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Abstract

Forecasting firms’ earnings has long been an interest of market participants and academics. Tra-

ditional forecasting studies in a multivariate time series setting do not take into account that the

timing of data release for a specific time period of observation is often spread over several days or

weeks. This paper focuses on the separation of announcement timing or data release and the use of

econometric real-time methods, which we refer to as an updated vector autoregression (VAR) fore-

cast, to predict data that have yet to be released. In comparison to standard time series forecasting,

we show that the updated forecasts will be more accurate the higher the correlation coefficients

among the standard VAR innovations are. Forecasting with the sequential release of information

has not been studied in the VAR framework, and our approach to the six Canadian banks shows

its value. By using the updated VAR forecast, we find that the relative efficiency gain is 33% in

the one-step-ahead forecast compared to the ordinary VAR forecast, and 7% compared to profes-

sional consensus forecasts. Thought experiments suggest that if banks’ order of information release

were to change, forecast errors could be substantially reduced. These experiments emphasize that

evaluating the release ordering is crucial in determining forecast accuracy.
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1 Introduction

The timing of data release for a specific time period of observation is often spread over

weeks. For instance, earning announcements for firms can be spread over a two-week period,

even though these earnings are for the same month or quarter. Further, official government

statistics are often released at different times over the month or quarter and yet cover the

same time period. This paper focuses on this separation of announcement timing or data

release and the use of standard econometric updating methods to forecast data that are not

yet available. To the best of our knowledge, this important aspect of forecasting has a direct

application in financial market updating (in terms of earnings, earning per share, and so on).

Traditional forecasting in a multivariate time series setting is usually studied in the

context of vector autoregression (VAR) models. In this set-up the VAR, with a common

end-point, is specified and estimated. Single or multiple period forecasts can then be made.

Standard errors for these forecasts can be based on asymptotic normal theory or, more

recently, can be obtained using bootstrap or some other re-sampling techniques. This type

of forecasting assumes that there is a sequence of common end-points of observed data and

that forecasts are made for all variables over the same forecasting horizon. We consider a

situation different from the standard VAR and data collection set-up in that only some of

the variables comprising the system are released at a given point in time, with the remaining

variables being released at later dates. These later dates may coincide for some variables,

or they may differ, in which case there is a sequence of release times for the system as a

whole. When all variable observations are released we are in the usual VAR forecasting with

a common end-point and no updating will occur until the next time period with sequential

information release.

To facilitate the analysis, we make two critical exogeneity assumptions. The first as-

sumption is that the timing order of the release of information, either earlier or later in the

release cycle, does not depend on the information that is released. That is, if firms have poor

earnings, we assume this does not influence the announcement date. From what we are able

to tell about earnings announcements, the decision as to when to announce is made long in

advance of the time when the earnings information would be credibly known to the firm, so

this is unlikely to be an issue. The second exogeneity assumption is that the announcement

of one firm’s earnings on a given day will not affect the announcement of the earnings of a

related firm on a later day. That is, if one firm announces large earnings in, say, the first

quarter of 2008 on February 27, 2008, a related firm does not change its announced earnings

for the same quarter when released on, say, February 28, 2008. In the present application

to the big six Canadian banks, one would expect that a great deal of time is required to
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calculate earnings so that firms are unlikely to engage in such strategic interaction over such

a short time horizon.

After Sims’s (1980) influential work, VARs are widely applied in analyzing the dynamics

of economic systems. For over twenty years, multivariate VAR models have been proven to be

powerful and reliable tools. Stock and Watson (2001) reassess how well VARs have addressed

data description, forecasting, structural inference, and policy analysis. Working with the

inflation-unemployment-interest rate VAR, they conclude that VAR models either do no

worse than or improve upon univariate autoregressive models and that both improve upon

the random walk forecast. Therefore, VAR models are now rightly used in data description

and forecasting. Generally, the ordinary multivariate VAR forecast is based on a common

end-point. Hence, the standard VAR forecast does not distinguish that the timing of data

release is often spread over weeks for the same time period of observation. However, most

available macroeconomic variables or financial time series for a given time period are released

on different announcement dates. For example, financial time series such as firms’ earnings

for the same quarter or the same year are made available at different dates for public use;

macroeconomic indicators, such as inflation, employment, unemployment rate, interest rate,

and so on, released for the same month, are also available to the public at different dates.

Therefore, one objective of this research is to employ the familiar Kalman filtering set-up

with prediction and updating. This discussion is specialized to the VAR framework, which

we believe is new.

Not surprisingly, in comparison to the VAR forecast with a common end-point, the

use of new sequential information leads to lowering of the mean squared error (MSE). We

first consider a case with one available real-time variable in the updated bivariate VAR

forecasts. When one variable’s information is released, the difference from the release value

and the prediction from the VAR represents the “new” information. If this new information

is correlated with the innovation of the remaining variables, then there can be a meaningful

update. When the correlation coefficient of the innovations between two variables is lower,

the updated bivariate VAR forecast has a relatively smaller MSE than the ordinary bivariate

VAR forecast. When the correlation coefficient of innovations between two variables is high,

the updated bivariate VAR forecast has a smaller MSE than the ordinary bivariate VAR

forecast. In the extreme case when the correlation coefficient approaches zero, then there

is no improvement in the forecast. Of course, for multistep-ahead forecasts, having the

additional information will always lead to improved forecasts with lower MSE.

The second scenario we consider is to update the bivariate VAR forecast with two more

periods of real-time information known in advance. We find that, given a certain sufficiency

condition, it is more accurate to adopt the new information in the VAR forecast. Inter-
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estingly, there are instances when forecasts using the new information can actually lead to

poorer predicted outcomes.

Finally, we conduct the extension to the multivariate VAR forecast. With one available

real-time variable known in advance, the methodology used to obtain the MSE of the re-

maining variables is straightforward and follows the same direction as the bivariate case.

With two more available real-time variables known in advance, we use the innovations of all

available variables to predict the innovation of each of the remaining variables. We show that

the forecast MSE for a variable monotonically decreases as other variables that are related

are sequentially released.

To illustrate these methods, we choose earnings per share (EPS)1 of the big six Canadian

banks. These six banks dominate the market with 90% of all banking assets under their

control. The banks are: Royal Bank of Canada (RBC), Bank of Nova Scotia (BNS), Toronto-

Dominion Bank (TD), Bank of Montreal (BMO), Canadian Imperial Bank of Commerce

(CIBC), and National Bank of Canada (BNC). These banks’ quarterly EPS figures and the

corresponding analyst forecast data are well documented and accessible. We collect the data

from the Institutional Brokers Estimate System (I/B/E/S) database provided by Wharton

Research Data Service and from the current quarterly financial statements of each bank.

We have obtained the past 23 years of quarterly banks’ earnings per share and individual

analysts’ forecast of EPS data dating from the second quarter of 1986 to the first quarter of

2009. We compare to the consensus earnings forecast which is available for all these banks

and is calculated as the average of all available individual analysts’ forecasts. The big six

Canadian banks are all cross-listed between the New York Stock Exchange and the Toronto

Stock Exchange. Under the U.S. Securities and Exchange Commission, the filing deadline for

quarterly reports is 35 days, whereas under the Ontario Securities Commission, the deadline

for filing interim financial statements is 45 days. Overall, for the big six Canadian banks,

quarterly financial announcements are mandatory within a certain time range; the timing

1http://www.martinmarietta.com/Investors/Non-GAAP.asp
The U.S. Securities and Exchange Commission defines a “non-GAAP financial measure” as a numerical mea-
sure of historical or future financial performance, financial positions, or cash flows that excludes amounts, or
is subject to adjustments that effectively exclude amounts, included in the most directly comparable mea-
sure calculated and presented in accordance with GAAP in financial statements, and vice versa for measures
that include amounts, or is subject to adjustments that effectively include amounts, that are excluded from
the most directly comparable measure so calculated and presented. For these purposes, “GAAP” refers to
generally accepted accounting principles in the United States. Non-GAAP financial measures disclosed by
management are provided as additional information to investors in order to provide them with an alternative
method for assessing firms’ financial condition and operating results. These measures are not in accordance
with, or a substitute for, GAAP, and may be different from or inconsistent with non-GAAP financial mea-
sures used by other companies. The non-GAAP measures are used in banks’ own management discussion
and analysis and, therefor, may not be comparable to similar terms used by other banks.
To be consistent with banks’ own management and analysis, we use non-GAAP diluted EPS in this paper.
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of announcements varies, and the order of announcements is different at each quarter. We

find that the root mean squared error in the updated VAR is less than the ordinary VAR.

This shows quantitatively that the updated VAR improves 33% in a one-step-ahead forecast

compared to the ordinary VAR, and improves 7% in comparison to consensus forecasts.

Obviously, market participants follow firms’ current and expected future earnings. Brown

and Rozeff (1978) and Bown, Hagerman, and Zmijewski (1987) conclude that analysts’ fore-

casts significantly outpredict time series model forecasts, while Cragg and Malkiel (1968), El-

ton and Gruber (1972), and Imhoff and Pare (1982) contend that analysts’ earnings forecasts

are not significantly more accurate than time series model forecasts. Hopwood, McKeown

and Newbold (1982) find that time series methods outperform a random walk by using quar-

terly earnings information to predict annual EPS. These conflicting findings have led Conroy

and Harris (1987) to conclude that a combination of analysts’ and time series annual EPS

forecasts may provide superior earnings forecasts, especially with a few analysts’ forecasts.

Individual time series methods of predicting EPS based on past annual EPS have done no

better than simple random walk models. Recently, substantial attention has been paid to

the characteristics of analysts’ forecasts of earnings. More specifically, researchers document

that analysts’ forecasts of earnings are biased (Beckers, Steliaros and Thomas 2004, Hong

and Kubik 2003), inefficient (Easterwood and Nutt 1999), and irrational (De Bondt and

Thaler 1990, Aborbanell and Bernard 1992, and Lim 2001), and indicate herding behavior

(Clement and TSE 2005). However, Keane and Runkle (1998) use methods of moments tests

and find that analysts’ forecasts of corporate profits are rational, which challenges the earlier

work of De Bondt and Thaler (1990) and Aborbanell and Bernard (1992).

In this study, the order of release of information is exogenous by assumption. We can,

however, construct any alternative orderings we wish and rank ordering according to some

criterion. A natural criterion is an ordering that maximize disclosure. The objective function

is to minimize mean squared forecast errors to provide the market with the most informative

release. Our theoretical results and simulation findings indicate that the lowest mean squared

forecast error does exist, depending on firms’ variance and their correlation coefficients. As

a result, we investigate how the timing of earnings announcements is helpful in accurately

forecasting firms’ earnings. Thought experiments explore the order of earnings release for the

big six Canadian banks to maximize disclosure. Under this ordering, a substantial decrease

in MSE can be obtained in comparison to the actual ordering.

The remainder of the paper is organized as follows. Section 2 presents our econometric

methodology. Section 3 reports the simulation studies. An application of the updated VAR

forecasts to the Canadian banking industry and thought experiments are illustrated in section

4. Section 5 summarizes our main findings. The appendix provides the proofs.
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2 A Theoretical Framework

Consider the N multivariate stationary VAR (1) model

Yt = AYt−1 + εt, t = 0,±1,±2, ..., (1)

where Yt = (y1t, ..., yNt)
′ is a (N × 1) random vector, and the A is fixed (N ×N) coefficient

matrices. The first subscript represents the variable and the second subscript represents

the time period. Moreover, εt = (ε1t, ..., εNt)’ is a N -dimensional white noise or innova-

tion process, that is, E(εt) = 0 and E(εtε
′
t) = Ωε, with the contemporaneous covariance

Cov(εit, εjt) = ρijσiσj for i = 1, ..., N and j = 1, ..., N . The covariance matrix Ωε is assumed

to be nonsingular if not otherwise stated. Since we assume stationary vector autoregressive

process, the condition of correlation coefficient |ρij| < 1 must hold. Finally, σi is the stan-

dard deviation of the innovation εi. Given the multivariate VAR model (1), the ordinary

multivariate VAR one-step-ahead forecast at time region T is YT (1) = A YT and the asso-

ciated forecast error is εT (1) = εT+1, where YT (1) denotes the forecast of Y at time T + 1

and εT (1) denotes forecast error at time T +1. The ordinary multivariate VAR forecasts are

standard and can be obtained from Lütkepohl (1993) and Hamilton (1994).

Theoretically, the multivariate VAR forecast is based on the certain amount of time pe-

riods of 1 through T . Each equation in the multivariate VAR model can be estimated by

ordinary least squares (OLS) regression. This OLS estimator is as efficient as the maximum

likelihood estimator and the general least squared estimator. Therefore, the ordinary mul-

tivariate VAR forecast computed through the unbiased and consistent coefficient estimates

and the variance covariance matrix estimates has the lowest MSE and is optimal. However,

the fact is that most macroeconomic or financial time series we study in multivariate VAR

forecast do not end at the same time, that is, one variable is generally available for public use

a couple of days prior to the other variables. For example, financial time series such as firms’

earnings for the same quarter or the same year are made available at different dates for public

use; macroeconomic indicators such as inflation, employment, unemployment rate, interest

rate, and so on, released for the same month are also available at different dates for public

use. Omitting the timing factor, the ordinary multivariate VAR forecast usually ignores the

latest information we can obtain and adopts the same amount of certain time periods to

make forecasts.

The focus of this paper is to examine how taking advantage of more data from one

variable and matching the timing factor can be used to improve multivariate VAR forecasts.
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2.1 Updating Bivariate VAR Forecast

A practical method to update forecasts with one real-time variable available in advance is

investigated. To simplify the discussion, we first consider the bivariate VAR forecast, where

N = 2, firstly. Suppose y1t is observable for t = 1, . . . T + 1 and y2t is observable only up to

time T . Then the reduced form bivariate VAR (1) model is as follows

y1t = a11y1t−1 + a12y2t−1 + ε1t t = 1, ..., T, T + 1 (2)

y2t = a21y1t−1 + a22y2t−1 + ε2t t = 1, ..., T.

Following the ordinary multivariate VAR forecasting method proposed by Lütkepohl

(1993), the one-step-ahead ordinary bivariate VAR forecast error covariance matrix (or fore-

cast MSE matrix) is

MSE[YT (1)] = Ωε,

where Y is a vector of (y1, y2)
′, and the covariance matrix of Ωε is E(εt, ε

′
t); that is,

Ωε =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
.

Therefore, the MSE of one-step-ahead forecast of variable y2 in the ordinary bivariate VAR

is MSE[y2T (1)] = σ2
2. Hereafter we denote MSEu as the updated multivariate VAR forecast

MSE to distinguish it from the ordinary multivariate VAR forecast MSE.

With one more piece of real-time information (y1T+1) available in advance, at the fore-

cast horizon of the time period T + 1, we observe ε1T+1. This is due to ε1T+1 = y1T+1 −
(a11y1T + a12y2T ). If we regress ε2 on ε1, then the best estimates of ε2T+1 is obtained by

ε2T+1|T = E(ε2T+1|ε1T+1). Thus, we can forecast the residual ε2T+1|T by the relationship

ε2T+1|T = (ρ12σ2/σ1)ε1T+1. Hence, the one-step-ahead forecast MSE is obtained as the fol-

lowing proposition:

Proposition 1 Given the full information set I1 = {y11, y12, ..., y1T+1, y21, ..., y2T}, the mean

squared error of one-step-ahead forecast of variable y2 in the updated bivariate VAR is

MSEu[y2T (1)] = (1− ρ2
12)σ

2
2 (3)

Proof. See Appendix.

This proposition shows that taking advantage of one more piece of real-time information

available in advance implies that the one-step-ahead updated bivariate VAR forecast MSEu
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is (1 − ρ2
12)σ

2
2. Since ρ12 is correlation between ε1 and ε2, the condition |ρ12| < 1 must

hold by stationary. However, omitting the extra information y1T+1, the ordinary bivariate

VAR forecast MSE gives MSE = σ2
2. Therefore, the one-step-ahead updated bivariate VAR

forecast has smaller MSE in comparison with the forecast from the ordinary bivariate VAR.

This implies that the updated bivariate VAR forecast is more accurate than the forecast

from the ordinary bivariate VAR.

Additionally, the higher the correlation among the error terms of the variables, the smaller

the MSE in the updated bivariate VAR forecast. When the correlation coefficient of the in-

novations between two variables is lower, the updated bivariate VAR forecast has a relatively

smaller MSE than the ordinary bivariate VAR forecast. When the correlation coefficient of

observation innovations between two variables is higher, the updated bivariate VAR forecast

has a significantly smaller MSE than the ordinary bivariate VAR forecast. In one extreme

case, when the correlation coefficient approaches zero, that is, no useful contemporaneous

information is available for forecasting, the updated bivariate VAR forecast has exactly the

same results as the ordinary bivariate VAR forecast. In another extreme case, when the

correlation coefficient approaches one, that is, we have perfect linear association and there

are no errors, the updated bivariate VAR forecast has the best performance.

To generalize, we also examine the k ≥ 2 long-horizon forecast with one more piece of

real-time information known in advance.

Proposition 2 Given the full information set I1, the k-step-ahead forecast mean squared

error matrix in the updated bivariate VAR is

MSEu[YT (k)] =
k−2∑
i=0

AiΩεA
i′ + Ak−1

(
0 0

0 (1− ρ2
12)σ

2
2

)
Ak−1′ (4)

= Ωε + A MSEu[YT (k − 1)] A′, k ≥ 2,

where A is 2× 2 dimensional coefficient matrix. A matrix to the power of zero is defined to

be the identity matrix of the same dimensions, that is, A0 = I, and

A =

(
a11 a12

a21 a22

)
.

Proof. See Appendix.

This proposition shows that the multistep-ahead updated bivariate VAR forecast builds

upon the first step forecast derived from proposition (1). By iterating forward, we see that the

k-step-ahead updated bivariate VAR forecast mean squared error matrix MSEu in equation
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(4) is smaller than the recursive ordinary bivariate VAR forecast MSE matrix

MSE[YT (k)] =
k−2∑
i=0

AiΩε(A
i)′ + Ak−1

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
Ak−1′ (5)

= MSE[YT (k − 1)] + Ak−1ΩεA
k−1′ k ≥ 2.

To see the difference between the updated bivariate VAR forecast MSEu and the ordinary

bivariate VAR forecast MSE, we compare the equation (4) with (5):

MSE[YT (k)]−MSEu[YT (k)] = Ak−1

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 ρ2
12σ

2
2

)
Ak−1′ . (6)

In a one-step-ahead forecast (k = 1) equation (6) indicates that the gain of employing one

available real-time information y1T+1 to forecast related variable y2T+1 depends on the corre-

lation coefficient of the innovations, ρ12. When ρ12 = 0, there is no gain at all; the updated

bivariate VAR forecast has the same MSE as the ordinary bivariate VAR forecast. This

implies that the updated bivariate VAR forecast is more accurate than the forecast from the

ordinary bivariate VAR under short-horizon forecasting. Furthermore, the higher the corre-

lation among the error terms of the variables, the smaller the MSE in the updated bivariate

VAR forecast. When the correlation coefficient approaches zero, that is, no contemporane-

ous information is available to be useful for forecasting, the updated forecast has exactly

the same results as the ordinary bivariate VAR forecast. When the correlation coefficient

approaches one, we have perfect linear association; there are no errors and the updated bi-

variate VAR forecast has the best performance. As forecasting horizon becomes longer, the

MSE of the updated bivariate VAR forecast converges to the MSE of the ordinary bivariate

VAR forecast.

In a two-step-ahead forecast (k = 2) equation (6) becomes

MSE[YT (2)]−MSEu[YT (2)] = A

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 ρ2
12σ

2
2

)
A′

=

(
(a11σ1 + a12ρ12σ2)

2 (a11σ1 + a12ρ12σ2)(a21σ1 + a22ρ12σ2)

(a11σ1 + a12ρ12σ2)(a21σ1 + a22ρ12σ2) (a21σ1 + a22ρ12σ2)
2

)
.

Since the difference between the forecast MSE of y2T+1 of the ordinary bivariate VAR and

that of the updated bivariate VAR is (a21σ1 + a22ρ12σ2)
2, this is larger or equal to zero.

Therefore, the two-step-ahead updated bivariate VAR forecast has smaller MSE compared

with the forecast from the ordinary bivariate VAR. Even with ρ12 = 0, the gain of employing
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one available real-time information y1T+1 to forecast the related variable y2T+1 still exists

since a2
21σ

2
1 is always positive.

Furthermore, MSE[YT (k)]−MSEu[YT (k)] converges to zero rapidly as k →∞. In other

words, the MSE by the updated VAR forecast converges to the MSE by the ordinary VAR

forecast as the forecasting horizon gets larger. Under the assumption that our VAR (1)

process is stationary, the polynomial det(Im−Az)2 has no roots in and on the complex unit

circle. That is equivalent to say that all eigenvalues of parameter matrix A have modulus

less than 1. By the properties of matrices3, Ak−1 converges to 0 as k →∞.

2.2 Updating Bivariate VAR Forecast with Data from Two More

Periods Known in Advance

In practice, there are a number of applications of the bivariate VAR with two more periods

of available real-time information known in advance. For instance, in Canada, Telehealth

is a toll-free helpline provided by the Ontario Ministry of Health and Long-term Care’s

Telehealth program and is available to all residents of Ontario. Users are encouraged to call

with any general health questions with confidential advice being given regarding any health

concerns. National Ambulatory Care Reporting System (NACRS) was developed in 1997

by the Canadian Institute for Health Information to capture clinical, administrative and

demographic information from all hospital-based and community-based ambulatory care.

The concern with these two correlated sources of data is one of timeliness, as NACRS data

is not available in real-time, but rather months later. This issue is also compounded by the

fact that some hospitals have yet to complete a migration to electronic records management,

making the integration of all NACRS data additionally difficult. The goal is to use the

Telehealth data as a forecast to alert physicians under flu outbreak or vaccine failure has

occurred and high demand for NACRS data is expected. Understanding the impact of these

limitations is crucial to study the provincial Telehealth data and its usefulness to public

health and emergency services.

In this section, we develop the updated bivariate VAR forecast with two more time

periods of real-time information (s ≥ 2). Let y1t be observable for t = 1, . . . T + s with

s ≥ 2 and let y2t be observable only up to time T . The simple bivariate VAR(1) model is as

2Lütkepohl (1991) Appendix A.6 rule 7 on page 456: all eigenvalues of the (m × m) matrix A have
modulus less than 1 if and only if det(Im −Az) 6= 0 for |z| ≤ 1, that is, the polynomial det(Im −Az) has no
roots in and on the complex unit circle.

3Lütkepohl (1996) property 14 on page 39: A (m ×m) matrix A, Ai →i→∞ 0 ⇔ all eigenvalues of A
have modulus less than 1.
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follows:

y1t = a11y1t−1 + a12y2t−1 + ε1t t = 1, ..., T, T + 1, ..., T + s (7)

y2t = a21y1t−1 + a22y2t−1 + ε2t t = 1, ..., T.

We assume all the assumptions hold as in the section 2.1.

A one-step-ahead forecast MSE in this model set up is consistent with the proposition

3. The MSEu in this updated bivariate VAR forecast given one more period of available

real-time information is smaller than the ordinary bivariate VAR forecast, that is, MSEu =

(1− ρ2
12)σ

2
2 < MSE = σ2

2.

For a two-step-ahead forecast, rearranging equation (7), we obtain

ε1T+2 = y1T+2 − (a11y1T+1 + a12y2T+1).

Since we do not observe y2T+1, we do not observe ε1T+2. There are two ways to make a

prediction on ε1T+2. One way is simply to set the unconditional prediction E(ε1T+2) = 0

with variance ε1T+2 (σ2
1) the first element of the MSE of the ordinary bivariate VAR forecast,

that is, the first row and column element of the matrix (Ωε +AΩεA
′). The alternative way is

to predict ε1T+2|T through the residual form ε1T+2|T = y1T+2 − (a11y1T+1 + a12y2T+1|T ). The

question is wether the conditional predictor of ε1T+2 has a larger MSE than the unconditional

predictor with MSE of σ2
1. In the former case, the variance of the difference in error becomes

V ar[ε1T+2 − ε1T+2|T ] = a2
12(1− ρ2

12)σ
2
2.

If a sufficient condition {a2
12(1− ρ2

12)σ
2
2 < the first row and column element of matrix Ωε +

AΩεA
′} holds, we would use ε1T+2|T rather than E(ε1T+2) = 0. Then the variance of the

forecast error is

V ar[y2T+2 − y2T+2|T ] = (1 + a2
22)(1− ρ2

12)σ
2
2.

We see that not only the correlation coefficient of two time series and the variance of the

forecasting innovation, but also the coefficient parameter a22 plays a role in the multistep-

ahead forecast.

To generalize the standard 2 ≤ k ≤ s multistep horizon forecast, we iterate to obtain the

k-step-ahead updated bivariate VAR forecast.

Proposition 3 Given the full information set I2 = {y11, y12, ..., y1T+1, ..., y1T+s, y21, ..., y2T},
and the sufficient condition {(∑k−2

i=0 a2i
22)a

2
12σ

2
2(1 − ρ2

12) < the first row and column element

of matrix Σk−1
i=0 AiΩεA

i′} holds. Then the k-step-ahead forecast mean squared error matrix in
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the updated bivariate VAR is

MSEu[y2T (k)] = (
k−1∑
i=0

a2i
22)(1− ρ2

12)σ
2
2 2 ≤ k ≤ s. (8)

Proof. See Appendix.

Clearly, if the absolute value of estimated a22 is larger than one, the MSE of the updated

bivariate VAR forecast diverges when the forecast horizon is large enough, that is as k →∞.

However, the stationary assumption rules out the divergence case. Therefore, when the

forecast horizon is large enough, the MSE of the updated bivariate VAR forecast will converge

to the MSE of the ordinary bivariate VAR forecast. If the absolute value of estimated a22

is less or equal to one, there exists a permanent efficient gain by employing the updated

bivariate VAR forecast.

2.3 Updating Multivariate VAR Forecast

In the last two sections, we analyze the different kinds of the updated bivariate VAR fore-

casts. We now extend our investigation to the multivariate case, where a separate sequence

of informational release occurs.

One Available Real-time Variable

Let y1t be a real-time variable observed for t = 1, . . . , T + 1 and y2t, y3t, . . . , yNt be

observable only up to time T . Then a multivariate VAR model (1) is

y1t = a11y1t−1 + a12y2t−1 + ... + a1NyNt−1 + ε1t t = 1, ..., T + 1 (9)

y2t = a21y1t−1 + a22y2t−1 + ... + a2NyNt−1 + ε2t t = 1, ..., T

. . . t = 1, ..., T

yNt = aN1y1t−1 + aN2y2t−1 + ... + aNNyNt−1 + εNt t = 1, ..., T.

The updating procedure is as before. Given the known full information set I3 = {y11, y12, ...,

y1T+1, y21, ..., y2T , ..., yN1, ...yNT}, the mean squared error of one-step-ahead forecast of vari-

able y2 in the updated multivariate VAR is

MSEu[ynT (1)] = (1− ρ2
1n)σ2

n n ≥ 2. (10)

m More Available Real-time Variables

11



We now move on to derive the updated multivariate VAR forecast with m more available

real-time variables. First, we consider m = 2 case, that is two variables can be observed

currently and we forecast the rest of N −m variables at the same time period.

Let y1t and y2t be two real-time variables observed for t = 1, . . . , T +1 and y3t, y4t, . . . , yNt

be observable only up to time T . Then the multivariate VAR model (1) can be expanded as

the following reduced form VAR (1) process

y1t = a11y1t−1 + a12y2t−1 + ... + a1NyNt−1 + ε1t t = 1, ..., T + 1 (11)

y2t = a21y1t−1 + a22y2t−1 + ... + a2NyNt−1 + ε2t t = 1, ..., T + 1 (12)

y3t = a31y1t−1 + a32y2t−1 + ... + a3NyNt−1 + ε3t t = 1, ..., T

. . . t = 1, ..., T

yNt = aN1y1t−1 + aN2y2t−1 + ... + aNNyNt−1 + εNt t = 1, ..., T.

We use the known information I4 = {y11, ..., y1T , y1T+1; y21, ..., y2T , y2T+1; y31, ..., y3T ;...;

yN1, ..., yNT} to forecast y3T (1), ..., yNT (1). Equations (11) and (12) give

ε1T+1 = y1T+1 − a11y1T − a12y2T − ...− a1NyNT

ε2T+1 = y2T+1 − a21y1T − a22y2T − ...− a2NyNT .

As before, since we observe y1T+1, y2T+1, y1T , y2T , ..., yNT , we know ε1T+1 and ε2T+1. Sim-

ilarly, assume all parameters are known in the coefficient matrices A and the covariance

Cov(εit, εjt). The prediction equation is for updating the forecast. The third equation error

can be calculated using the following regression.

ε3t = α1 ε1t + α2 ε2t + ηt t = 1, . . . T,

where the α1 and α2 are the population least squares coefficients. We project the ε3t onto

both ε1t and ε2t. This yields least squares estimate of α:

α1 =
V ar(ε2)Cov(ε1, ε3)− Cov(ε1, ε2)Cov(ε2, ε3)

V ar(ε1)V ar(ε2)− Cov2(ε1, ε2)

= (
ρ13 − ρ12ρ23

1− ρ2
12

)
σ3

σ1

12



and

α2 =
V ar(ε1)Cov(ε2, ε3)− Cov(ε1, ε2)Cov(ε1, ε3)

V ar(ε1)V ar(ε2)− Cov2(ε1, ε2)

= (
ρ23 − ρ12ρ13

1− ρ2
12

)
σ3

σ2

.

Hence, the best predictor of ε3T+1 is

ε3T+1|T = (
ρ13 − ρ12ρ23

1− ρ2
12

)
σ3

σ1

ε1T+1 + (
ρ23 − ρ12ρ13

1− ρ2
12

)
σ3

σ2

ε2T+1,

where ρ13 = ρ31 and ρ23 = ρ32 are the correlation coefficients of innovation ε1 and ε3, and ε2

and ε3 respectively. The forecast error for forecasting y3T+1 then becomes

y3T+1 − y3T+1|T = ε3T+1 − (
ρ13 − ρ12ρ23

1− ρ2
12

)
σ3

σ1

ε1T+1 − (
ρ23 − ρ12ρ13

1− ρ2
12

)
σ3

σ2

ε2T+1.

To distinguish the notation used here with the notation used in the previous sections, we

adopt the superscript to denote the order of the informational release. For instance, the

corresponding mean squared error for forecasting y3T+1 using both variable 1 and 2 releases

is MSEu[y1:2
3T (1)]. Moreover, this is equal to

MSEu[y1:2
3T (1)] = V ar[y3T+1 − y3T+1|T ] = (1− ρ2

13 + ρ2
23 − 2ρ13ρ23ρ12

1− ρ2
12

)σ2
3, (13)

where |ρ12| 6= 1.

To generalize the updated multivariate VAR forecast with m more available real-time

variables, let ymt be m real-time variables observed for t = 1, . . . , T +1 and ynt be observable

only up to time T . Then the multivariate VAR model (1) can be expanded as follows

y1t = a11y1t−1 + a12y2t−1 + ... + a1NyNt−1 + ε1t t = 1, ..., T + 1 (14)

. . . t = 1, ..., T + 1

ymt = am1y1t−1 + am2y2t−1 + ... + amNyNt−1 + εmt t = 1, ..., T + 1 (15)

ym+1,t = am+1,1y1t−1 + am+1,2y2t−1 + ... + am+1,NyNt−1 + εm+1,t t = 1, ..., T

. . . t = 1, ..., T

yNt = aN1y1t−1 + aN2y2t−1 + ... + aNNyNt−1 + εNt t = 1, ..., T.

Proposition 4 Given the full information set I5 = {y11, ..., y1T , y1T+1; ...; ym1, ..., ymT , ymT+1;

ym+1,1, ..., ym+1,T ; ...; yN1, ..., yNT}, suppose the random vector εi = (ε1 ε2 ... εm)′ and the

13



random vector εj = (εm+1 εm+2 ... εN)′ are as follows

(
εi

εj

)
∼ N

((
0

0

)
,

(
Ωεiεi

Ωεiεj

Ωεiεj
Ωεjεj

))
.

Then the corresponding general form of mean squared error MSEu[y1:2:...:m
jT (1)] for forecasting

yjT+1 is

MSEu[y1:2:...:m
jT (1)] = V ar(yjT+1 − yjT+1|T )

= V ar(εjT+1 − Ωεjεi
Ω−1

εiεi
εiT+1)

= V ar(εjT+1) + V ar(Ωεjεi
Ω−1

εiεi
εiT+1)

−2Cov(εjT+1, Ωεjεi
Ω−1

εiεi
εiT+1). (16)

where Ωεiεi
, Ωεjεj

, and Ωεiεj
are the partition matrix. The matrix Ωεjεi

is the transpose matrix

of Ωεiεj
.

Proof. See Appendix.

Given the information set I3, the forecasting MSE of variable y3T+1 by equation (10) is

MSEu[y1
3T (1)] = (1− ρ2

13)σ
2
3.

However, given the information set I4, the forecasting MSE of variable y3T+1 is as in (13).

Comparing (10) with (13), we find that the forecasting MSE of variable y3T+1 is smaller

when we use the most recent available information to forecast. That is, the outcome from

equation (13) is smaller than the result of equation (10). To see how it happens, we can

compare ρ2
13 to ρ2

13 + ρ2
23 − 2ρ13ρ23ρ12/(1− ρ2

12).

ρ2
13 + ρ2

23 − 2ρ13ρ23ρ12

1− ρ2
12

− ρ2
13 =

(ρ23 − ρ12ρ13)
2

1− ρ2
12

≥ 0.

Therefore, MSEu[y1:2
3T (1)] < MSEu[y1

3T (1)]. This comparison strengthens the usefulness of

more pieces of information in forecasting.

Proposition 5 Given the full information set I5 and the updated multivariate VAR model

(14), the more pieces of available information we use, the smaller the forecast mean squared

errors. In other words, for a given variable j

MSE[y1
jt(1)] ≥ MSE[Y 1:2

jt (1)] ≥ ... ≥ MSE[Y 1:...:m−1
jt (1)] ≥ MSE[Y 1:...:m

jt (1)] (17)
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Proof. See Appendix.

2.4 Sequential Arrival of Real-time Variables

A natural question arises in considering the sequential release of information: is there

timing of announcement ordering that related firms follow in order to obtain the maximum

disclosure. The answer to this question depends of course on what criterion one chooses

to assess optimality. Suppose that each firm will release their information for the previous

period separately; no two firms can release the same day (this may allow the market to

focus on individual firms and information). An important economic earnings question worth

addressing in an optimizing model is why firms do not all release earnings at the same time.

What is the economic reason for separating and changing times for earnings releases.

Suppose we adopt an objective function that enforces a particular ordering of information

with the rule that each firm must release data on a different order. We consider the ques-

tion of order using the following criterion: information is released to minimize standardized

mean squared forecast errors at each informational release (maximum total disclosure). The

objective is to provide the market with the most informative release subject to not allowed

to release information at the same time. Since the VAR structure is itself not related to this

criterion, we can calculate for any given set of firms N , either of these, and compare them

to actual practice.

In this set-up we have N separate informational releases and the problem can be solved.

Given the nature of the interdependence in forecasting, the problem has to be solved for

all combinations of information release dates over all time T . The order is assumed to be

fixed over the T periods to make the problem meaningful. Otherwise, order would usually

be chosen on the basis of what firm has the smallest forecast error at any time.

We minimize the criterion function for all T , so with N firms there are N ! (that is,

N ∗ (N −1)∗ (N −2)∗ ...∗2∗1) different permutations or orderings. Assume that each firms

earnings is normalized in some way (earnings per share or divide them by their standard

deviation) and denote these as (y1t, y2t, . . . , ynt).

Consider the following criterion at release date T , which we minimize. Given the large

number of potential orderings to search over, the notational set-up is a bit cumbersome.

Let the vector Yt(i) index the ith ordering of informational release (there are N ! where for

convenience we will assume no two firms can choose the same day to release information):

Yt(i) = (y1t, y2t, . . . yNt) of all possible orderings.
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The i designates a specific ordering of information release. Corresponding to each infor-

mational ordering release is a forecast depending on the order release. To aid in descrip-

tion, let N = 3 with the following sequence of informational release sequence: Yt(1) =

(y1t, y
1
2t, y

1
3t, y

1:2
3t ) indicates that Firm 1 releases firstly, followed by Firm 2 and finally Firm

3, where the superscript 1 indicates that Firm 1 has announced its earnings and the su-

perscript 1 : 2 indicate that Firm 1 and Firm 2 have released their earnings hereafter;

Yt(2) = (y2t, y
2
1t, y

2
3t, y

2:1
3t ) indicates that Firm 2 releases first, followed by Firm 1 and finally

Firm 3; Yt(3) = (y1t, y
1
3t, y

1
2t, y

1:3
2t ) indicates that Firm 1 releases first, followed by Firm 3 and

finally Firm 2; Yt(4) = (y3t, y
3
1t, y

3
2t, y

3:1
2t ) indicates that Firm 3 releases first, followed by Firm

1 and finally Firm 2; Yt(5) = (y2t, y
2
3t, y

2
1t, y

2:3
1t ) indicates that Firm 2 releases first, followed

by Firm 3 and finally Firm 1; Yt(6) = (y3t, y
3
2t, y

3
1t, y

3:2
1t ) indicates that Firm 3 releases first,

followed by Firm 2 and finally Firm 1. Therefore, there are six possible different orderings.

The forecast error for the first firm is zero and earnings for the remaining two firms is

done by the updating formula for the VAR using the earnings information from Firm 1. Each

of these produces a forecast error (y2t+1− y1
2t+1|t) and (y3t+1− y1

3t+1|t). Next, the second firm

releases its information and the VAR forecast is calculated for updating based on Firm 1

and Firm 2 earnings release and this leaves firm 3 with a final forecast error (y3t+1− y1:2
3t+1|t).

Thus, the sum of squared forecast errors for this ordering Yt(1) is

S1:2 =
T+s∑
t=T

1

s

{
(y2t+1 − y1

2t+1|t)
2 + (y3t+1 − y1

3t+1|t)
2 + (y3t+1 − y1:2

3t+1|t)
2
}

,

where s denotes the number of forecasting periods. We see that Firm 3 contributes twice

to the squared forecast in S1:2. In this case there are five other possible squared forecast

sequences: S1:3, S2:1, S2:3, S3:1, S3:2. We choose the smallest Si.

Clearly, as N gets bigger, the complexity of the search and the number of cases rises

quickly. One unusual feature is the repeating of the forecast error for firms whose information

has not yet been released. We could in principal discount here, but the time period is so

short that this has little impact. The forecast error for the firm is repeated because there is

delay in reporting their earnings. If the other firms give valuable information in forecasting

this firm’s earnings, this forecast error will not be large.

To conduct this exercise, we will use the entire VAR sample period to estimate all mag-

nitudes. Each combination of real-time information is required. For the last case we need

to calculate two per ordering, so that we have in total twelve. In general, there will be

(N − 1)×N ! which with the big six Canadian banks is 3600 updates!

For N = 3 variables and k = 1 one-step-ahead forecast case, if Firm 1 releases first, the
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mean squared errors for forecasting Firm 2 and Firm 3 respectively, by (10), are

(y2T+1 − y1
2T+1|T )2 = (1− ρ2

12)σ
2
2

and

(y3T+1 − y1
3T+1|T )2 = (1− ρ2

13)σ
2
3.

From (13), the mean squared error for forecasting Firm 3, knowing Firm 1 and Firm 2’s

current value, is denoted by (y3T+1 − y1:2
3T+1|T )2, which is

(y3T+1 − y1:2
3T+1|T )2 = (1− ρ2

13 + ρ2
23 − 2ρ13ρ23ρ12

1− ρ2
12

)σ2
3.

Now the sum of squared forecast errors for the first ordering of informational release Yt(1) is

S1:2 =
T+s∑
t=T

1

s

{
(y2t+1 − y1

2t+1|t)
2 + (y3t+1 − y1

3t+1|t)
2 + (y3t+1 − y1:2

3t+1|t)
2
}

= (1− ρ2
12)σ

2
2 + (1− ρ2

13)σ
2
3 + (1− ρ2

13 + ρ2
23 − 2ρ13ρ23ρ12

1− ρ2
12

)σ2
3. (18)

Consequently, if Firm 2 releases first, the MSE for forecasting Firm 1 and Firm 3 respec-

tively, by (10), are

(y1T+1 − y2
1T+1|T )2 = (1− ρ2

12)σ
2
1

and

(y3T+1 − y2
3T+1|T )2 = (1− ρ2

23)σ
2
3.

From (13), the mean squared error for forecasting firm 3, knowing firm 2 and firm 1’s current

value, is denoted by (y3T+1 − y2:1
3T+1|T )2, which is

(y3T+1 − y2:1
3T+1|T )2 = (1− ρ2

13 + ρ2
23 − 2ρ13ρ23ρ12

1− ρ2
12

)σ2
3.

Now the sum of squared forecast errors for the second ordering of informational release Yt(2)

is

S2:1 =
T+s∑
t=T

1

s

{
(y1t+1 − y2

1t+1|t)
2 + (y3t+1 − y2

3t+1|t)
2 + (y3t+1 − y2:1

3t+1|t)
2
}

= (1− ρ2
12)σ

2
1 + (1− ρ2

23)σ
2
3 + (1− ρ2

13 + ρ2
23 − 2ρ13ρ23ρ12

1− ρ2
12

)σ2
3. (19)
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Likewise, suppose that Firm 1 releases, following Firm 3 and Firm 2 finally, the sum of

squared forecast errors for the third ordering of informational release Yt(3) is

S1:3 =
T+s∑
t=T

1

s

{
(y3t+1 − y1

3t+1|t)
2 + (y2t+1 − y1

2t+1|t)
2 + (y2t+1 − y1:3

2t+1|t)
2
}

= (1− ρ2
13)σ

2
3 + (1− ρ2

12)σ
2
2 + (1− ρ2

12 + ρ2
23 − 2ρ13ρ23ρ12

1− ρ2
13

)σ2
2. (20)

The sum of squared forecast errors for the fourth ordering of informational release Yt(4) is

S3:1 =
T+s∑
t=T

1

s

{
(y1t+1 − y3

1t+1|t)
2 + (y2t+1 − y3

2t+1|t)
2 + (y2t+1 − y3:1

2t+1|t)
2
}

= (1− ρ2
13)σ

2
1 + (1− ρ2

23)σ
2
2 + (1− ρ2

12 + ρ2
23 − 2ρ13ρ23ρ12

1− ρ2
13

)σ2
2. (21)

By symmetry, the sum of squared forecast errors for fifth ordering of informational release

Yt(5) is

S2:3 =
T+s∑
t=T

1

s

{
(y3t+1 − y2

3t+1|t)
2 + (y1t+1 − y2

1t+1|t)
2 + (y1t+1 − y2:3

1t+1|t)
2
}

= (1− ρ2
23)σ

2
3 + (1− ρ2

12)σ
2
1 + (1− ρ2

12 + ρ2
13 − 2ρ13ρ23ρ12

1− ρ2
23

)σ2
1 (22)

whereas the sum of squared forecast errors for the sixth ordering of informational release

Yt(6) is

S3:2 =
T+s∑
t=T

1

s

{
(y2t+1 − y3

2t+1|t)
2 + (y1t+1 − y3

2t+1|t)
2 + (y1t+1 − y3:2

1t+1|t)
2
}

= (1− ρ2
23)σ

2
2 + (1− ρ2

13)σ
2
1 + (1− ρ2

12 + ρ2
13 − 2ρ13ρ23ρ12

1− ρ2
23

)σ2
1. (23)

To simplify the analysis, suppose σ1 = σ2 = σ3 = 1. The timing of announcement for

three firms is as follows.

Proposition 6 Suppose |ρ13| > |ρ12| > |ρ23|, by minimization objective function, the infor-

mational ordering is Firm 1, followed by Firm 2, and finally Firm 3. In other words, the

firm with the biggest correlation to other firms releases its earnings earlier in order to obtain

the minimum mean squared forecast error.

Proof. See Appendix.
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This proposition shows the timing of announcement when the variances are the same for

three firms. It shows that the timing of announcement is that the firm (say Firm 1), whose

correlation with another firm (say Firm 3) is the largest and whose correlation with third

firm (say Firm 2) is the second biggest, releases its information first.

In general, the following proposition is a general case and holds for three firms.

Proposition 7 Suppose σ2 > σ3 > σ1, |ρ21| > |ρ23|, and |ρ21| > |ρ31. The informational

ordering is Firm 2, followed by Firm 3, and finally Firm 1. In other words, the firm with

the largest variance and the biggest correlation to other firms releases its information first

in order to obtain the minimum mean squared forecast error.

Proof. See Appendix.

The purpose of this proposition is to minimize S, that is, min{S1:2, S2:1, S1:3, S3:1, S2:3, S3:2}.
According to the the minimum mean squared error criterion, the objection function is to

have the firm that has the most volatility and is highly correlated to the least volatile firm

release its information first.

3 Simulation

This section is based on Zhu (2008). Only a relevant set of results is presented here.

3.1 Bootstrap v.s Asymptotic Confidence Intervals

The first step in constructing a bootstrap DGP is to estimate the bivariate VAR (1)

model (2) by maximum likelihood estimation, yielding the restricted estimates Â, Ω̂ε, where

Â =

(
â11 â12

â21 â22

)
,

and

Ω̂ε =

(
σ̂2

1 ρ̂12σ̂1σ̂2

ρ̂12σ̂1σ̂2 σ̂2
2

)
.

Then, the bootstrap DGP is given by

y∗1t = â11y
∗
1t−1 + â12y

∗
2t−1 + ε∗1t

y∗2t = â21y
∗
1t−1 + â22y

∗
2t−1 + ε∗2t ε∗t ∼ NID(0, Ω̂ε).

which is only the element of the model (2) characterized by the parameter estimates under

the assumptions, with stars to indicate simulated data.
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In order to draw a bootstrap sample from the bootstrap DGP, we first draw a two-vector

(ε∗1, ε
∗
2)
′ from the N(0, Ω̂ε) distribution. The presence of a lagged dependent variable implies

that the bootstrap samples must be constructed recursively. Hence, y∗1t and y∗2t respectively,

the tth element of the bootstrap sample must depend on both y∗1t−1 and y∗2t−1 simultaneously.

The recursive rule for generating a bootstrap sample is

y∗1,1 = â11y1,0 + â12y2,0 + ε∗1,1

y∗2,1 = â21y1,0 + â22y2,0 + ε∗2,1

y∗1,2 = â11y
∗
1,1 + â12y

∗
2,1 + ε∗1,2

y∗2,2 = â21y
∗
1,1 + â22y

∗
2,1 + ε∗2,2

. . . .

. . . .

y∗1t = â11y
∗
1t−1 + â12y

∗
2t−1 + ε∗1,t

y∗2t = â21y
∗
1t−1 + â22y

∗
2t−1 + ε∗2,t.

Notice that the bootstrap sample is conditional on the observed value of y1,0 and y2,0, where

we set them equal to zero initially.

To investigate the small sample behavior of the predictor with estimated coefficients,

we consider the bootstrap by adopting a bivariate VAR model with coefficient parameters

a11 = 0.78, a12 = 0.1, a21 = 0.81, and a22 = 0.17. The coefficient parameters we employed

are consistent with the coefficient estimates in the application to U.S monthly labor data4.

We generate data from above bivariate VAR (1) model with the sample size T + 1 = 101,

where the value at time T + 1, y1,101, is the real-time information we know in advance,

and y2,101, is the out-of-sample real value for forecasting comparison. To observe how the

correlation coefficient ρ affects the forecasting performance in the updated bivariate VAR

model, we choose ρ = −0.7,−0.3, 0, 0.4, and 0.8 respectively. We first compute Â, Ω̂, ˆfcast

and sfcast using the original data y1 and y2. We then generate B = 299 bootstrap samples

using a DGP characterized by relevant estimates, such as Â and Ω̂. For each of the bootstrap

samples, we compute the updated VAR forecast fcast∗ and its standard error s∗fcast and its

residual correlation ρ̂12. The bootstrap t-statistic is then calculated by

t∗j =
fcast∗ − ˆfcast√
(1− ρ̂12) s∗fcast

.

Consider the 1 − α confidence interval. Let us denote rα/2 as the smallest integer not less

4The results are presented in Gregory and Zhu (2008).
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Table 1: How Correlations Affect the Small Sample Behavior of the Predictor
Repetition = 1000, Bootstrap = 299, and Sample size = 100

percent of actual values falling in the forecast interval
ρ MSE Average S.D 90% 95% 99%

-0.7 0.51 0.747 88.5 93.7 98.9
(87.4) (93.1) (97.8)

-0.3 0.91 0.966 84.9 90.7 97.2
(89.4) (94.1) (97.8)

0 1 0.984 85.9 91.5 97.5
(89.3) (94.7) (98.6)

0.4 0.84 0.957 86.7 91.4 97.5
(88.0) (92.8) (97.8)

0.8 0.36 0.630 90.6 94.2 98.1
(86.6) (92.3) (99.1)

† MSE is computed by (1− ρ2
12)σ

2
2 whereas the average standard deviation (Average S.D) is calculated by

1/rep
∑rep

i=1(forecast− true value)2
† The number in the bracket indicates the percentage of actual values falling in the forecast interval by
performing 1000 times Monte Carlo simulation.

than αB/2. We sort the t∗j from smallest to largest and denote by c∗α/2 the entry in the

sorted list indexed by rα/2. Then the upper limit of the confidence interval is defined by
ˆfcast−sfcast c∗α/2. Further, the lower limit of the confidence interval is ˆfcast−sfcast c∗1−(α/2),

where c∗1−α/2 is the entry indexed by r1−(α/2) when the t∗j are sorted in ascending order. Thus

the asymmetric studentized bootstrap confidence interval can be written as

[fcastl, fcastu] = [ ˆfcast−
√

(1− ρ̂12) sfcast c∗1−(α/2),
ˆfcast−

√
(1− ρ̂12) sfcast c∗α/2 ].

We repeat each simulation R = 1000 times for different correlations. Table 1 reports the

MSE, average standard deviation, and the numbers of actual values falling in the intervals,

such as 90%, 95% and 99% confidence intervals (CI), for the bootstrap DGP.

To illustrate the asymptotic approximation of the predictor, we consider the Monte Carlo

experiment through the same bivariate VAR model with the same coefficient parameters. The

main difference between a bootstrap and a Monte Carlo simulation is that, for the former,

it is necessary to estimate a bootstrap DGP from which to draw the simulated samples,

whereas, for the latter, the DGP is assumed to be known. We generate data from the above
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bivariate VAR (1) model with the sample size T + 1 = 101, where the value at time T + 1,

y1,101, is the real-time information we know in advance, whereas, y2,101, is the out-of-sample

real value for forecasting comparison. We compute the asymptotic confidence interval by

[fcastl, fcastu] = [ ˆfcast−
√

(1− ρ̂12) sfcast

√
cα, ˆfcast +

√
(1− ρ̂12) sfcast

√
cα ],

where cα is the asymptotic critical value. When α = 0.9, 0.95, and 0.99, the corresponding

squared root of the critical values are 1.645, 1.96, and 2.576 respectively. We repeat each

simulation R = 1000 times for different correlations as well. The values in the bracket of

Table 1 indicates the numbers of actual values falling in the intervals based on the asymptotic

approximation DGP.

Note that as the positive value of the correlation coefficient ρ becomes large in both

the bootstrap and the asymptotic case, the MSE of the updated bivariate VAR forecast is

relatively smaller. So is the average standard deviation. Specifically, when the correlation

coefficient approaches one, we have perfect linear association, and the updated bivariate

VAR forecast has the best performance. This evidence is consistent with our finding of the

updated bivariate VAR forecast in section 2.1; that is the updated multivariate time se-

ries forecasting will be more accurate with higher correlation coefficients among observation

innovations. Further, since the sample size we choose is relatively small, the asymptotic con-

fidence intervals are wider than the bootstrap confidence intervals. Therefore, the percentage

of actual values falling in the forecast interval by the Monte Carlo simulation is larger than

the one by the bootstrap method.

3.2 Timing of Announcement

In this section, we examine the finite sample performance of the release sequence using

Monte Carlo simulations. We consider the case of N = 3. We choose the parameters which

are obtained by estimating three Canadian banks’5 quarterly earnings per share data in the

sample periods of 1982Q2 to 2008Q1. We adopt simulation designs that satisfy the following

conditions.



4RBCt

4BNSt

4TDt


 =




−0.46 −0.16∗ −0.04∗

−0.02∗ −0.44 0.07∗

−0.13∗ 0.27∗ −0.14∗






4RBCt−1

4BNSt−1

4TDt−1


 +




εRBC,t

εBNS,t

εTD,t




The residual correlation coefficients are ρ12 = 0.27, ρ13 = 0.69, and ρ23 = 0.08. The

5These three Canadian banks are Royal Bank of Canada, Bank of Nova Scotia, Toronto-Dominion Banks
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Table 2: Timing of Announcement

Case I Case II
Actual Mean S.D Actual Mean S.D

ρ̂(RBC,BNS) 0.27 0.27 0.09 0.27 0.27 0.09
ρ̂(RBC,TD) 0.69 0.69 0.05 0.69 0.69 0.05
ρ̂(TD,BNS) 0.08 0.08 0.10 0.08 0.08 0.10
σ̂2

RBC 1 0.97 0.14 0.27 0.26 0.04
σ̂2

BNS 1 0.97 0.14 0.07 0.07 0.01
σ̂2

TD 1 0.97 0.14 0.01 0.01 0.00

RBC, BNS, TD 31.69% 0
BNS, RBC, TD 0.74% 0
RBC, TD, BNS 38.17% 100%
TD, RBC, BNS 0 0
BNS, TD, RBC 2.85% 0
TD, BNS, RBC 26.55% 0

† The entry in the bottom panel is the percentage of the sum of squared forecast errors. The first column
in the bottom panel is the release order. The second column ‘Case I’ is the case where the residual
variances are σ1 = σ2 = σ3 = 1. The third column ‘Case II’ is the case where the residual variances are
σ2

1 = 0.27, σ2
2 = 0.07, and σ2

3 = 0.01.
† S.D denotes the standard deviation.

residual variances are σ2
1 = 0.27, σ2

2 = 0.07, and σ2
3 = 0.01.

We consider two cases as in section 2.5. The first simple case is to set σ1 = σ2 = σ3 = 1.

The second general case is to set σ2
1 > σ2

2 > σ2
3, where we obtain the residual variances from

three Canadian banks. To fit our setting, we set σ2
1 = 0.27, σ2

2 = 0.07, and σ2
3 = 0.01. We

generate data from the following model with sample size T + 1 = 1001 for both cases, where

the value at time T + 1 is taken as either the out-of-sample real value for comparison or

real-time information we know in advance.

y1t = a11y1t−1 + a12y2t−1 + a13y3t−1 + ε1t, t = 1, ..., T + 1

y2t = a21y1t−1 + a22y2t−1 + a23y3t−1 + ε2t, t = 1, ..., T + 1

y3t = a31y1t−1 + a32y2t−1 + a33y3t−1 + ε3t, t = 1, ..., T + 1

We run 10000 experiments. The simulation results are reported in Table 2.

We set the assumptions in ‘Case I’ the same as Proposition 6, where σ1 = σ2 = σ3 = 1

and ρ13 > ρ12 > ρ23. We find that there is a 32% possibility that the disclosure sequence of

Firm 1, Firm 2, and Firm 3 will have the least sum of forecast squared errors. We know that

sequences {1, 2, 3}, {1, 3, 2}, and {3, 2, 1} have the relatively large probability to have the
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minimum sum of forecast squared errors. The result induces that correlation coefficients do

play a role in determining the maximum disclosure order.

Given the assumptions σ2
1 > σ2

2 > σ2
3 as well as ρ13 > ρ12 and ρ13 > ρ23 in ‘Case

II’, the simulation results show that the disclosure sequence, Firm 1, Firm 3, and Firm

2, has the minimum sum of forecast squared errors by 100% of chance. In other words,

based on the information release criterion - minimize standardized forecast squared errors

at each informational release - the maximum disclosure order is unique (Firm 1, followed by

Firm 3, and then Firm 2). These simulation results coincide with our theoretical finding in

Proposition 7.

4 Application to the Canadian Banking Industry

As of January 31, 2008, the Canadian banking industry is made up of 20 domestic banks,

24 foreign bank subsidiaries, 22 full service foreign bank branches, and 7 foreign bank lend-

ing branches. In total these institutions manage over $2.6 trillion in assets.6 Table 3 shows

that the big six banks dominate the market with 90.01% of all banking assets. Studying

and forecasting the big six banks’ earning per share has long been an interest of market

participants and academics. Graham et al. (2005) employ a combination of field interviews

and a survey instrument to contend that managers in financial institutions have a strong

preference for smooth earnings. From CFOs’ point of view, quarterly earnings for the same

quarter the previous year, and the analyst consensus estimate are key metric benchmarks.

Meeting and exceeding the benchmarks is very important to build credibility with the cap-

ital market, to maintain or increase stock prices, to improve the external reputation of the

management team, and to convey future growth prospects. Therefore, we focus on the six

leading Canadian banks’ EPS in order to study the Canadian banking industry. The first,

second, third, and fourth quarter financial results for the Canadian banking industry ended

on January 31, April 30, July 31, and October 31, respectively. The quarterly and annual

financial reports are heavily regulated and supervised by the Exchange Act.7 The big six

Canadian banks are all cross-listed on the New York Stock Exchange and the Toronto Stock

Exchange. Recently, in an effort to provide more timely accounting information to market

participants, the Ontario Securities Commission and the U.S. Securities and Exchange Com-

mission changed the deadline for filing quarterly financial report statements of companies.

Effective November 15, 2002, the filing deadline for quarterly reports were reduced gradually

6Source: Office of the Superintendent of Financial Institutions.
7http://en.wikipedia.org/wiki/Securities Exchange Act of 1934.
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Table 3: The Big Six Canadian Banks Ranked by Asset Size

Ranking Name of Banks Total Assets Percentage of
World* Canada** as of 31-Jan-08 Total Assets
2006 2008 $millions CDN
40 1 Royal Bank of Canada 632,761 24.11%
49 2 Scotiabank Canada 449,422 17.13%
47 3 Toronto-Dominion Bank 435,153 16.58%
56 4 Bank of Montreal 376,825 14.36%
58 5 CIBC Canada 347,734 13.25%
119 6 National Bank of Canada 120,124 4.58%

Total of all Banks in Canada 2,624,088.2 90.01%

* Top 150 world bank’s ranked by asset size. Source: The Banker, July 2007
** Canadian bankers association. Bank Financial Results: 2008 Fiscal Year, April 2008

from 45 days to 35 days over three years under the Securities and Exchange Commission.8

Effective March 30, 2004, the deadline for filing interim financial statements was reduced

from 60 days to 45 days after the end of the interim period under the Ontario Securities

Commission rules.9 Therefore, each bank announces its periodic report within 35 days of

the end of the quarterly period. For example, at the first quarter of 2009, TD announced its

first quarter earnings on Wednesday, February 25 (which is delay of 25 days from January

31), RBC, CIBC, and BNC announced their first quarter financial statements on Thursday,

February 26 (which is delay of 26 days after January 31), and BNS and BMO announced

their first quarter earnings on Tuesday, March 3 (which is delay of 31 days from January

31). The particular dates and ordering of banks’ financial announcements vary. This is the

most important issue we deal with in the updated multivariate VAR forecasts.

4.1 Data

The big six Canadian banks’ data set is collected from the I/B/E/S database through

Wharton Research Data Service and the current quarterly financial statements of each bank.

We choose the past 23 years of quarterly banks’ earnings per share and individual analysts’

forecast of EPS data dating from 1986Q2 to 2009Q1. We take the average of individual ana-

lysts’ forecasts of EPS, and get the consensus forecast of EPS. Table 4 reports the descriptive

statistics. Augmented Dickey-Fuller (ADF) nonstationary tests have been conducted, and

the presence of a unit root is rejected. All six series are stationary in first differences. Since

8See Securities and Exchange Commission Release No. 33-8128: “Acceleration of Periodic Report filing
Dates and Disclosure Concerning Web Access to Reports”.

9See Ontario Securities Commission National Instrument 51-102: “Continuous Disclosure Obligations”.
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the test is known to have low power, even a slight rejection means that the existence of a

unit root is unlikely. The time series plot of the data is provided in Figure 1. After the first

difference of each time series, the plot of the quarterly changes of EPS is provided in Figure

2.

Table 4: Descriptive Statistics

Source I/B/E/S
Frequency Quarterly
Sample period 1986Q2 - 2009Q1
Sample Size 92

rbc bns td bmo cibc bnc
Mean 0.0013 0.0074 0.0109 0.0014 -0.0001 0.0104
S.D. 0.58 0.12 0.29 0.38 0.85 0.52
β1 -1.48 -1.58 -1.37 -1.48 -1.08 -1.47
ADF -16.06 -15.98 -13.77 -15.76 -10.30 -15.75
H0 Reject at 95% (critical value = -1.95)

† The coefficient β designates the autocorrelation of the series at lag i. The augmented Dickey-Fuller test is
based on the following regression: yt− yt−1 = β0 + β1yt−1 + β2∆yt−1 + β3∆yt−2 + β4∆yt−3 + β5∆yt−4 + µt.
Terms added until additional lags provide no new information significant at the 5% level.
† S.D. denotes the standard deviation.
† H0, the null hypothesis of the ADF test, is nonstationary.

Figure 1 shows that banks’ profits move up and down together over time, except in

2005Q3, where there is a dramatic drop for CIBC. This is a result of the settlements reached

during the quarter with U.S. regulators relating to financing and brokerage services CIBC

provided to hedge funds engaged in mutual fund market timing. Settlements on two Enron-

related litigation matters were negotiated in late July and finalized on August 2, 2005. These

settlements have a significant impact on CIBC’s financial performance for 2005. In the first

quarter of 2008 there are two significant unexpected results. One is for CIBC whose profits

drop dramatically.10 The other unexpected result is for BMO. Excluding significant items,

net income of BMO is $617 million. However, reported profits including significant items11

are 255 million.

10“Our losses related to the U.S. residential mortgage market are a significant disappointment and are not
aligned with our strategic imperative of consistent and sustainable performance,” said Gerald T. McCaughey,
President and Chief Executive Officer. “Our focus is to get CIBC back on the strategic track we set for the
organization which has, for the past two years, resulted in significant value for our shareholders.”

11Significant items are charges for certain trading activities and valuation adjustments and an increase in
the general provision for credit losses.
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Figure 1: EPS in Level
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Figure 2: Changes in EPS
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Source: I/B/E/S database through Wharton Research Data Service and the current quarterly financial
statements from each bank.

4.2 Forecasting

A reduced form VAR expresses each variable as a linear function of its own past values,

the past values of all other variables being considered. It also captures a serially correlated

error term across equations. The error terms in these regressions are the co-movements in

the variables after taking past values into account. Thus, in this study the VAR involves six

equations: current rbc12 as a function of past values of the rbc, the bns, the td, the bmo, the

cibc, and the bnc, current bns as a function of past values of rbc, the bns, the td, the bmo,

the cibc, and the bnc, and so on. Each equation can be estimated by ordinary least squares

regression. This OLS estimator is as efficient as the maximum likelihood estimator and the

general least squared estimator. The number of lagged values to include in each equation

is determined by Schwarz’s Bayesian information criterion (SBIC), the Hannan and Quinn

information criterion (HQIC), Akaike’s information criterion (AIC), and the final prediction

error (FPE) criterion. The latter two criteria indicate that the optimal lag selection is three,

whereas the former two criteria, SBIC and HQIC, suggest that the optimal lag selection is

one. For comparison we employ one lag in all time series models such as the updated VAR

and the ordinary VAR. The estimated banks’ EPS VAR (1) model is as follows.

12Each of the upper-case letter indicates the abbreviate name of the big six Canadian banks, whereas
each of the lower-case letter indicates time series variable of the banks
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rbct = −0.55rbct−1 − 0.19bnst−1 − 0.01tdt−1 − 0.12bmot−1 + 0.05cibct−1 + 0.23bnct−1

(0.18) (0.52) (0.27) (0.29) (0.06) (0.19)

bnst = −0.05rbct−1 − 0.59bnst−1 + 0.03tdt−1 + 0.09bmot−1 − 0.03cibct−1 − 0.004bnct−1

(0.04) (0.10) (0.05) (0.06) (0.01) (0.04)

tdt = −0.14rbct−1 − 0.17bnst−1 − 0.23tdt−1 + 0.13bmot−1 + 0.01cibct−1 − 0.03bnct−1

(0.09) (0.27) (0.14) (0.15) (0.03) (0.10)

bmot = 0.01rbct−1 + 0.40bnst−1 + 0.11tdt−1 − 0.49bmot−1 − 0.02cibct−1 − 0.08bnct−1

(0.12) (0.35) (0.18) (0.19) (0.04) (0.12)

cibct = −0.12rbct−1 + 0.99bnst−1 + 0.79tdt−1 − 0.41bmot−1 − 0.07cibct−1 + 0.14bnct−1

(0.29) (0.85) (0.45) (0.46) (0.10) (0.31)

bnct = −0.15rbct−1 − 0.31bnst−1 + 0.08tdt−1 + 0.06bmot−1 − 0.002cibct−1 − 0.38bnct−1

(0.16) (0.47) (0.25) (0.26) (0.06) (0.17) (24)

After fitting a VAR(1) model in (24), we implement a lagrange-multiplier (LM) test for

autocorrelation in the residuals of the VAR(1) model, which is presented in table 5. Since

we reject the null hypothesis that there is no autocorrelation in the residuals for any of the

five orders tested, this test indicates that autocorrelation of the residuals exists.

Table 5: Residual Autocorrelation Test

lag chi2 df Prob > chi2

1 86.01 36 0.00
2 111.70 36 0.00
3 119.58 36 0.00
4 58.33 36 0.01
5 42.49 36 0.21

† H0: no autocorrelation at lag order.
† Since we reject the null hypothesis that there is no autocorrelation in the residuals for all five orders
tested, this test indicates that autocorrelation of the residuals exists.

In the ordinary VAR forecast, the coefficient estimates and the variance covariance matrix

estimates are used to calculate the forecast mean squared error. In the updated VAR forecast,

in addition to coefficient estimates and variance covariance matrix estimates, we also consider

the correlation of residuals of VAR to compute the more efficient forecast mean squared
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Table 6: Correlations of Residuals

RBC BNS TD BMO CIBC BNC

Correlation Matrix
RBC 1.00
BNS 0.21 1.00
TD 0.67 0.23 1.00
BMO 0.84 0.27 0.58 1.00
CIBC -0.09 0.12 -0.10 -0.08 1.00
BNC 0.76 0.37 0.54 0.79 -0.07 1.00

Covariance Matrix
RBC 0.25
BNS 0.01 0.01
TD 0.09 0.01 0.07
BMO 0.14 0.01 0.05 0.11
CIBC -0.04 0.01 -0.02 -0.02 0.67
BNC 0.18 0.02 0.06 0.12 -0.03 0.21

error. The correlation of residuals of the multivariate VAR is shown in Table 6, indicating a

positive correlation between all banks, except that CIBC has negative correlations with the

other three banks.

The big six banks’ EPS are covariance stationary if their first two moments exist and

are independent of time. Table 7 indicates that all the eigenvalues lie inside the unit circle.

Therefore, the estimates satisfy the stability condition. In other words, the big six banks’

EPS times series follow a VAR(1) stationary process.

Table 7: Eigenvalue Stability Condition

Eigenvalue Modulus

-0.58 0.58
-0.52 + 0.08i 0.53
-0.52 - 0.08i 0.53

-0.45 0.45
-0.12 + 0.13i 0.17
-0.12 - 0.13i 0.17

All the eigenvalues lie inside the unit circle. VAR satisfies stability condition.

Further, a test for normally distributed disturbances after fitting VAR (1) of model (24)

is conducted, for each equation and for all equations jointly. Table 8 reports a series of
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statistics - a skewness statistic, a kurtosis statistic, and the Jarque-Bera statistic - against

the null hypothesis that the disturbances in a VAR are normally distributed. The Jarque-

Bera statistic is a combination of the other two statistics. Neither the single equation Jarque-

Bera statistics nor the joint Jarque-Bera statistics come close to rejecting the null hypothesis.

The result indicates that the six disturbances follow a six-dimensional multivariate normal

distribution.

Table 8: Test for Normally Distributed Disturbances after VAR

Equation Skewness/ chi2 df Prob > chi2
Kurtosis

Jarque-Bera test
rbc 101.09 2 0.00
bns 1470.22 2 0.00
td 244.48 2 0.00
bmo 1033.71 2 0.00
cibc 7529.49 2 0.00
bnc 185.73 2 0.00
ALL 11000 12 0.00

Skewness test
rbc -1.05 16.65 1 0.00
bns -3.27 162.32 1 0.00
td -0.58 5.14 1 0.02
bmo -2.02 62.09 1 0.00
cibc -4.84 355.88 1 0.00
bnc -0.76 8.67 1 0.00
ALL 610.75 6 0.00

Kurtosis test
rbc 7.72 84.44 1 0.00
bns 21.57 1307.90 1 0.00
td 10.95 239.34 1 0.00
bmo 19.01 971.63 1 0.00
cibc 46.50 7173.61 1 0.00
bnc 9.83 177.06 1 0.00
ALL 9953.97 6 0.00

After lag-order selection statistics for the VAR, lagrange-multiplier statistics for residual

autocorrelation, and a test for normally distributed disturbances after VAR, we confirm

that the big six banks’ EPS data set satisfies the assumptions for performing the updated
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VAR forecast. Since all the banks announce their quarterly earnings at different dates, the

theoretical framework in section 2 is an accurate method for a real-time forecast.

We compute forecasts of the model over the period from 2007Q1 to 2009Q1. More

precisely, we first use data from 1986Q2 through 2006Q4 to estimate the model. Once

estimated, the model is used to produce forecasts one quarter ahead; i.e., forecasts for

2007Q1. Next, we add the 2007Q1 data point to the original data set, re-estimate the

model, and forecast again one quarter ahead; i.e., for 2007Q2. We update our estimation

and forecasts in such increments until the next-to-last data point (2008Q4) has been added to

the estimation. We thus obtain series for one-quarter-ahead forecasts running from 2007Q1

through 2009Q1. These forecasts can then be confronted with observed data.

We report the results of using three different methods of forecasting the big six banks’

quarterly EPS. The ordinary VAR forecasting method is to first fit the VAR (1) model

in (24), then to compute the dynamic forecasts of the dependent variables in the VAR. A

consensus forecast is a simple arithmetic average of all of the individual predictions collected

by I/E/B/S. The updated VAR forecasting method takes announcement timing into account

and conducts real-time forecasting using real-time data.The detailed estimation methodology

is investigated in the following two-stage one-step-ahead VAR forecast. In the first stage,

we estimate the multivariate VAR over the period from 1986Q2 through 2006Q4. Following

the maximum likelihood estimation by VAR, the one-step ahead residual prediction of all six

series is straightforward. In the second stage, we regress the residuals of the unknown series

on the residuals of the known one. Since we observe the actual error term of the known

series in 2007Q1, the best fitted residual of the unknown series in 2007Q1 is the estimated

coefficient multiplied by the actual error term of the known series in 2007Q1.

Consequently, we re-estimate the multivariate VAR over the period from 1986Q2 through

2007Q1. One-step-ahead fitted values of six series are predicted. We follow the latest order

of the big six banks’ release for the second quarter of 2007. We regress the residuals of

unknown series on the residuals of the known one and calculate the fitted residual of the

unknown values of the series by multiplying the estimated coefficients in the residual regress

by the actual error term of the known values of the series in 2007Q2. This represents our best

fitted values of all rbc, bns, td, bmo, cibc, and bnc in 2007Q2. We can continue to forecast

the big six banks’ EPS once each of their latest earnings announcements is available. This

dynamic forecast is based on the real time information, that is, the latest actual value of

each series released for public use in advance. As well, all the six time series are relatively

correlated with the others, thus this two-stage one-step-ahead VAR forecast benefits from

accurate measurements.

We consider forecast periods from 2007Q1 through 2009Q1, which is nine observations.

31



The first forecasting observation is on the first quarter of 2007. The order of the information

release at that time is TD, (BMO, BNC, and CIBC), RBC, and BNS, where the banks in

parentheses indicate the same date of earnings announcements. Hence, on the first quarter

of 2007, TD announces its earnings first, followed by (BMO, BNC, and CIBC) releasing

at the same date. Next, RBC announces its earnings on the following date. Finally, BNS

announces its earnings. So in this case we have three rounds. At the first round, given

the earnings announcement of TD in 2007Q1, we can forecast the earnings for the same

quarter of each of (BMO, BNC, and CIBC). At the second round, given any combinations

of the earnings announcements of TD, BMO, BNC, and CIBC in 2007Q1, we can forecast

the earnings for the same quarter of RBC. At the third round, we can forecast the earnings

for the same quarter of BNS based on any combinations of earnings announcements of TD,

BMO, BNC, CIBC, and RBC in 2007Q1.

The second forecasting observation is for the second quarter of 2007. The order of the

information release at that time is BMO, TD, RBC, BNS, and (BNC and CIBC). Hence, in

the second quarter of 2007, BMO announces its earnings first, followed by TD, RBC, and

BNS, respectively. Finally, (BNC and CIBC) announce their earnings at the same date. So

in this case we have four rounds. At the first round, given the earnings announcement of

BMO in 2007Q2, we can forecast the earnings of TD for the same quarter. At the second

round, given the earnings announcements of BMO and TD in 2007Q2, we can forecast the

earnings of RBC for the same quarter. At the third round, we can forecast the earnings

of BNS for the same quarter based on any combinations of the earnings announcements

of BMO, TD, and RBC in 2007Q2. At the fourth round, we can forecast the earnings of

each of (BNC and CIBC) for the same quarter based on any combinations of the earnings

announcements of BMO, TD, RBC, and BNS in 2007Q2.

The third, fourth, fifth, sixth, seventh, eighth, and ninth forecasting observations follow

the same pattern. The order for the information release for the third observation is TD,

RBC, (BNS and BMO), and (CIBC and BNC); for the fourth observation period, the order

is BMO, (TD and BNC), RBC, and (BNS and CIBC); for the fifth observation period, the

order is (TD, CIBC, and BNC), RBC, and (BNS and BMO); for the sixth observation period,

the order is (BNS and BMO), TD, and (RBC, CIBC, and BNC); for the seventh observation

period, the order is (BNS and BMO), CIBC, and (RBC, TD, and BNC); for the eighth

observation period, the order is BMO, BNS, (TD, CIBC, and BNC), and RBC; for the ninth

observation period, the order is TD, (RBC, CIBC, and BNC), and (BNS and BMO). Figure

3 shows earnings forecasts of the big six Canadian banks from the first quarter of 2007 to

the first quarter of 2009.
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Figure 3: Earnings Forecasts of the Canadian Banks
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4.3 Forecast Results By Various Methods

There are numerous ways of measuring forecast accuracy. We use the forecast root mean

squared error (RMSE), which for each bank can be expressed as

RMSE =

√√√√1

k

k∑
i=1

(Ai − Fi)2,

where k is the number of forecasting observations, Ai is actual reported value of quarterly

EPSs for the forecasting observation i, and Fi is a forecast of Ai. Table 9 reports the root

mean squared errors for each six banks by various methods: the updated VAR, the ordinary

VAR, and consensus forecasts. The third column of Table 9 represents the efficiency gains

of the updated VAR relative to the ordinary VAR whereas the fifth column of Table 9

demonstrates the efficiency gains of the updated VAR compared with consensus forecasts.

We find that the RMSEs for each bank using the updated VAR forecast are smaller than

those using the ordinary VAR forecast. The maximum efficiency gain of the six banks is 64%

by CIBC. Although CIBC has relatively lower correlation with the rest of the five banks, two

facts - CIBC earnings releases are mostly based on the rest of the five banks’ announcements

and CIBC has the highest variance - explain CIBC benefiting from the updated VAR forecast.

This implies that banks can be well predicted by the updated VAR methodology. By using

the updated VAR forecast, we find that the RMSEs of RBC, BNS, BMO, and CIBC are

smaller than the RMSEs of consensus forecasts respectively. The corresponding efficiency

gain for the four banks is 3%, 14%, 46% and 58%, respectively.

Table 9: Forecast Efficiency Gains

Updating Ordinary Gains Consensus Gains
RBC 0.39 0.53 26% 0.40 3%
BNS 0.25 0.32 22% 0.29 14%
TD 0.35 0.43 19% 0.28 -20%
BMO 0.14 0.33 58% 0.26 46%
CIBC 0.49 1.37 64% 1.16 58%
BNC 0.27 0.30 10% 0.12 -56%

4.4 Thought Experiments

The big six banks’ announcement dates vary from quarter to quarter. According to the

covariance matrix estimation based on data from 1986Q2 to 2008Q1, the residual variance
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Table 10: Reordering of Announcement Interval

VAR Updating VAR
RMSE RMSE1 RMSE2 RMSE3 RMSE4 RMSE5

RBC 0.27 0.03 0.02 0.01 0.03 0.06
BNS 0.12 0.04 0.03 0.03 0.02 0.03
TD 0.34 0.11 0.10 0.09 0.10 0.16
BMO 0.29 0.10 0.11 0.11 0.12 0.14
CIBC 0.60 0.26 0.26 0.24 0.26 0.23
BNC 0.24 0.02 0.01 0.03 0.04 0.12

Thought experiments are based on five observations (from 2007Q1 to 2008Q1). The entries in the table are
the forecast root mean squared errors (RMSE).

ordering from largest to least is RBC, BNC, BMO, TD, CIBC, and BNS. Based on Propo-

sition 7, we have the minimum mean squared forecast error when the most volatile firm

releases its information earliest. We consider keeping this strategy disclosure as an opti-

mal sequence in comparison with the actual release ordering. The thought experiments are

studied to determine whether there exists the maximum disclosure.

We consider the forecast period of 2007Q1 through 2008Q1, consisting of five one-step-

ahead forecast observations. The first column in Table 10 is the RMSEs using the ordinary

VAR forecast. The rest of the five columns is the RMSEs using the updated VAR forecast.

Clearly, all the RMSEs by using the updated VAR forecast are smaller than the one calcu-

lated by the ordinary VAR forecast. The superscript represents the sequence of information

releases. For instance, the column RMSE1 represents that the updated VAR forecast is

based on information release of any one of the big six Canadian banks, whereas the column

RMSE2 denotes that the updated VAR forecast is based on information release of any two

combinations of the big six Canadian banks, and so on. The row demonstrates the RMSEs

by using the ordinary VAR forecast, the minimum RMSE by the updated VAR forecast

with information release of any one of the rest banks, the minimum RMSE with information

release of any two combinations of the rest banks, and so on.

In addition, the bold numbers illustrate the minimum RMSE for each bank when this

bank’s earnings forecast is based on any combinations of the release sequence of the rest

banks. For instance, the minimum RMSE of BMO is 0.10, which is the minimum RMSE of

BMO based on information release of any one of the rest banks by using the updated VAR

forecast method.

Based on this reordering of announcement interval exercise, BMO benefits from any

one of the rest banks’ information release in advance while CIBC benefits from any four
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combinations of the rest five banks’ information release in advance. As a result, the timing

of announcement to obtain the maximum disclosure is to have BMO release first, followed

by BNC, then are (TD and RBC), then BNS, and finally CIBC.

5 Conclusions

Empirical studies demonstrate that most macroeconomic or financial time series do not

end at a common point. When we make multivariate forecasts, we usually ignore the latest

real-time information at hand and adopt the same ending period.

In this paper, we derive a practical method to update forecasts in a multivariate VAR

model. The theoretical framework shows that the current known observations of one variable

are always going to be useful for forecasting the current unknown observations of other

variables. Therefore, a higher correlation among observation innovations of multiple variables

implies that the mean squared forecast error of the current unknown observations of other

variables will be accurate for a longer period.

We first derive the general mean squared error of a multistep-ahead forecast in an up-

dated bivariate VAR, which is smaller than the corresponding standard VAR forecast. The

theoretical model is estimated using U.S. nonfarm payroll employment data13 and broadly

replicates many of the features of the updated bivariate VAR forecast. The estimated model

is then used to perform a long-horizon forecast to assess the forecast mean squared errors.

Moreover, we study the updated bivariate VAR forecast with data from two additional peri-

ods known in advance. The example of Canada Telehealth, which uses data as a forecast to

alert physicians to flu outbreak or vaccine failure, also indicates in practice that this updated

bivariate VAR forecast can be applied broadly. We find that it is more accurate to use the

updated bivariate VAR forecast given a certain sufficient condition.

In addition, we analyze the general multivariate MSE of a one-step-ahead forecast in

an updated multivariate VAR forecast. We show that as more information is available, the

mean squared forecast error is reduced. Studying asymptotic and exact small sample per-

formances shows that changes to the correlation coefficient do affect forecast errors. The

updated forecasts more accurately match the real data by considering the real-time informa-

tion compared to the ordinary VAR forecasts. The timing issues based on real-time multiple

variables are discussed.

This updated VAR forecast has direct application in macroeconomic and financial time

series. More specifically, we study the earnings forecast accuracy for the big six Canadian

banks. This paper examines whether one bank’s earnings announced at the current quarter

13Gregory and Zhu (2008).
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helps to forecast the forthcoming quarterly earnings of the rest of the banks. By using

the updated VAR forecast, we find that the relative efficiency gain is 33% in the one-step-

ahead forecast compared to the ordinary VAR forecast, and 7% compared to consensus

forecasts. Further, studying alternative orderings of earnings release for the six banks helps

to explore the most informative release. The objective function we address in this paper

is to minimize mean squared forecast errors. Thought experiments suggest that there are

substantial efficiency gains due to maximizing disclosure criterion. We find that if banks’

order of information release were to change, forecast errors could be substantially reduced.

These experiments emphasize that evaluating the release ordering is crucial in determining

forecast accuracy.

One important characteristic of capital markets is that the timing of a quarterly or annual

report announcement over the same time period of observation is often spread over weeks.

Another characteristic is that different firms in the same industry sector are relatively corre-

lated. Taking into account these two characteristics, we note that our updated multivariate

VAR forecast method has broad applicability. Future research will extend applications to

earnings forecasts for firms in different industry sectors and to forecasting macroeconomic

indicators.
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Appendix

Proof of proposition 1. Given the full information set I1, we stand at T + 1. We know

the time series of y1 from 1 through T + 1 while we only know the time series of y2 from 1

through T .

For the forecast horizon at time T + 1, we observe ε1T+1, since ε1T+1 = y1T+1− (a11y1T +

a12y2T ). If we regress ε2 on ε1, the conditional expectation

E[ε2T+1|ε1T+1] =
Cov(ε2, ε1)

V ar(ε1)
ε1T+1

=
ρ12σ1σ2

σ2
1

ε1T+1.

So we can forecast the residual ε̂2T+1 by the relationship ε̂2T+1 = ε2T (1) = (ρ12σ2/σ1)ε1T+1.

Then forecast error becomes:

y2T+1 − ŷ2T+1 = ε2T+1 − ε̂2T+1

= ε2T+1 − ρ12
σ2

σ1

ε1T+1

The variance of the forecast error of y2 at T + 1 is

MSEu[y2T (1)] = V ar[y2T+1 − ŷ2T+1]

= V ar[ε2T − ε2T (1)]

= V ar[ε2T+1 − ρ12
σ2

σ1

ε1T+1]

= (1− ρ2
12)σ

2
2

Proof of proposition 2. Given the full information set I1, we stand at T + 1. We know

the time series of y1 from 1 through T + 1 while we only know the time series of y2 from 1

through T .

The bivariate VAR (1) can be represented by the matrices in model (1). We can obtain
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the moving average model notation by iterating forward.

Y1 = AY0 + ε1

Y2 = AY1 + ε2 = A2Y0 + Aε1 + ε2

...

Yt = AtY0 +
t−1∑
i=0

Aiεt−i

The k-step ahead

Yt+k = AkYt +
k−1∑
i=0

Aiεt+k−i

Given εt+j, for j > 0, is uncorrelated with yt−i, for i ≥ 0, the minimal forecast MSE by the

ordinary VAR is

MSE[Yt(k)] = E(
k−1∑
i=0

Aiεt+k−i)(
k−1∑
i=0

Aiεt+k−i)
′

=
k−1∑
i=0

AiΩεA
i′ , (25)

At T + 1, the ordinary bivariate VAR forecast MSE by equation (25) is

MSE[YT (1)] = Ωε

=

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
.

For the updated VAR, we adopt all the time periods from 1 through T +1 for y1 and the time

periods from 1 through T for y2. Since ε1 and ε2 are correlated, as well, the innovation ε1T+1 is

known. By a linear regression, the best predictor of ε2T+1 based on ε1T+1 is (ρ12σ2/σ1)ε1T+1.

Thus the forecast error is

YT+1 − ŶT+1 =

(
y1T+1 − ŷ1T+1

y2T+1 − ŷ2T+1

)

=

(
0

ε2T+1 − ε̂2T+1

)

=

(
0

ε2T+1 − ρ12
σ2

σ1
ε1T+1

)
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and the MSE or forecast error covariance matrix of the updated bivariate VAR is

MSEu[YT (1)] = V ar[YT+1 − ŶT+1]

= E

(
ε1T+1 − ε̂1T+1

ε2T+1 − ε̂2T+1

)(
ε1T+1 − ε̂1T+1

ε2T+1 − ε̂2T+1

)′

=

(
0 0

0 (1− ρ2
12)σ

2
2

)
.

At T + 2,

YT+2 = AYT + εT+2 + AεT+1

ŶT+2 = AYT + ε̂T+2 + Aε̂T+1.

The ordinary bivariate VAR forecast MSE followed by equation (25) is

MSE[YT (2)] = Ωε + AΩεA
′

= MSE[YT (1)] + AΩεA
′.

The updated bivariate VAR forecast MSE is

MSEu[YT (2)] = E ((εT+2 − ε̂T+2) + A(εT+1 − ε̂T+1)) ((εT+2 − ε̂T+2) + A(εT+1 − ε̂T+1))
′

= Ωε + A

(
0 0

0 (1− ρ2
12)σ

2
2

)
A′

= Ωε + A MSEu[YT (1)] A′.

At T + 3,

YT+3 = AYT + εT+3 + AεT+2 + A2εT+1

ŶT+3 = AYT + εT+3 + Aε̂T+2 + A2ε̂T+1.

The ordinary bivariate VAR forecast MSE followed by equation (25) is

MSE[YT (3)] = Ωε + AΩεA
′ + A2ΩεA

2′

= MSE[YT (2)] + A2ΩεA
2′ .
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The updated bivariate VAR forecast MSE is

MSEu[YT (3)] = E
(
(εT+3 − ε̂T+3) + A(εT+2 − ε̂T+2) + A2(εT+1 − ε̂T+1)

)
(
(εT+3 − ε̂T+3) + A(εT+2 − ε̂T+2) + A2(εT+1 − ε̂T+1)

)′

= Ωε + AΩεA
′ + A2

(
0 0

0 (1− ρ2
12)σ

2
2

)
A2′

= Ωε + A MSEu[YT (2)] A′.

Recursively, the k-step ahead updating forecast error covariance matrix becomes

MSEu[YT (k)] =
k−2∑
i=0

AiΩεA
i′ + Ak−1

(
0 0

0 (1− ρ2
12)σ

2
2

)
Ak−1′

= Ωε + A MSEu[YT (k − 1)] A′, k ≥ 2.

Proof of proposition 3. Given the full information set I2, we know the time series of y1

from 1 through T + s while we only know the time series of y2 from 1 through T .

At T + 2, equation (7) gives

ε1T+2 = y1T+2 − (a11y1T+1 + a12y2T+1).

Since we do not observe y2T+1, we do not observe ε1T+2. There are two ways to make a

prediction on ε1T+2. One way is to set E(ε1T+2) = 0 and to set the variance of ε1T+2 be the

first element of the MSE of the ordinary bivariate VAR forecast, that is, the first element of

the matrix Ωε + AΩεA
′. The alternative way is to predict ε̂1T+2 through the residual form

ε̂1T+2 = y1T+2 − (a11y1T+1 + a12ŷ2T+1). In the latter case, the variance of the difference in

error becomes

V ar[ε1T+2 − ε̂1T+2] = a2
12(1− ρ2

12)σ
2
2.

If the sufficient condition {a2
12(1 − ρ2

12)σ
2
2 < the first element of matrix Ωε + AΩεA

′} holds,

we would use ε̂1T+2 rather than E(ε1T+2) = 0. Then notify that

y2T+2 = a21y1T+1 + a22y2T+1 + ε2T+2

ŷ2T+2 = a21y1T+1 + a22ŷ2T+1 + ε̂2T+2.
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By equation (3), the variance of the forecast error is followed by

V ar[y2T+2 − ŷ2T+2] = a2
22V ar[y2T+1 − ŷ2T+1] + V ar[ε2T+2 − ε̂2T+2]

= a2
22V ar[y2T+1 − ŷ2T+1] + V ar[ε2T+2 − ρ12

σ2

σ1

ε̂1T+2]

= a2
22(1− ρ2

12)σ
2
2 + (1− ρ2

12)σ
2
2

= (1 + a2
22)(1− ρ2

12)σ
2
2.

At T + 3, equation (7) gives

ε1T+3 = y1T+3 − (a11y1T+2 + a12y2T+2).

Since we do not observe y2T+2, we do not observe ε1T+3. Again, there are two ways to make

a prediction on ε1T+3. One way is to set E(ε1T+3) = 0 and to set the variance of ε1T+3 be the

first element of the MSE of the ordinary bivariate VAR forecast, that is, the first element of

the matrix Σ2
i=0A

iΩεA
i′ . The alternative way is to predict ε̂1T+3 through the residual form

ε̂1T+3 = y1T+3 − (a11y1T+2 + a12ŷ2T+2). In the latter case, the variance of the difference in

error becomes

V ar[ε1T+3 − ε̂1T+3] = a2
12V ar[y2T+2 − ŷ2T+2]

= a2
12(1 + a2

22)(1− ρ2
12)σ

2
2.

If the sufficient condition {a2
12(1+a2

22)(1−ρ2
12)σ

2
2 < the first element of matrix Σ2

i=0A
iΩεA

i′}
holds, we would use ε̂1T+3 rather than E(ε1T+3) = 0. Then notify that

y2T+3 = a21y1T+2 + a22y2T+2 + ε2T+3

ŷ2T+3 = a21y1T+2 + a22ŷ2T+2 + ε̂2T+3.

By equation (3), the variance of the forecast error is followed by

V ar[y2T+3 − ŷ2T+3] = a2
22V ar[y2T+2 − ŷ2T+2] + V ar[ε2T+3 − ε̂2T+3]

= a2
22V ar[y2T+2 − ŷ2T+2] + V ar[ε2T+3 − ρ12

σ2

σ1

ε̂1T+3]

= a2
22(1 + a2

22)(1− ρ2
12)σ

2
2 + (1− ρ2

12)σ
2
2

= (1 + a2
22 + a4

22)(1− ρ2
12)σ

2
2.

Iterating forward, we need to check if the sufficient condition of {(Σk−2
i=0 a2i

22)a
2
12)(1 −

ρ2
12)σ

2
2 < the first element of matrix Σk−1

i=0 AiΩεA
i′} holds. If this sufficient condition holds,
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then the forecast MSE of the updated bivariate VAR given s more periods real-time infor-

mation is followed by

MSEu[y2T (k)] = (
k−1∑
i=0

a2i
22)(1− ρ2

12)σ
2
2, 2 ≤ k ≤ s.

Proof of proposition 4. The full information set is I5. Rearrange equation (15) at time

T + 1, the following equation holds.

εmT+1 = ymT+1 − am1y1T − am2y2T − ...− amNyNT .

Given the known information set I5, we know εmT+1. All the assumptions hold, The multi-

variate prediction equation becomes

εjt = α1ε1t + α2ε2t + . . . + αmεmt + ejt t = 1, . . . , T j = m + 1, ..., N,

where the α1, . . . , αm are the population least squares coefficients. We project the εjt onto

all available error information ε1t, . . . , εmt. In the multivariate normal case, vector

εi = (ε1 ε2 ... εm)′ and vector εj = (εm+1 εm+2 ... εN)′ are considered as

(
εi

εj

)
∼ N

((
0

0

)
,

(
Ωεiεi

Ωεiεj

Ωεiεj
Ωεjεj

))
.

where the partition matrix Ωεiεi
with the dimension of m×m is

Ωεiεi
=




V ar(ε1) Cov(ε1, ε2) ... Cov(ε1, εm)

Cov(ε2, ε1) V ar(ε2) ... Cov(ε2, εm)

...

Cov(εm, ε1) Cov(εm, ε2) ... V ar(εm)




,

the (N −m)× (N −m) partition matrix Ωεjεj
are

Ωεjεj
=




V ar(εm+1) Cov(εm+1, εm+2) ... Cov(εm+1, εN)

Cov(εm+2, εm+1) V ar(εm+2) ... Cov(εm+2, εN)

...

Cov(εN , εm+1) Cov(εN , εm+2) ... V ar(εN)




,
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and m× (N −m) partition matrix Ωεiεj
is

Ωεiεj
=




Cov(ε1, εm+1) Cov(ε1, εm+2) ... Cov(ε1, εN)

Cov(ε2, εm+1) Cov(ε2, εm+2) ... Cov(ε2, εN)

...

Cov(εm, εm+1) Cov(εm, εm+2) ... Cov(εm, εN)




.

The partition matrix of Ωεjεi
is the transpose of the partition matrix Ωεiεj

. Thus, by the

definition of Schur complement,14 the conditional variance εj given εi is the Schur complement

of Ωεiεi
in Ω. That is,

V ar(εj|εi) = Ωεjεj
− Ωεjεi

Ω−1
εiεi

Ω′
εiεj

,

where the matrix Ωεjεi
Ω−1

εiεi
is known as the matrix of regression coefficients. This yields least

squared estimate of α,

α̂ = Ωεjεi
Ω−1

εiεi
.

This is a ((N −m)×m) dimensional matrix.

As a result, the general prediction form of the random column vector εj conditional on

the random column vector εi is

ε̂jT+1 = Ωεjεi
Ω−1

εiεi
εiT+1.

Then the forecast error for forecasting ŷjT+1 becomes

yjT+1 − ŷjT+1 = εjT+1 − Ωεjεi
Ω−1

εiεi
εiT+1.

The corresponding general form of mean squared error MSEu[yjT (1)] for forecasting yjT+1

is

MSEu[yjT (1)] = V ar(yjT+1 − ŷjT+1)

= V ar(εjT+1 − Ωεjεi
Ω−1

εiεi
εiT+1)

= V ar(εjT+1) + V ar(Ωεjεi
Ω−1

εiεi
εiT+1)− 2Cov(εjT+1, Ωεjεi

Ω−1
εiεi

εiT+1).

Proof of proposition 5. This proof is done by induction. Firstly we show that the forecast

MSE knowing the values of two variables is less than the forecast MSE with knowing one

14http://en.wikipedia.org/wiki/Schur complement
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value of variable, that is, MSE[y1:2
4t (1)] < MSE[y1

4t(1)]. By equation (10), the forecast MSE

with knowing one value of variable is

MSE[y1
4t(1)] = (1− ρ2

14)σ
2
4. (26)

By equation (13), the forecast MSE with knowing the value of two variables is

MSE[y1:2
4t (1)] = (1− ρ2

14 + ρ2
24 − 2ρ14ρ24ρ12

1− ρ2
12︸ ︷︷ ︸

E

)σ2
4. (27)

To show equation (26) is larger than equation (27), we need to show that
ρ2
14+ρ2

24−2ρ14ρ24ρ12

1−ρ2
12

>

ρ2
14. Since

ρ2
14 + ρ2

24 − 2ρ14ρ24ρ12

1− ρ2
12

− ρ2
14 =

(ρ24 − ρ12ρ14)
2

1− ρ2
12

≥ 0,

this proofs MSE[y1:2
4t (1)] < MSE[y1

4t(1)].

Secondly, we show that the forecast MSE with knowing the values of three variables is less

than the forecast MSE with knowing the values of three variables, that is, MSE[y1:2:3
4t (1)] <

MSE[y1:2
4t (1)]. From equation (17),

MSE[y1:2:3
4t (1)] = V AR(ε4T+1 − Ωε4ε3Ω

−1
ε3ε3

εiT+1). (28)

Now let’s look it term by term. The (1× 3) partition matrix Ωε4ε3 is

Ωε4ε3 =
(

ρ41σ4σ1 ρ42σ4σ2 ρ43σ4σ3

)
.

The (3× 1) partition matrix εiT+1 is

εiT+1 =




ε1T+1

ε2T+1

ε3T+1


 .
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The (3× 3) partition matrix Ωε3ε3 is

Ωε3ε3 =




V ar(ε1) Cov(ε1, ε2) Cov(ε1, ε3)

Cov(ε2, ε1) V ar(ε2) Cov(ε2, ε3)

Cov(ε3, ε1) Cov(ε3, ε2) V ar(ε3)




=




σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3


 .

The inverse matrix of Ωεiεi
is

Ω−1
ε3ε3

=
1

(1− ρ2
23 + ρ12(ρ23ρ31 − ρ21) + ρ13(ρ12ρ23 − ρ13))σ2

1σ
2
2σ

2
3

×



(1− ρ2
23)σ

2
2σ

2
3 (ρ23ρ31 − ρ12)σ1σ2σ

2
3 (ρ12ρ23 − ρ13)σ1σ

2
2σ3

(ρ23ρ31 − ρ12)σ1σ2σ
2
3 (1− ρ2

13)σ
2
1σ

2
3 (ρ13ρ21 − ρ23)σ

2
1σ2σ3

(ρ12ρ23 − ρ13)σ1σ
2
2σ3 (ρ13ρ21 − ρ23)σ

2
1σ2σ3 (1− ρ2

12)σ
2
1σ

2
2


 .

Putting the above all partition matrix together, equation (28) becomes

MSE[y1:2:3
4t (1)] = V AR(ε4T+1 − Ωε4ε3Ω

−1
ε3ε3

εiT+1)

= V AR(ε4T+1 − ρ41(1− ρ2
23) + ρ42(ρ23ρ31 − ρ21) + ρ43(ρ12ρ23 − ρ13)

1− ρ2
23 + ρ12(ρ23ρ31 − ρ21) + ρ13(ρ12ρ23 − ρ13)︸ ︷︷ ︸

A

σ4

σ1

ε1T+1

− ρ41(ρ23ρ31 − ρ21) + ρ42(1− ρ2
13) + ρ43(ρ13ρ21 − ρ23)

1− ρ2
23 + ρ12(ρ23ρ31 − ρ21) + ρ13(ρ12ρ23 − ρ13)︸ ︷︷ ︸

B

σ4

σ2

ε2T+1

− ρ41(ρ12ρ23 − ρ13) + ρ42(ρ13ρ21 − ρ23) + ρ43(1− ρ2
12)

1− ρ2
23 + ρ12(ρ23ρ31 − ρ21) + ρ13(ρ12ρ23 − ρ13)︸ ︷︷ ︸

C

σ4

σ3

ε3T+1)

= (1 + A2 + B2 + C2 − 2Aρ41 − 2Bρ42 − 2Cρ43 + 2ABρ12 + 2ACρ31 + 2BCρ23)σ
2
4

= (1− Aρ41 + Bρ42 + Cρ43

1− ρ2
23 + ρ12(ρ23ρ31 − ρ21) + ρ13(ρ12ρ23 − ρ13)

)σ2
4

= (1− ρ2
41(1− ρ2

23) + ρ2
42(1− ρ2

13) + ρ2
43(1− ρ2

12) + 2ρ41ρ42(ρ23ρ31 − ρ21)

1− ρ2
23 + ρ12(ρ23ρ31 − ρ21) + ρ13(ρ12ρ23 − ρ13)︸ ︷︷ ︸

D

+
2ρ41ρ43(ρ12ρ23 − ρ13) + 2ρ42ρ43(ρ13ρ12 − ρ23)

1− ρ2
23 + ρ12(ρ23ρ31 − ρ21) + ρ13(ρ12ρ23 − ρ13)︸ ︷︷ ︸

D

)σ2
4.
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Now to show MSE[y1:2:3
4t (1)] < MSE[y1:2

4t (1)], we need to show D > E. Let’s look at the

denominator first. The common factor of the denominator is (1− ρ2
12)(1− ρ2

12 − ρ2
13 − ρ2

23 +

2ρ12ρ13ρ23). From equation (13), we know that ρ2
13 + ρ2

23− 2ρ12ρ13ρ23/(1− ρ2
12) must smaller

than 1. Hence, it must be the case that 1 − ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23 > 0. It is obvious

that 1− ρ2
12 > 0 by the stationary assumption. Therefore, the denominator is positive.

After multiplying the common factor, the nominator becomes {ρ2
12ρ

2
42ρ

2
13+2ρ41ρ42ρ23ρ13(1+

ρ2
12)+ρ2

41ρ
2
23ρ

2
12−2ρ12ρ23ρ13(ρ

2
41 +ρ2

42)−2ρ41ρ42ρ21(ρ
2
13 +ρ2

23)+ρ2
43(1−ρ2

12)
2 +2ρ41ρ43(ρ12ρ23−

ρ13)(1−ρ2
12)+2ρ42ρ43(ρ13ρ12−ρ23)(1−ρ2

12)+ρ2
41ρ

2
13 +ρ2

42ρ
2
23}. Rearranging this long expres-

sion, we have (ρ12ρ42ρ13 + ρ41ρ23ρ12 + ρ43(1− ρ2
12)− ρ41ρ13 − ρ42ρ23)

2, which is nonnegative.

Combining both the nominator and the denominator, we conclude that D > E. This proofs

MSE[y1:2:3
4t (1)] < MSE[y1:2

4t (1)].

By induction, we conclude that MSE[y1:2:...m
jt (1)] < MSE[y

1:2:...(m−1)
jt (1)] <...< MSE[y1:2

jt (1)] <

MSE[y1
jt(1)].

Proof of proposition 6. Given σ1 = σ2 = σ3 = 1, equations (18), (19), (20), (21), (22),

and (23) become

S1:2 = (1− ρ2
12) + (1− ρ2

13) + (1− ρ2
13 + ρ2

23 − 2ρ13ρ23ρ12

1− ρ2
12

)

S2:1 = (1− ρ2
12) + (1− ρ2

23) + (1− ρ2
13 + ρ2

23 − 2ρ13ρ23ρ12

1− ρ2
12

)

S1:3 = (1− ρ2
13) + (1− ρ2

12) + (1− ρ2
12 + ρ2

23 − 2ρ13ρ23ρ12

1− ρ2
13

)

S3:1 = (1− ρ2
13) + (1− ρ2

23) + (1− ρ2
12 + ρ2

23 − 2ρ13ρ23ρ12

1− ρ2
13

)

S2:3 = (1− ρ2
23) + (1− ρ2

12) + (1− ρ2
12 + ρ2

13 − 2ρ13ρ23ρ12

1− ρ2
23

)

S3:2 = (1− ρ2
23) + (1− ρ2

13) + (1− ρ2
12 + ρ2

13 − 2ρ13ρ23ρ12

1− ρ2
23

).

Considering |ρ13| > |ρ12| > |ρ23|, we see directly from above equations that min{S1:2, S2:1} =
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S1:2, min{S1:3, S3:1} = S1:3, and min{S2:3, S3:2} = S3:2.

Comparing S1:2 to S1:3, it is the case that S1:2 is less than S1:3 if we can show that

ρ2
13 + ρ2

23 − 2ρ13ρ23ρ12

1− ρ2
12

>
ρ2

12 + ρ2
13 − 2ρ13ρ23ρ12

1− ρ2
23

.

Now

ρ2
13 + ρ2

23 − 2ρ13ρ23ρ12

1− ρ2
12

− ρ2
12 + ρ2

13 − 2ρ13ρ23ρ12

1− ρ2
23

=
(ρ2

13 − ρ2
12)(1− ρ2

12 − ρ2
13 − ρ2

23 + 2ρ12ρ13ρ23)

(1− ρ2
12)(1− ρ2

23)
> 0,

since |ρ13| > |ρ12| by assumption and (ρ2
13 + ρ2

23 − 2ρ12ρ13ρ23)/(1 − ρ2
12) < 1 by equation

(13). This proofs min{S1:2, S1:3} = S1:2. By symmetry, min{S1:2, S3:2} = S1:2. Therefore,

min{S1:2, S2:1, S1:3, S3:1, S2:3, S3:2} = S1:2.

Proof of proposition 7. The purpose of this proposition is to find minimum S, that

is, min{S1:2, S2:1, S1:3, S3:1, S2:3, S3:2}. Firstly, we compare equation (18) to equation (19).

Since σ2 > σ1, the term one of equation (18) is larger than that of equation (19). Because

ρ23 > ρ13, the term two of equation (18) is bigger than that of equation (19). The third term

of both equation is the same. It end up with min{S1:2, S2:1} = S2:1. By the same method

and symmetry in the equations (20), (21) and (22), (23), we find that min{S1:3, S3:1} = S3:1

and min{S2:3, S3:2} = S2:3.

Secondly, we want to find min{S2:1, S3:1, S2:3}. To see min{S2:1, S3:1}, the first one terms

of expression (19) is smaller than that of expression (21) since ρ12 > ρ13 by assumption. Now

we combine the last two terms for expression (19), we have

2(1− ρ2
13 − ρ2

23 − ρ2
12) + (ρ13 + ρ12ρ23)

2

1− ρ2
12

σ2
3 (29)

Likewise, we combine the last two terms for expression(21), we have

2(1− ρ2
13 − ρ2

23 − ρ2
12) + (ρ12 + ρ13ρ23)

2

1− ρ2
13

σ2
2 (30)

If we can show expression (29) is smaller than expression (30), then we can find min{S2:1, S3:1}.
Since

(2(1− ρ2
13 − ρ2

23 − ρ2
12) + (ρ13 + ρ12ρ23)

2)(1− ρ3
13)

(1− ρ2
12)(2(1− ρ2

13 − ρ2
23 − ρ2

12) + (ρ12 + ρ13ρ23)2)

σ2
3

σ2
2

<

(2(1− ρ2
13 − ρ2

23 − ρ2
12) + (ρ13 + ρ12ρ23)

2)(1− ρ3
13)

(1− ρ2
12)(2(1− ρ2

13 − ρ2
23 − ρ2

12) + (ρ12 + ρ13ρ23)2)
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Now since

(2(1− ρ2
13 − ρ2

23 − ρ2
12) + (ρ13 + ρ12ρ23)

2)(1− ρ3
13)−

(1− ρ2
12)(2(1− ρ2

13 − ρ2
23 − ρ2

12) + (ρ12 + ρ13ρ23)
2)

= ρ2
12(1− ρ2

12 − ρ2
23 + 2ρ12ρ13ρ23)− ρ2

13(1− ρ2
13 − ρ2

23 + 2ρ12ρ13ρ23)

< ρ2
12 − ρ2

12(1− ρ2
13)− ρ2

13 + ρ2
13(1− ρ2

12)

= 0

So (2(1− ρ2
13− ρ2

23− ρ2
12)+ (ρ13 + ρ12ρ23)

2)(1− ρ3
13) < (1− ρ2

12)(2(1− ρ2
13− ρ2

23− ρ2
12)+ (ρ12 +

ρ13ρ23)
2), which gives

(2(1− ρ2
13 − ρ2

23 − ρ2
12) + (ρ13 + ρ12ρ23)

2)(1− ρ3
13)

(1− ρ2
12)(2(1− ρ2

13 − ρ2
23 − ρ2

12) + (ρ12 + ρ13ρ23)2)
< 1.

This proofs expression (29) is smaller than expression (30). Therefore, min{S2:1, S3:1} = S2:1.

Finally, we need to find min{S2:1, S2:3}. Since the first two terms of equation (19) and

equation (22) are the same, we only need to compare the last term of two equations.

1− ρ2
13 + ρ2

23 − 2ρ12ρ13ρ23

1− ρ2
12

σ2
3 =

1− ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23

1− ρ2
12

σ2
3

and

1− ρ2
12 + ρ2

13 − 2ρ12ρ13ρ23

1− ρ2
23

σ2
1 =

1− ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23

1− ρ2
13

σ2
1.

Because σ2
3 > σ2

1 and ρ12 > ρ23,

σ2
3

1− ρ2
12

>
σ2

1

1− ρ2
12

>
σ2

1

1− ρ2
23

.

This proofs min{S2:1, S2:3} = S2:3.

Therefore, the firm who has the largest variance and relatively bigger correlation to least

variance firm releases first. In other words, suppose σ2 > σ3 > σ1, ρ21 > ρ23, and ρ21 > ρ31,

then the minimum of the sum of squared forecast errors is min{S1:2, S2:1, S1:3, S3:1, S2:3, S3:2} =

S2:3. Thus, the informational ordering is Firm 2, followed by Firm 3 and finally Firm 1.
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