PhD - Introduction to Computing I

Afrasiab Mirza

January 13, 2011

Basic Problems

1. Create a matrix with 10 rows and 4 columns. The numbers in the matrix should be random integers within 10 to 100 .
(a) Find the maximal values in each column.
(b) Find the maximal values in each row.
(c) Find the maximal entry in the matrix.
(d) Find the index of this entry (row and column).
(e) Create a matrix with the same dimensions in which all entries equal the maximal value that you found in d).
(f) Calculate the difference between the matrix from e) and the original matrix.
(g) Find all the entries that are less than 40 and more than 20. Can you do it in one line?
2. Random Quantities.
(a) Create a vector x with 100 random entries between 0 to 1 .
(b) Create a vector y with 100 random entries between 0.1 to 1.1.
(c) Calculate the mean, range and standard deviation for each vector.
(d) Check the null hypothesis that the two vectors are from the same distribution (use ttest2 or ttest).
(e) Find how many members of x are greater than their corresponding members in y .
(f) Find the greatest difference between x and y.

More Difficult

1. How good is the default random number generator? Draw a vectors random numbers, X, of size $10,10^{3}, 10^{6}$. Then compute the correlation between X_{t} and X_{t-l} for $l=1,2,3,4$.
2. Compute the mean and variance of the following random variables using a sample of size $10,10^{3}$:
(a) $U(0,1)$
(b) $N(0,1)$
(c) $\chi^{2}(1)$
3. Illustrate the CLT for the uniform random variables.
4. The data for this question is in testdata.dat.
(a) regress precipitation on month and lagged-month
(b) run a t-test to test if each of the coefficients is significant
(c) run an f-test to test if both coefficient are jointly significant
5. Solve the following problems:
(a)

$$
\max _{x, y} \sqrt{x y}-x-y
$$

(b)

$$
\begin{aligned}
& \max _{x, y}-x_{1} x_{2} x_{3} \\
& \quad \text { s.t. } 0 \leq x_{1}+2 x_{2}+2 x_{3} \leq 72
\end{aligned}
$$

