.8% drop. As argued in Griffin et al.

(2011), the main contributors to the Tech bubble were institutional traders. We use the short-term capital

54See Shiller et al. (1996).
55See McCauley and Zimmer (1991).
56In 1989 the corporate tax did not differentiate ordinary corporate income and capital gains in Japan.
57See Stone and Ziemba (1993).
58We use Nasdaq daily trading data from CRSP in the technology sector (firms with SIC code 737). A SIC code starting

with 737 means the firm engages in computer programming, data processing and other computer-related services. We restrict
ourselves to ordinary common shares (CRSP share code 10 or 11).
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gains tax rate at the time for the highest tax bracket, 35%, given the fact that there were (unsuccessful)

attacks around April 1999 and many institutional investors may have repurchased the asset after that

attack. R is calculated from the 3-month treasury bond yield in March 2000, which is 5.85%. As stated

in the introduction, corporate capital losses in the United States can be carried 3 years back and 5 years

forward without a dollar limit. This is somewhere in between no tax credit and a perfect tax credit.

Bitcoin Bubble in 2013 Bitcoin is an online payment system released in 2009 on which users can

transact directly without any financial intermediary. The system is a peer-to-peer one, meaning that it

works without a central administration and no one can control it.59 As a virtual currency and a form of

payment for products and services, merchants have an incentive to accept bitcoin because fees are lower

than credit cards. One difference between bitcoin and previous assets is that bitcoin transactions are

decentralized without a central market. The price for the bitcoin grew slowly before 2012. Since 2012 the

price rose considerably from around $5 (US dollar) and soared in 2013, hitting its record high at $1151

on December 4. After that the price declined sharply and was around $50 in May 2015. The market

capitalization at the height of the bubble was close to 14 billion US dollars. The gains from investing on

virtual currencies such as bitcoin in the 2013 tax year became taxable in the United States.60 We define

the run-up as between January 1, 2012, and December 4 2013, and scale the price on January 1, 2012,

which was US$5.2, to 1. The nominal transaction costs for bitcoin are very low, but we need to take

into account the impact of newly created bitcoin, which is similar to excess money supply that can cause

inflation. As such, we use the miners’ revenue as a percentage of the transaction volume at the time for

the transaction cost, which is 2.84%.61 The largest price drop during the run-up within 35 trading days

started with an index value 45.8 on April 9, 2013, with a 68% drop. We conjecture that the majority

of investors of bitcoin are individuals and they are tech-savvy young people with moderate income, and

that American investor contributed the most to the bubble. Hence we use the 25% tax that applies to an

annual single income bracket between $36,901 and $89,350. R is calculated from the average of 1-month

59Any online computer installed with this open-source software becomes a node of this system. There are many online
merchants where one can purchase bitcoin with local currency and use it. Transactions are executed and verified by randomly
chosen nodes and recorded in a public distributed ledger called the block chain. Since a user does not know where this
information is processed and stored and all data is encrypted, it is impossible for a user to control the system or tamper the
ledger.

60See Internal Revenue Service Notice 2014-21.
61Users who install the bitcoin software also facilitate the distributed transactions and are rewarded by newly created

bitcoin (this is called mining), though this reward is declining as more and more nodes are online. There is an upper bound
of 21 million for the total bitcoin that can be circulated in the system. All data of bitcoin, as well as the definition of miners
revenue, is from blockchain.info.
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S&P index return within one year before the crash, which is 2.07%. Tax credit for individuals does not

expire, but has an $800 ceiling each year.

Now we fit the empirical results into the theoretical results graphically. From Table 1 we observe that

c
η
, R
η

and Data B
η

under the two assumptions (perfect credit and no credit) differ only slightly.62 Therefore

we merge the two groups into one by using their averages and plot only one point for each bubble event

in Figure 10. To compare, we plot in Figure 10 theoretical results under different assumptions about tax

credit: the upper surface (blue) is the bubble size under perfect tax credit, the middle surface (green) is

under half tax credit (τc = 0.5τ) and the lower surface (red) is without tax credit. In addition, we treat c

and R as a single parameter 2c + R when plotting the theoretical surfaces to reduce a dimension so that

they can be depicted in a three-dimensional diagram.63

From Figure 10 we observe that three of the four historical bubbles roughly fall in between the two

extreme assumptions: perfect and no tax credit, with the Japan bubble close to the half tax credit, the

1929 and the Tech bubbles close to no credit and the Bitcoin falling below no credit. No bubble agrees

with the perfect credit. The result for the 1929 seems consistent with the possibility that there was no

tax credit at the time. The difference between Japan and Tech bubbles might be accounted for by the

lenience of the tax credit policy (if it existed) in Japan since its tax code did not differentiate operation

and capital gains at the time while capital losses in the United States cannot offset operation gains, only

capital gains. The Bitcoin bubble is smaller than the lowest theoretical result, which may be related to the

fact that it is a single asset bubble and there are many outside options, or its data is more peculiar than the

composite indexes used in other events. It might also be due to the fact that its trading is decentralized.

But given the small sample size and the lack of information about tax credit policies, these results should

be interpreted as our theoretical results, B
τ
< 0, B

c
< 0 and B

R
< 0 do not seem to seriously deviate from

empirical evidences, while the evidence on the effect of the tax credit is very weak and there is no evidence

on the large marginal effect of c and R so far. Further empirical study to include more sample of bubbles

is needed, especially housing bubbles.

62This is because they are calculated under only slightly different η.
63We drop the term −(τ − τc) 2c

η in hNT (hence in B) in Proposition 4.1. When τ and τc are close and c
η << 1, this term

can be ignored compared to term dNT . Indeed this is the case in all events we study here. Note that the large marginal
effects of c and R are preserved since they both appear in dNT .
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Figure 10: Actual and theoretical bubble sizes

5.2 Other empirical implications

Our model also generates other testable results. First, the model suggests that the average margin between

traders’ buying and selling prices are positively correlated with c
η
, R
η

and τ and negatively with τc. These

correlations may be tested by comparing average margins before and after policy changes affecting brokers’

commission rate, bid-ask spread, interest rate, tax rates and capital loss carryovers, or may be tested across

different bubble events.

Second, our model indicates that traders’ selling prices are negatively correlated with their purchase

prices, i.e. the earlier a trader bought, the later she sells. This can be seen from (8) where a non-break-even
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NT traders’ selling strategy P ∗s decreases in her purchase price Pp.
64 While an NT bubble also involves T

traders, since their purchase prices are even lower and selling prices are the highest (uncorrelated with their

purchase prices), the overall correlation among the population is negative. In addition, across different

bubble events, the higher the tax rate (and the weaker the tax credit policy), the stronger this correlation

will be.

6 Conclusion

In this paper we study the effects of capital gains tax and the transaction cost on asset bubbles. Our model

incorporates purchases into the framework of Abreu and Brunnermeier (2003). In the unique equilibrium,

we find that the capital gains tax helps deflate bubbles but the capital loss credit tends to offset this

deflating effect. Under a perfect tax credit, the bubble becomes immune to the tax. Therefore dealing

with bubbles with the capital gains tax also requires tightening the policies on tax credit. We also find

that a small transaction cost and outside option have very large marginal deflating effects on bubbles.

This implies that the low interest rate policies in the United States between 2001 and 2008 may have

contributed considerably to the housing bubble, and that the Bank of Canada’s recent move to a lower

interest rate from 1% to 0.75% may induce a larger housing bubble in Canada. The model also has an

appealing dynamic in which the stop-buy decision and selling decision spread smoothly and continuously

from low-belief traders to high-belief traders and high types are still buying when low types have already

sold.

To demonstrate how to empirically test these results, we explore several historical bubbles and show that

we can use the belief dispersion to normalize bubbles. By this normalization, we eliminate the fundamental

variation in bubbles so that we can compare the effects of policy variables. We also show how to infer belief

dispersions from the actual index/price histories when there is no explicit data on beliefs. It would be

desirable to include more bubble events into the data set so that empirical tests could generate statistically

significant results on the effects of the capital gains tax, tax credit, interest rates and transaction costs.

Our model can be extended, for example, by interpreting the compensation factor, τc, as government

bailout to show that past government assistance may increase the expectation for future bailout and hence

64This is because the marginal purchase cost of the pre- and post-crash sales in the first-order condition are scaled by
different factors: when purchase cost Pp + 2c increases by δ, the net purchase cost in the pre-crash sale increases by (1− τ)δ,
whereas the purchase cost of the post-crash sale increases by (1− τc)δ due to the tax credit, with the latter larger than the
former. This implies that the tax lowers the pre-crash purchase cost relative to the post-crash cost and makes the former
relatively more attractive. In particular the break-even traders who have the highest purchase prices (if they have purchased)
sell the lowest (earliest) at P ∗s (v, P ∗b (v)).
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induce larger bubbles.
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Appendix A Proof of Lemma 3.1

We first prove the following lemma.

Lemma A.1. lim
v→∞

P ∗s (v, Pp) =∞, ∀Pp.

Proof. Assume there exists P such that P > P ∗s (v, Pp),∀v. For a trader with signal v > P + η
2
, she knows

for sure that θ > P . Then selling at price P ∗s (v, Pp) < P < θ cannot be an equilibrium strategy, because
she would rather sell at price v, for instance, if the bubble has not burst, or at θ, if the it has burst. A
contradiction.

Lemma A.2. There exists v′ (and Pp) such that P ∗s (v′, Pp) = P ∗b (v), ∀v ≥ η
2
.

Proof. The lowest possible θ is zero, hence the bubble cannot burst below P ∗b (η
2
), and no trader should sell

below P ∗b (η
2
). For trader v = −η

2
, she know for sure that θ = 0 and the bubble will burst at P ∗b (η

2
). Hence

she will sell exactly at P ∗b (η
2
). Because both P ∗b (·) and P ∗s (·, ·) are continuous, and P ∗s (·, ·) does no have an

upper bound, the lemma holds.

Corollary 3.1 implies that P ∗b (·) is weakly increasing. Suppose that there exists η
2
≤ v < v such that

P ∗b (v) = P ∗b (v). Then the probability of bursting at P ∗b (v) is strictly positive. By Lemma A.2, there exists
v such that P ∗s (v, Pp) = P ∗b (v) + ε, where ε > 0. Consider trader v. When ε is small enough, the extra
benefit, ε, from selling at P ∗b (v) + ε instead of at P ∗b (v) will be smaller than the loss from being caught
in the crash at P ∗b (v). Then trader v is strictly better off by lowering her selling price from P ∗b (v) + ε to
P ∗b (v). A contradiction.
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Appendix B Proof of Proposition 3.1

Suppose trader v who does not hold the asset stops buying for the first time at P ∗b (v) and then switches
back to buy. Since price is continuously and strictly rising and P ∗b (·) is continuous, there must be trader
v + ε who does not hold the asset and has stopped buying before v could restart buying, by Assumption
3.2. By Corollary 3.1, trader v cannot restart buying before trader v + ε stops and then restarts buying,
and trader v + ε cannot do so before trader v + 2ε does so. Proceeding this way, trader v is not buying
until trader θ + η

2
stops and then restarts buying. That trader θ + η

2
stops buying is exactly what triggers

the burst.
If a trader v has previously sold the asset at P ∗s (v, Pp) and now tries to buy again, it contradicts the belief
that all lower types have stopped buying, since P ∗b (v) ≤ P ∗s (v, Pp).

Appendix C Proof of Proposition 4.1 and D.1

Part 1: Equilibrium verification for v > η
2

Suppose that all other traders use strategies prescribed in Proposition 4.1 or D.1.

Sale decision: Since θ = P ∗−1
b (Ps) − η

2
= Ps − θ − DNT or T , then Φ(θ|v) =

θ−(v− η
2

)

η
and φ(θ|v) = 1

θ
.

Substitute into Equation (6), we have dω
dPs

= 1
η
(−Ps+ η

2
+v), and SOC is d2ω

dP 2
s

= −1 < 0. Set dω
dPs

= 0, we can

solve for P ∗s (v, Pp). Therefore, given all traders stop buying at P ∗b (v), selling at P ∗s (v) is an equilibrium.
Purchase decision: Because ω(Pp, Ps) (in both equation 4 and 5) is decreasing in Pp, P

∗
b (v) = v +

DNT or T is uniquely pinned down by (3). Under the strategy P ∗b (·), we can use the condition that Pb+2c ≶
P ∗−1
b (Ps) − η

2
and B > 0 to derive the restrictions for parameters τc, τ , R

η
and c

η
. Therefore B > 0 when

c
η
< 1

4
.

Part 2: Equilibrium uniqueness for v > η
2

We prove the uniqueness by four lemmas. Let p∗b(v) ≡ P ∗b (v)− v. Suppose that B > 0 upon burst.

Lemma C.1. Any equilibrium strategy must be that p∗b(v) is bounded.

Proof. The continuity of P ∗(·) implies that P ∗(·) is finite for finite v. Recall that P ∗(·) is an increasing
function. If limv→∞p

∗(v) = ∞, then ∀B > 0, there exists θ such that P ∗b (θ + η
2
) − θ > B. Hence P ∗(v)

cannot be an equilibrium strategy.

Lemma C.2. In any equilibrium, FOC = 0 holds for all traders in (η
2
,∞).

Proof. Assume in an equilibrium strategy P ∗b (·) and P ∗s (·), there exists a trader v such that her ∂ω
∂Ps
6= 0.

If her ∂ω
∂Ps

< 0, that means she can increase her expected payoff by decreasing her selling price p. The
only lower boundary for price is zero. But selling at zero is never optimal because θ > 0 for sure. Hence
for all trader v > η

2
, selling at the corner solution zero cannot be optimal. Therefore in any equilibrium a

trader v’s ∂ω
∂Ps

cannot be strictly negative. If her ∂ω
∂Ps

> 0, that means she can increase her expected payoff

by increasing her selling price p. But there is no upper boundary for price, so ∂ω
∂Ps

> 0 itself implies this
strategy is not optimal. Therefore in any equilibrium a trader v’s FOC cannot be strictly positive. In
addition, those Ps at which ω(Pp, Ps) is non-differentiable ( ∂ω

∂Ps
does not exist) cannot be in the equilibrium

for the following reason. ∂ω
∂Ps

does not exists at two points: P ∗−1
b (Ps)− η

2
= v± η

2
. But Ps at neither point

can be equilibrium strategy, because P ∗−1
b (Ps)− η

2
= v+ η

2
=⇒ Ps = P ∗b (v+ η), which is not rational when

bubble size is strictly positive, and P ∗−1
b (Ps) − η

2
= v − η

2
=⇒ Ps = P ∗b (v), which is not rational when

transaction cost c > 0. Hence FOC= 0 holds for all traders v > η
2

in equilibrium.

From ω(P ∗b (v), P ∗s (v)) = (1− τ)R we have
dω(P ∗b (v),P ∗s (v),v)

dv
= ∂ω

∂Pb

dPb
dv

+ ∂ω
∂Ps

dPs
dv

+ ∂ω
∂v

= 0. Since ∂ω
∂Ps

= 0 in

EQ, we have ∂ω
∂Pb

P ′b + ∂ω
∂v

= 0 =⇒ −P ′b − (v − η
2
)φ(v − η

2
|v) + Psφ(v + η

2
|v) = 0. For uniform distribution,
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this means

P ∗s (v) = ηP ∗
′

b (v) + v − η

2
(9)

Substitute (9) into FOC: ∂ω(Pb,Ps)
∂Ps

= 0 (partially) and for uniform distribution, we have

P ∗
′

b (P ∗−1
b (P ∗s (v)))− 1 =

η

η + v − P ∗−1
b (P ∗s (v))

[P ∗
′

b (v)− 1] (10)

From P ∗s (v) > P ∗b (v) =⇒ P ∗−1
b (P ∗s (v)) > v. From P ∗s (v) ≤ P ∗b (θ + η

2
) < P ∗b (v + η

2
+ η

2
) = P ∗b (v + η) =⇒

P ∗−1
b (P ∗s (v)) < v + η. Hence, 0 < η + v − P ∗−1

b (P ∗s (v)) < η =⇒ η

η+v−P ∗−1
b (P ∗s (v))

> 1. Therefore, from (10)

we know

{
P ∗
′

b (P ∗−1
b (P ∗s (v))) > P ∗

′

b (v), if P ∗
′

b (v) > 1
P ∗
′

b (P ∗−1
b (P ∗s (v))) < P ∗

′

b (v), if P ∗
′

b (v) < 1
.

For ∀v1, its “images” v2, v3, ... are defined as v2 ≡ P ∗−1
b (P ∗s (v1)), v3 ≡ P ∗−1

b (P ∗s (v2)), etc. Let xi ≡
η

η+vi−P ∗−1
b (P ∗s (vi))

= η
η+vi−vi+1

andXi ≡ Πi
j=1xj. Then given any v1, we have P ∗

′

b (vi)−1 = xi−1[P ∗
′

b (vi−1)−1] =

Xi[P
∗′
b (v1)− 1].

Lemma C.3. limi→∞Xi =∞

Proof. Suppose limi→∞Xi converges to a finite value. This implies that limi→∞xi = 1, which in turn
implies that vi+1 → vi, i.e. P ∗−1

b (P ∗s (vi)) → vi. Recall that P ∗s (vi) − P ∗b (vi) ≥ 2c. This means that
the slope of the line segment (vi+1, P

∗
b (vi+1)) − (vi, P

∗
b (vi)) can be arbitrarily large, and this slope goes

to infinity as i → ∞. Then P ∗b (·) must diverge upward from 45◦ line, i.e. P ∗b (v) − v is not bounded. A
contradiction.

Lemma C.4. P ∗
′

b (v) = 1, ∀v > 1
2

Proof. Suppose ∃v1 such that P ∗
′

b (v1) < 1. Since xi > 1, ∀i, if Xi → ∞, then there must exist vi such
that P ∗

′

b (vi) − 1 < −1 =⇒ P ∗
′

b (vi) < 0, which violates the assumption that P ∗
′

b (·) > 0. Suppose ∃v1 such
that P ∗

′

b (v1) > 1, we have limi→∞P
∗′
b (vi) =∞. We know that in equilibrium P ∗s (vi) = ηP ∗

′

b (vi) + vi − η
2
≤

P ∗b (vi + η). Since P ∗
′

b (vi) will grow unboundedly, we see that ηP ∗
′

b (vi) − 3
2
η ≤ P ∗b (vi + η) − (vi + η),

which implies that P ∗b (vi + η) − (vi + η) will also grow unboundedly, which contradicts Lemma C.1 that
p∗b(vi) = P ∗b (vi)− (vi) must be bounded.

Let P ∗b (v) = v+ g, where g is a constant. We can solve for P ∗s (·) through standard procedure. Because
ω(Pp, Ps) is decreasing in Pb in both NT and T equilibria, P ∗b (v) = v+DNT or T is uniquely pinned down by
(3), i.e. g = DNT or T . The belief that B ≤ 0 will lead to an entirely different strategy profile (Proposition
E.1), which cannot be equilibrium strategy when parameters satisfy Proposition 4.1 or D.1.

Appendix D Equilibrium with the T bubble

Proposition D.1. (Equilibrium with the T bubble) When

{
τc ≤ τ 1

c and τTNT1 < τ < τB, or
τBc ≤ τc ≤ τ 1

c and τB < τ
and

R
η
< 1

8
(1− 2c

η
)2− c

η
and c

η
< 3−2

√
2

2
, or when

{
τc ≤ τ and τ < τB, or
τBc ≤ τc ≤ τ and τB < τ

and 1
8
(1− 2c

η
)2− c

η
< R

η
< 1

2
(1− 4c

η
)

and c
η
< 1

4
, there exists a unique trading equilibrium in which bubble size is B = η

2
+ DT > 0, the bubble

bursts at θ +B, all the trader are T traders and a trader v > η
2

will
buy, if price < P ∗b (v) = v +DT ;
sell, if price ≥ P ∗s (v, Pp) = v + η

2
;

hold, if P ∗b (v) ≤ price < P ∗s (v, Pp).
, where DT ≡

1+4τ c
η
−τc(1+4 c

η
)−2dT

2(1−2τ+τc)
η,
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dT ≡
√

(1−τ)
[
(τ−τc)(1− 2c

η
)2+ 2R

η
(1−2τ+τc)+ 4c

η
(1−τc)

]
, τBc ≡ τ − η2

4c2
(1− τ)(1− 2R

η
− 4c

η
) and τB ≡

1− 2R
η
− 4c
η

(1− 2c
η

)2− 2R
η

.

The equilibrium strategies with a T bubble in Proposition D.1 is depicted in Figure 11. Now all traders

v

p
v − 2c−DT

v + η
2

P ∗s (v, P ∗b (v))

v +DT

P ∗b (s)

η
2

Figure 11: Equilibrium strategies without tax credit and with positive bubble in case T

(including break-even traders) are T traders65 and they all sell at v+ η
2

(undistorted), irrespective of their
purchase prices. There is no NT trader in this case. It can be verified that the conclusions on an NT
bubble (i.e. ∂B

∂τc
> 0, ∂B

∂τ
< 0, ∂B

∂c
< 0 and ∂B

∂R
< 0) extend to T bubble, and that an NT bubble is always

larger than a T bubble. See Figure 5 and 6.

Appendix E Equilibrium without bubble

The equilibrium where there is no bubble (bubble size < 0) corresponds to a corner solution of (2).

Proposition E.1. (Equilibrium without bubble) When τc ≤ τBc and 1
8
(1 − 2c

η
)2 − c

η
< R

η
< 1

2
(1 − 4c

η
)

and c
η
< 1

4
, or when R

η
≥ 1

2
(1− 4c

η
), or c

η
≥ 1

4
, there exists a “unique” trading equilibrium in which bubble

size B = η +DN ≤ 0, and a trader

• v ≤ −DN − η
2

will never buy the asset;

• v > max(η
2
,−DN − η

2
) will


buy, if price < PN

b (v) =

{
v + η

2
+DN , if 2R

η
≤ 1;

v − 2c−R, if 2R
η
> 1

hold, if PN
b (v) ≤ price < v + η

2
.

sell, if price ≥ v + η
2

where DN ≡ −η
τ
− 2c+ η

τ

√
(1− τ)(1− 2τ R

η
)

65Their the stop-buy strategy are all below the dividing line v − 2c−DT , because the tax and transaction cost are higher
now.
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Proof. We first verify that this is an equilibrium. When everyone else stops buying at PN
b (v),66 bubble

bursts at pT = θ+ η
2
− 2c−R, which is smaller than θ when 2c+R

η
≥ 1

2
. As the bubble size is non-positive,

it is optimal for traders to sell after the burst, i.e. they will try selling as late as possible. For trader v,
the largest possible θ is v + η

2
, so selling at any price ≥ v + η

2
is justified and is equivalent. We assume

that in this case traders sell at v + η
2
. Then everyone simply gets the after burst price θ, which means

their expected sale revenue is E[θ|v]. Then the best response in purchase stage is to stop buying at
P ∗b (v) = E[θ|v]− 2c− R = v − 2c− R. Then for traders with v ≤ 2c + R, their stop-buy price is zero or
negative, so they will never buy the asset.

Uniqueness: If B < 0, then selling below P ∗b (v + η
2

+ η
2
) = v + η + g is strictly dominated by at or

above v + η + g, and the latter means that the trader will get θ for sure. Knowing that the expected sale
price is E[θ|v] = v, a trader will stop buying at v − 2c − R to maintain a non-negative expected payoff.
Then B ≤ 0 requires that 2c+R

η
≥ 1

2
. The belief that B > 0 will lead to an entirely different strategy profile

(Proposition 4.1 or D.1), which cannot be equilibrium strategy when 2c+R
η

> 1
2
.

In this equilibrium, when the highest type stops buying, the price is still lower than θ. When the
“bubble” bursts, the price jumps up to θ. This is because the fixed transaction cost and the return from
outside option are too large compared to η, and the stop-buy strategy is pushed so low that the bubble
becomes negative. With a negative “bubble”, if a trader sells before the “crash”, she forgoes the price
appreciation that would have certainly realized had she waited till the “bubble” bursts. As a result,
everyone has an incentive to hold the asset until the uncertainty is resolved. Obviously the strategy profile
in Proposition 4.1 or D.1 is no longer an equilibrium. Knowing that she will be selling at θ after the
“crash” and the expected sale price is E[θ|v], a trader v should buy the asset if the current price is lower
than E[θ|v]− 2c−R.

This equilibrium is unique in the sense that the stop-buy strategy and “bubble” size are unique, but
selling strategy is not unique. For trader v, since the bubble will burst below v + η

2
for sure and the price

will be fixed at θ thereafter, price will never rise above v + η
2
. So all strategies selling at any price above

v + η
2

are optimal, although they will never be implemented.

Appendix F Equilibrium with NT bubble and R > 0

With R > 0, Proposition 4.1 also has to be modified as follows. τTNT1 ≡ 1
2
−

4c+2R
η

(1− 2c
η

)2
and τ 1

c ≡ 2τ − 1 +

8(1− τ)
2c+R
η

(1+ 2c
η

)2
.

66The stop-buy price PNb (v) is pinned down by
∫ PNb +2c

θ=v− η2
(θ−PNb − 2c)φ(θ|v)dθ+ (1− τ)

∫ v+ η
2

θ=PNb +2c
(θ−PNb − 2c)φ(θ|v)dθ =

(1 − τ)R and we have PNb (v) = v + η
2 −

η
τ − 2c ± η

τ

√
(1− τ)(1− 2τ Rη ). Since stopping below the lowest possible θ is not

optimal, it must be that PNb (v) + 2c ≥ v − η
2 , we then have PNb (v) = v + η

2 −
η
τ − 2c + η

τ

√
(1− τ)(1− 2τ Rη ). Furthermore

the square root requires that 2Rη ≤ 1. If 2Rη > 1, then PNb (v) = v − 2c−R
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