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Abstract
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for computing modified bootstrap P values that will often be more accurate than
ordinary ones. These procedures are closely related to the double bootstrap, but they
are far less computationally demanding.
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1. Introduction

In many cases, bootstrap tests are surprisingly easy to perform, and the computational
barriers to their routine use are dropping steadily. In general, the simplest approach to
bootstrap testing is to calculate bootstrap P values. As we discuss in the next section,
the test statistic itself is computed in the usual way, but the P value is computed by
comparing the test statistic with the empirical distribution of a number of bootstrap
test statistics rather than with the distribution that it follows asymptotically.
Theory suggests that bootstrap tests will generally perform better in finite samples
than tests based on asymptotic theory, in the sense that they will commit errors
that are of lower order in the sample size n; see, among others, Hall (1992) and
Davidson and MacKinnon (1999b). Moreover, there is a growing body of evidence
from simulation experiments which indicates that bootstrap tests do indeed yield more
reliable inferences than asymptotic tests in a great many cases; relevant papers include
Horowitz (1994), Nankervis and Savin (1996), Godfrey (1998), and Davidson and
MacKinnon (1999a).

Although bootstrap P values will often be very reliable, this will not be true in every
case. For an asymptotic test, one way to check whether it is reliable is simply to use
the bootstrap. If the asymptotic and bootstrap P values associated with a given test
statistic are similar, we can be fairly confident that the asymptotic one is reasonably
accurate. Of course, having gone to the trouble of computing the bootstrap P value,
we may well want to use it instead of the asymptotic one.

In a great many cases, however, asymptotic and bootstrap P values are quite different.
When this happens, it is almost certain that the asymptotic P value is inaccurate,
but we cannot be sure that the bootstrap one is accurate. In this paper, we discuss
techniques for computing modified bootstrap P values which will tend to be similar
to the ordinary bootstrap P value when the latter is reliable, but which should often
be more accurate when it is unreliable. These techniques are closely related to the
double bootstrap originally proposed by Beran (1988), but they are far less expensive
to compute. In fact, the amount of computational effort beyond that needed to obtain
ordinary bootstrap P values is roughly equal to the amount needed to compute the
latter in the first place.

In the next section, we rapidly review bootstrap tests and a number of existing results
on their properties. Then, in Section 3, we present the basic idea on which the tech-
niques of the paper are based and show how the performance of bootstrap tests may
be estimated in simulation experiments that require only twice as much computational
effort (per replication) as that needed to estimate the performance of asymptotic tests.
In Section 4, we show how modified bootstrap P values may be computed with only
twice as much effort as ordinary bootstrap P values. In Section 5, we discuss the
double bootstrap. In Section 6, we present some simulation results which illustrate
how well the procedures proposed in this paper can work in practice. Finally, in Sec-
tion 7, we discuss their relation to the sort of Edgeworth expansion often used in the
asymptotic theory of the bootstrap.
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2. Bootstrap Tests

Beran (1988) showed that bootstrap inference is refined when the quantity boot-
strapped is asymptotically pivotal. We formalize the idea of pivotalness by means
of a few formal definitions. A data-generating process, or DGP, is any rule sufficiently
specific to allow artificial samples of arbitrary size to be simulated on the computer.
Thus all parameter values and all probability distributions must be provided in the
specification of a DGP. A model is a set of DGPs. Models are usually generated by
allowing parameters and probability distributions to vary over admissible sets. A test
statistic is a random variable that is a deterministic function of the data generated
by a DGP and, possibly, other exogenous variables. A test statistic τ is a pivot for a
model M if, for each sample size n, its distribution is independent of the DGP µ ∈M
which generates the data from which τ is calculated. The asymptotic distribution of a
test statistic τ for a DGP µ is the limit, if it exists, of the distribution of τ under µ as
the sample size tends to infinity. The statistic τ is asymptotically pivotal for M if its
asymptotic distribution exists for all µ ∈M and is independent of µ.
In hypothesis testing, the null hypothesis under test is represented by a model, as
defined above. A test statistic is said to be pivotal or asymptotically pivotal under the
null hypothesis if it is a pivot or an asymptotic pivot for the model that represents the
hypothesis. Most test statistics commonly used in econometric practice are asymp-
totically pivotal under the null hypotheses they test, since asymptotically they have
distributions, like standard normal, or chi-squared, that do not depend on unknown
parameters. Conventional asymptotic inference is based on these known asymptotic
distributions.
If an asymptotic pivot τ is not an exact pivot, its distribution depends on which
particular DGP µ ∈M generates the data used to compute it. In this case, bootstrap
inference is no longer exact in general. The bootstrap samples used to estimate the
finite-sample distribution of τ are generated by a bootstrap DGP , which, although it
usually belongs to M, is in general different from the DGP that generated the original
data.
It is possible to use the bootstrap either to calculate a critical value for τ or to calculate
a P value. In this paper, we prefer the latter approach, as it greatly simplifies the
analysis while being theoretically equivalent to an approach based on critical values.
Suppose that data are generated by a DGP µ0 belonging to M, and used to compute
a realization τ̂ of the random variable τ . Then, for a test that rejects for large values
of the statistic, the P value we would ideally like to compute is

p(τ̂) ≡ Prµ0(τ > τ̂). (1)

In practice, (1) cannot be computed, or estimated by simulation, because the DGP µ0

that generated the observed data is unknown. If τ is an exact pivot, this does not
matter, since (1) can be computed using any DGP inM. In this case, p(τ̂) is a drawing
from the U(0, 1) distribution. If τ is only an asymptotic pivot, the bootstrap P value
is defined by

p∗(τ̂ , µ̂) ≡ Prµ̂(τ > τ̂), (2)
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where µ̂ is a (random) bootstrap DGP in M, determined in some suitable way from
the same data as those used to compute τ̂ . We denote by µ∗ the random DGP of
which µ̂ is a realization.
Let the asymptotic CDF of the asymptotic pivot τ be denoted by F . At nominal
level α, an asymptotic test rejects if the asymptotic P value 1−F (τ̂) < α. In order to
avoid having to deal with different asymptotic distributions, it is convenient to replace
the raw statistic τ by the asymptotic P value 1 − F (τ), of which the asymptotic
distribution is always U(0, 1). For the remainder of this section and the next section,
τ denotes such an asymptotic P value.
For the sample size of the observed data, the “rejection probability function,” or RPF,
provides a measure of the true rejection probability of the asymptotic test. This
function, which gives the rejection probability under µ of a test at nominal level α, is
defined as follows:

R(α, µ) ≡ Prµ(τ < α). (3)

It is clear that R(·, µ) is the CDF of τ under µ. The information contained in the func-
tion R is also provided by the “critical value function,” or CVF, Q, defined implicitly
by the equation

Prµ
(

τ < Q(α, µ)
)

= α. (4)

Q(α, µ) is just the α quantile of τ under µ. It follows from (3) and (4) that

R
(

Q(α, µ), µ
)

= α, and, conversely, Q
(

R(α, µ), µ
)

= α, (5)

from which it is clear that, for given µ, R and Q are inverse functions.
The bootstrap test rejects at nominal level α if τ < Q(α, µ∗), that is, if τ is smaller
than the the α quantile of τ under the bootstrap DGP. By acting on both sides with
R(·, µ∗), this condition can also be expressed as

R(τ, µ∗) < R
(

Q(α, µ∗), µ∗
)

= α.

This makes it clear that the bootstrap P value is just R(τ, µ∗). It follows that, if R
actually depends on µ∗, that is, if τ is not an exact pivot, the bootstrap test is not
equivalent to the asymptotic test, because the former depends not only on τ , but also
on the random µ∗.
In Davidson and MacKinnon (1999b), it is shown that bootstrap tests enjoy a further
refinement, over and above that due to the use of an asymptotic pivot, if τ and µ∗

are asymptotically independent. In addition, such asymptotic independence makes it
possible to obtain an approximate expression for the size distortion of a bootstrap test.
Suppose first that τ and µ∗ are fully independent under the true DGP µ0. Then the
rejection probability under µ0 of the bootstrap test at nominal level α is

Prµ0

(

τ < Q(α, µ∗)
)

= Eµ0

(

Prµ0

(

τ < Q(α, µ∗)
∣

∣ µ∗
)

)

= Eµ0

(

R
(

Q(α, µ∗), µ0
)

)

. (6)
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This is an exact result only if τ and µ∗ are independent. It is however useful, because it
applies approximately if τ and µ∗ are only asymptotically independent, and because,
as we see in the next section, an approximation to (6) can easily be estimated by
simulation.

3. The Basic Idea

The fundamental idea of this paper is based on the fact that we can estimate an
approximation to the quantity (6) quite inexpensively. In this section, we discuss how
to do so in the context of Monte Carlo experiments. In the next section, we discuss how
the same basic idea may be used to calculate modified bootstrap P values. Of course,
(6) is exactly valid only if τ and µ∗ are independent. However, as we will see in due
course, asymptotic independence of τ and µ∗, in a sense we make precise later, is enough
for (6) to provide a pretty accurate approximation. The asymptotic independence
assumption is not very restrictive. A great many test statistics are asymptotically
independent of all parameter estimates under the null hypothesis. This is generally
true for extremum estimators where the estimates under the null lie in the interior of
the parameter space, including all of the classical test statistics for models estimated
by nonlinear least squares and maximum likelihood; see Davidson and MacKinnon
(1999b). However, it generally will not be true for inefficient estimators.
Under the independence assumption, the size distortion, or, as we prefer to call it, the
error in rejection probability (ERP), of the bootstrap test based on τ and µ∗ can be
written as the expectation (6) minus α:

Eµ0

(

R
(

Q(α, µ∗), µ0
)

)

− α. (7)

Now, by (5), R
(

Q(α, µ0), µ0
)

= α. Thus, for given µ0, expression (7), considered as
a function of α, is a bias function. In the spirit of linear bias correction (MacKinnon
and Smith, 1998), we approximate R(Q(α, µ∗), µ0) as an affine function of its first,
random, argument, and obtain

R
(

Q(α, µ∗), µ0
)

≈ α + R1 ·
(

Q(α, µ∗)−Q(α, µ0)
)

,

where R1 is the derivative of R with respect to its first argument, evaluated at Q(α, µ0)
and µ0. Similarly,

R
(

Q(α, µ0), µ∗
)

≈ α + R1 ·
(

Q(α, µ0)−Q(α, µ∗)
)

,

and so, approximately, (7) is given by

α−Eµ0

(

R
(

Q(α, µ0), µ∗
)

)

. (8)

Now consider a random variable τ∗, of which a drawing under µ0 is generated as
follows. A sample is drawn from µ0 and used to compute a drawing µ̂ of the bootstrap
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DGP µ∗. Then a sample is drawn from µ̂ and used to compute a bootstrap statistic,
which is then the drawing of τ∗. The CDF of τ∗, evaluated at argument α, can be
seen to be just Eµ0

(

R(α, µ∗)
)

. Conditional on µ̂, the probability that τ∗ < α is given
by the CDF of the bootstrap statistic under µ̂, that is, R(α, µ̂). The unconditional
expectation of this probability is just Eµ0

(

R(α, µ∗)
)

, as required.
The above construction allows us to evaluate the expectation in (8) by simulation.
For each replication, the DGP µ0 is used to draw realizations of the statistic τ and
of the bootstrap DGP µ∗. Next, the realization µ̂ of µ∗ is used to draw a realization
of τ∗. The quantile Q(α, µ0) is then estimated as usual by Q̂0(α), the α quantile of
the drawings of τ , and the expectation of R

(

Q(α, µ0), µ∗
)

by the proportion of the
drawings of τ∗ that are less than Q̂0(α). This method was first suggested by Davidson
and MacKinnon (1999b). If we perform M replications, the simulation estimate of
the rejection probability (RP) of the bootstrap test, and the corresponding simulated
ERP, are then given by

̂RP2 ≡ 2α− 1
M

M
∑

m=1

I
(

τ∗m < Q̂0(α)
)

, and ÊRP2 ≡ α− 1
M

M
∑

m=1

I
(

τ∗m < Q̂0(α)
)

. (9)

As the notation suggests, this estimator of the rejection probability is not our preferred
one. It suffers from two potential disadvantages: It is bounded above by 2α, and it is
not guaranteed to be positive.
A somewhat more accurate estimate, which does not suffer from these disadvantages,
can be obtained by a slight modification of the above procedure, in which the roles of
the distributions of τ and τ∗ are interchanged. Drawings of τ and τ∗ are made exactly
as described above, but then (7) is estimated directly as the proportion of drawings of τ
less than Q̂∗(α), the α quantile of τ∗, minus α. This leads to the following simulation
estimates of the RP and ERP of the bootstrap test:

̂RP1 ≡
1
M

M
∑

m=1

I
(

τm < Q̂∗(α)
)

and ÊRP1 ≡
1
M

M
∑

m=1

I
(

τm < Q̂∗(α)
)

− α. (10)

Expressions (9) and (10) are equally easy to compute. Since very little extra effort is
needed to compute (9) if (10) is already being computed, it probably makes sense to
compute both, on the reasonable supposition that substantial differences between the
two estimated ERPs may indicate that neither of them is terribly accurate.
In practice, it is not necessary to convert test statistics to approximate P value form
in order to estimate ERPs by the above procedures. Drawings of the statistics are
obtained in whatever form is most convenient, and then sorted in order from the
most extreme values to the least extreme. For each value of α of interest, it is then
straightforward to compute the proportion of realizations of the statistic more extreme
than the realization of the bootstrap statistic in position α in the sorted list.
For a given number of replications, these procedures require only about twice as much
computational effort as performing an experiment for the asymptotic test only. To
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investigate the performance of an asymptotic test, we need to compute M test statis-
tics τm. To investigate the performance of the bootstrap version of the same test, we
just need to compute M additional test statistics τ∗m. The procedure outlined above
results in drawings of τ and τ∗ that are asymptotically independent if τ and µ∗ are
asymptotically independent. Thus the variance of the estimated RP for a bootstrap
test with a given actual RP will always be larger than the variance of the estimated
RP for an asymptotic test with the same actual RP. For the asymptotic test, the only
source of error would be the randomness of the τm. For the bootstrap test, there would
also be the randomness of the τ∗m, which causes Q̂∗(α) to be random. This suggests
that more replications will be needed to achieve a given level of accuracy.

There is another technique that, in certain cases, will allow one to obtain positively
correlated drawings of τ and τ∗, and thus reduce the variance of the estimated RP of
the bootstrap test. The procedure works as follows. Once µ̂ has been obtained for
each replication, a new set of random numbers, independent of those used to obtain µ̂,
is drawn. These are then used to compute the drawings of both τ and τ∗, the former
using µ0, the latter using µ̂. This should result in substantial positive correlation
between the drawings of τ and τ∗, which will reduce the variance of the estimated RP.
An additional advantage of this method is that τ and µ∗ are genuinely, and not just
asymptotically, independent.

Although limited simulation results suggest that this method may be attractive in
certain cases, we do not develop it any further here, and we did not use it for most of
our simulations. One problem with the method is that it necessarily involves up to fifty
per cent more computational cost per replication than the simpler one proposed above.
In addition, it may not work well for semiparametric bootstrap procedures, where the
methods used to draw random samples from µ0 are not the same as the ones used to
draw them from µ̂. For example, in the case of a regression model, random sampling
from µ0 must be done by drawing from a known distribution, while random sampling
from µ̂ is be done by resampling from rescaled residuals. Although this method can
certainly be adapted to such cases, one might expect the potential gain in efficiency
to be modest.

4. Modified Bootstrap P Values

The procedures we have discussed so far are useful only in the context of Monte Carlo
experiments. But the same basic ideas also lead to procedures for computing bootstrap
P values that are, at least potentially, more accurate than the conventional procedure
based on the bootstrap P value (2). In this section, we propose two new ways to
compute bootstrap P values, based on the estimates ̂RP1 and ̂RP2 of (10) and (9).

For each of B bootstrap replications, two different bootstrap statistics are generated.
For bootstrap replication j, a bootstrap data set, which we denote by y∗j , is first
drawn from the bootstrap DGP µ̂. In exactly the same way as the original data were
used to obtain both the realized test statistic τ̂ and the realized bootstrap DGP µ̂,
the simulated data y∗j are used to compute two things: a bootstrap statistic, denoted

– 6 –



by τ∗j , and a second-level bootstrap DGP, denoted by µ∗∗j . Next, a further simulated
data set, denoted y∗∗j , is drawn using this second-level bootstrap DGP, and a second-
level bootstrap test statistic, τ∗∗j , is computed. This procedure is completely analogous
to that of the previous section, in which τ and τ∗ are drawn on the basis of a DGP µ0.
Here µ0 is replaced by µ̂, the ordinary, or single, bootstrap DGP, and the M drawings
τm and τ∗m are replaced by the B drawings τ∗j and τ∗∗j , respectively.
The ordinary estimated bootstrap P value is

p̂∗ ≡ 1
B

B
∑

j=1

I(τ∗j < τ̂),

the simulation estimate of (2) when the test statistic is in approximate P value form.
We maintain this convention here, although, in practice, it is unnecessary for the
computation of p̂∗. Next, we calculate the p̂∗ quantile of the τ∗∗j , denoted by Q̂∗(p̂∗)
and defined implicitly by the equation

1
B

B
∑

j=1

I
(

τ∗∗j < Q̂∗(p̂∗)
)

= p̂∗. (11)

Then the fast double bootstrap P value (first version), or FDB1 for short, is

p̂∗∗1 =
1
B

B
∑

j=1

I
(

τ∗j < Q̂∗(p̂∗)
)

. (12)

Thus, instead of seeing how often the bootstrap test statistics are more extreme than
the actual test statistic, we see how often they are more extreme than the p̂∗ quantile
of the τ∗∗j .
Suppose, for concreteness, that the τ∗∗j tend to be more extreme than the τ∗j . This
suggests that the τ∗j tend to be more extreme than they would be if they were drawn
from µ0 instead of from µ∗. Therefore, the ordinary bootstrap P value will be too big.
In this situation, Q̂(p̂∗) will be more extreme than τ̂ itself, and p̂∗∗1 will consequently
be smaller than p̂∗. Thus it appears that using p̂∗∗1 instead of p̂∗ will be a step in the
right direction.
The second version of the fast double bootstrap P value, or FDB2 for short, is calcu-
lated as

p̂∗∗2 = 2 p̂∗ − 1
B

B
∑

j=1

I(τ∗∗j < τ̂); (13)

compare (9). Expression (13) has a slight computational advantage over (12), in that
it is not necessary to compute any quantiles. However, it has the disadvantages that
p̂∗∗2 could possibly be negative and that p̂∗∗2 cannot be more than twice as great as p̂∗.
But since it is almost costless to compute FDB2 if FDB1 is already being computed,
it may be useful to do so as a check on the accuracy of the latter.
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5. The Double Bootstrap

The fast double bootstrap procedures proposed in the previous section are so called
because of their relationship to the genuine double bootstrap procedure originally
suggested by Beran (1988), which is very much more expensive computationally. In the
statistical literature, the double bootstrap is normally used for computing confidence
intervals. However, a version of it for computing P values is conceptually quite simple
and works as follows:

• Obtain B1 first-level bootstrap samples from the DGP µ̂ in the usual way, and
use them to compute bootstrap statistics τ∗j , j = 1, . . . , B1, and the ordinary
bootstrap P value p̂∗.

• For each first-level bootstrap sample j, compute the second-level bootstrap DGP
µ∗∗j , and use it to compute B2 second-level bootstrap samples, each of which is
used to compute a test statistic τ∗∗jl , l = 1, . . . , B2. These are just like the τ∗∗j
used in the FDB procedures, except that there are B2 of them for each bootstrap
sample.

• For first-level bootstrap sample j, compute the second-level bootstrap P value

p̂∗∗j =
1

B2

B2
∑

l=1

I(τ∗∗jl < τ∗j ). (14)

• Finally, compute the double-bootstrap P value

p̂∗∗ =
1

B1

B1
∑

j=1

I(p̂∗∗j ≤ p̂∗). (15)

Thus the double-bootstrap P value is equal to the proportion of the second-level
bootstrap P values that are more extreme than the first-level bootstrap P value.
The inequality in (15) is not strict, because, depending on the values of B1 and
B2, there may be a substantial number of cases in which p̂∗∗j = p̂∗.

The advantage of this procedure, relative to the new ones proposed in the previous
section, is that it does not require any sort of independence between the bootstrap
DGP and the test statistic. But this comes at an enormous computational cost. For
each of B1 bootstrap samples, we need to compute B2 + 1 test statistics. Thus the
total number of test statistics that must be computed is 1 + B1 + B1B2. Even if
B2 is somewhat smaller than B1, as is often recommended, this will be vastly more
expensive than computing 1 + 2B test statistics, for reasonable values of B ≈ B1 and
B2 ≤ B1. For example, if B = B1 = 999 and B2 = 199, the FDB procedures will
require the computation of 1999 test statistics, while the genuine double bootstrap
will require the computation of no less than 199,801 of them.
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6. Simulation Evidence

In this section, we present results from a number of simulation experiments. Our
objective here is to see whether the procedures proposed in this paper can work well
enough to be useful in practice. First of all, we want to see whether ̂RP1 and ̂RP2 pro-
vide good approximations to the actual rejection probabilities for ordinary bootstrap
tests based on p̂∗. Secondly, we want to see whether the FDB1 and FDB2 procedures
can yield bootstrap tests with smaller errors in rejection probability than tests based
on p̂∗.
In many cases, ordinary bootstrap tests appear to work so well that there is no point
using anything more complicated. Even when they do not, they at least tend to work
so well that an extraordinarily large number of replications would be needed in order
to show conclusively that anything else works better. This made it somewhat difficult
to find a good example to focus on. We have chosen to study the OPG version of
the LM test for omitted variables in the probit model. This test has noticeably worse
finite-sample properties than other tests of the same hypothesis, such as the LR test
and the efficient score version of the LM test; see Davidson and MacKinnon (1984).
Therefore, it is rarely used in practice. However, its poor finite-sample performance,
and the dependence of that performance on parameter values, makes it a good example
for the study of alternative bootstrap procedures.

The probit model we study can be written as

E(yt |Xt) = Φ(X1tβ1 + X2tβ2), (16)

where yt is a binary dependent variable that can equal either 0 or 1, Φ(·) is the cu-
mulative standard normal distribution function, Xt = [X1t X2t] is a 1 × k vector of
exogenous variables, with k = k1 + k2, β1 is a k1--vector, and β2 is a k2--vector. The
null hypothesis is that β2 = 0. The OPG test statistic is the explained sum of squares
from a regression of an n--vector of 1s on the derivatives of the contributions to the
loglikelihood with respect to each of the parameters, where those derivatives are eval-
uated at the ML estimates under the null hypothesis. See Davidson and MacKinnon
(1984) for more details.

Our experimental results pertain to four different cases. In Case 1, k1 = 2, k2 = 6,
β1 = 0, and β2 = 1. The number of restrictions, k2, is relatively large because the
finite-sample performance of the test becomes worse as k2 increases, and preliminary
experiments revealed that the finite-sample performance of the bootstrap test does
likewise. In Case 2, k1 = 2, k2 = 6, β1 = 1, and β2 = 2. In Case 3, k1 = 4, k2 = 6,
β1 = 0, and β2 = β3 = β4 = 1. Finally, in Case 4, k1 = 4, k2 = 10, β1 = 0, and
β2 = β3 = β4 = 1. In all cases, the first of the exogenous variables was a constant,
and the others were independent drawings from the N(0, 1) distribution.

For each case, we performed 171 experiments, with 100,000 replications, for all sample
sizes between 30 and 200. The exogenous variables, other than the constant, were
redrawn for each replication, so as to avoid undue dependence on the design matrix.
In these experiments, rejection frequencies of the asymptotic test and the approximate
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rejection probabilities of the bootstrap test were estimated. In addition, we performed
18 much more expensive experiments, for n = 30, 40, 50, . . . , 200, also with 100,000
replications, in which we estimated the actual performance of the bootstrap test and
the two FDB tests using B = 399. The results of these experiments are presented
graphically in Figures 1 through 5.
Figure 1 shows the rejection frequencies for the asymptotic test. It always overrejects
severely, with Case 4 being the worst and Case 1 the least bad. For several of the cases,
the overrejection initially becomes worse as the sample size increases. Eventually, as
expected, the overrejection gradually diminishes as the sample size increases, although
it remains quite substantial at n = 200.

Figures 2 through 5 pertain to Cases 1 through 4. Each of these figures shows the
rejection frequencies for the three bootstrap tests, along with the approximate rejection
probabilities given by ̂RP1 and ̂RP2. A number of empirical regularities are apparent
in these figures:

• Compared with the asymptotic test, the bootstrap test always performs remark-
ably well. However, it overrejects for very small sample sizes (except, perhaps, in
Case 1) and then underrejects for a range of somewhat larger sample sizes.

• Both ̂RP1 and ̂RP2 provide good approximations to the actual rejection frequen-
cies of the bootstrap test. When they differ appreciably, as they do most notice-
ably in Figures 4 and 5, ̂RP1 always provides a somewhat better approximation
than does ̂RP2. However, both approximations seem to make systematic errors
for certain ranges of sample sizes.

• The rejection frequencies for FDB2 are always greater than for FDB1, and they
are always too large.

• FDB1 usually, but not always, outperforms the ordinary bootstrap test. This is
most noticeable for the sample sizes where the ordinary bootstrap test systemati-
cally underrejects. For very small sample sizes, where the ordinary bootstrap test
sometimes overrejects quite severely, FDB1 tends to underrreject.

In Figures 6 and 7, the simulated errors in rejection probability, ÊRP1 and ÊRP2, are
plotted as functions of α. These figures are essentially P value discrepancy plots in the
sense of Davidson and MacKinnon (1998). The plots are for sample sizes n = 50 and
n = 200 for Cases 1 (Figure 6) and 4 (Figure 7). Although the ERP for the nominal
.05 level seems reasonably typical of the rest of the distribution in Case 1, things are
quite different for Case 4 with n = 50. There, the overrejection rapidly changes to
underrejection for larger nominal levels.

In Section 3, we discussed the relationship between the variance of ̂RP1 and the var-
iance of the estimated rejection probability for the asymptotic test. In order to inves-
tigate this relationship, we regressed both estimates of bootstrap rejection probability
errors on a number of powers of n−1/2 (with no constant, since asymptotically there
is no error) for each of the four cases. The standard errors of the preferred regressions
for Cases 1 through 4 were 0.000925, 0.000955, 0.000875, and 0.000921. These are
substantially larger than the theoretical value of 0.000689 that applies to an estimate
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of α = .05 based on 100,000 replications. For the ̂RP2 estimates, the standard er-
rors were 0.001023, 0.000909, 0.000950, and 0.000996, respectively. Thus it appears
that, as expected, the sampling variability of the approximate bootstrap estimators is
moderately larger than the sampling variability of ordinary rejection frequencies.

The tendency of the ordinary bootstrap test, and of FDB2, to overreject severely in
very small samples in Cases 3, 4, and 5 has a simple explanation. In these cases, ML
estimation of the null model not infrequently achieves a perfect fit. When this happens,
the test statistic is equal to zero. As is well known, probit models tend to fit too well
in small samples. Therefore, the slope coefficients used to generate the bootstrap
samples tend to be larger than the ones used to generate the original samples; see
MacKinnon and Smith (1998). This means that perfect fits are achieved more often
for the bootstrap samples than they are for the original samples. In consequence, there
are fewer large values of the τ∗j than there are of the τj , and the bootstrap P values
are therefore biased downwards. The problem tends to go away rapidly as n increases.
It would have been computationally infeasible to compute genuine double bootstrap
P values in most of our experiments. However, we did perform a few experiments in
which these were calculated. Even though these had only 10,000 replications, and we
set B1 = B2 = 199, they were far more expensive than any of the other experiments.
Results are presented in Table 1. This table provides no evidence to suggest that
double bootstrap P values are any more accurate than FDB1 P values. In Case 2 with
50 observations, where perfect fits occur with some frequency, the double bootstrap
actually performs substantially less well than does FDB1. In the other five cases,
bearing in mind that the standard errors of the estimated rejection frequencies are
roughly 0.0022, there is little to choose between them.

7. Relation to Edgeworth Expansions

Much of the asymptotic theory of the bootstrap is based on Edgeworth expansions of
statistics that are asymptotically distributed as N(0, 1). The classic reference for this
approach is Hall (1992), and the methods and assumptions used in this section are
similar to those in Hall (1988). This theory most often serves to determine the order
of the ERP of a bootstrap test as a negative power of the sample size n. At a certain
algebraic cost, approximate expressions for the ERP can also be obtained. However,
these approximate expressions are rarely used either to estimate the ERPs of specific
bootstrap tests or to improve bootstrap P values in the manner of the FDB procedures.
This is most likely due to the poor quality of the Edgeworth approximation, especially
in the tails of distributions.

Nonetheless, it is interesting to see to what extent Edgeworth expansions give results
in accord with the simulation results of the previous section. It turns out that the
difference between expressions (7) and (8) for the bootstrap ERP is very generally of
order no greater than O(n−2). When the bootstrapped statistic τ and the bootstrap
DGP µ∗ are independent, the same is true of the difference between the true rejection
probability, that is, the first term in (7), and RP1, by which we mean the theoretical
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expression to which ̂RP1 converges when M, the number of replications, tends to
infinity. It is thus not surprising that, in our simulation experiments, ̂RP1 and ̂RP2

are very similar to each other and to the true bootstrap rejection probability. Just as
the bootstrap itself obviates the need to perform analytic Edgeworth expansions, and
provides a much more reliable approximation than an Edgeworth expansion truncated
after a few terms, so do ÊRP1 and ÊRP2 obviate the need for an Edgeworth expansion
of a bootstrap ERP. They provide what, on the basis of the simulations of this paper,
seems to be a very reliable approximation to the bootstrap ERP.

The Edgeworth expansion of the CDF F (x) of an asymptotically N(0, 1) statistic τ
can be written as

F (x) = Φ(x)− n−1/2φ(x)
∞
∑

i=1

λiHei−1(x). (17)

Here Φ(·) and φ(·) are, respectively, the CDF and the density of the N(0, 1) distribu-
tion, Hei(·) is the Hermite polynomial of degree i (see for instance Abramowitz and
Stegun (1965), Chapter 22 for details of these polynomials), and the λi are coefficients
that are at most of order unity. Thus (17) implicitly supposes that the rate of conver-
gence of the statistic to the asymptotic N(0, 1) distribution is at least as fast as n−1/2.
The expansion as written in (17) is more properly referred to as the Gram-Charlier
series, but, unless truncated, the Edgeworth and Gram-Charlier series are equivalent.
As we truncate everything of order lower than some fixed negative power of n, we
obtain true Edgeworth series. The relation between the Hermite polynomials and the
derivatives of the density φ(·) is

φ(i)(x) = (−1)iHei(x)φ(x), (18)

and they can be defined by the following recursion, easily derived from (18),

He0(x) = 1; Hei+1(x) = xHei(x)−He′i(x).

The λi can be related to the (uncentered) moments µi of the statistic by means of the
equation

λj =
n1/2

j!
E

(

Hej(τ)
)

, (19)

so that, for the first few values of j, λ1 = n1/2µ1, λ2 = n1/2(µ2 − 1)/2, λ3 =
n1/2(µ3 − 3µ1)/6, λ4 = n1/2(µ4 − 6µ2 + 3)/24, and so on. The formula (19) fol-
lows directly from differentiating (17) with respect to x to find the density, and then
using the orthogonality of the Hermite polynomials with the standard normal density
as weighting function. It is easily checked that the λi vanish if they are defined using
the moments of the standard normal distribution. In practice, the sum over i in (17) is
truncated after a finite, usually small, number of terms, because, as i increases, the λi

are of the order of progressively higher negative powers of n as n → ∞. In many
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cases, only λ1 and λ3 are O(1). The λi can quite generally be expressed in terms of
the cumulants κj of τ , and, for j ≥ 4, κj = O(n(j−2)/2).

The formula (17) can be thought of as an expansion of the RPF (3) for an asymp-
totically N(0, 1) rather than an asymptotically U(0, 1) statistic. In order to facilitate
comparison of the results here with those of Sections 2 and 3, we consider tests that
reject in the left-hand tail of the N(0, 1) distribution. In this way, we can retain the
signs of the inequalities used earlier. There is, of course, no conceptual difficulty in
considering tests that reject to the right or in both tails of the distribution. With this
convention, if a DGP µ yields the values λi for the statistic τ , the quantity R(α, µ)
of (3) is given by (17) evaluated at x = zα, where zα is the α quantile of the N(0, 1)
distribution. In general, we write λ(µ) to denote the, in principle infinite, sequence of
λi, i = 1, . . . ,∞ for statistic τ generated by the DGP µ; instead of R(α, µ) we write
R(α, λ(µ)); and we have explicitly from (17) that, for a given sequence λ,

R(α, λ) = α− n−1/2φ(zα)
∞
∑

i=1

λiHei−1(zα). (20)

For the distribution characterized by the expansion (17), let the α quantile be denoted,
by a slight extension of the notation of Sections 2 and 3, by Q(α, λ). This quantile
can, if needed, be expanded in a Cornish-Fisher expansion that is the inverse of the
Edgeworth expansion (17). The relations (5) must be modified with our new definitions
of R and Q, as follows:

R
(

Φ(Q(α, λ)), λ
)

= α and Φ
(

Q
(

R(α, λ),λ
))

= α. (21)

Suppose next that the statistic τ is bootstrapped. If the true DGP is as usual denoted
by µ0, then we write λ0 ≡ λ(µ0), with elements λ0

i . In many circumstances, in
particular if the statistic is a smooth function of sample moments, or if a parametric
bootstrap based on root-n consistent parameter estimates is used, the bootstrap DGP
will generate bootstrap statistics whose CDF can be expanded as in (17), with an
infinite sequence λ∗ ≡ λ(µ∗) of coefficients λ∗i such that λ∗i = λ0

i + O(n−1/2). The
λ∗i are of course random, and in the circumstances we are discussing, they are such
that E(λ∗i − λ0

i ) = O(n−1); see Hall (1988). In some cases, and for larger values of i,
λ∗i − λ0

i is of lower order than O(n−1/2), and it will often vanish for some i. On the
other hand, some bootstrap procedures may lead to differences of order 1 between λ∗i
and λ0

i . The following theory does not apply in such cases.

When it does apply, we may write λ∗ = λ0 + n−1/2 l, where the elements of the
sequence l are of order at most unity. Let us now fix the true DGP µ0, and, for
this DGP, define another sequence ν by the element-wise rule νi = n1/2Eµ0(li), so
that the νi are of order no greater than 1. We define q∗α by the relation Q(α, λ∗) ≡
Q(α, λ0)+n−1q∗α, and, similarly, we define qα by Q(α, λ0+n−1ν) = Q(α, λ0)+n−1qα.
Clearly q∗α is random but qα is not. Finally, we make the definition γα = q∗α− qα. The
following lemma establishes the orders of the quantities we have just defined.
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Lemma 1
Under the conditions of this section on the orders of λ∗−λ0 and its expec-
tation, q∗α = O(1), qα = O(n−1/2), γα = O(1), and E(γα) = O(n−1).

All proofs are found in the Appendix.

It will often be necessary to consider the difference between values of the function R
for the same first argument but different second arguments. In general, we have:

R(α, λ)−R(α, λ′) = n−1/2φ(zα)
∑

i

(λ′i − λi)Hei−1(zα). (22)

It is thus convenient to make the following definition:

r(x, λ) = φ(x)
∑

i

λiHei−1(x), (23)

in which we can exploit the linearity of R with respect to its second argument.
Our first result serves to express the ERP of the bootstrap test in terms of the quan-
tities we have defined.

Theorem 1
Consider a bootstrap test based on an asymptotically standard normal stat-
istic τ of which the distribution has an Edgeworth expansion that we can
characterize by R(α, λ(µ)) when τ is generated by the DGP µ. For a
DGP µ0, let λ0 ≡ λ(µ0), and let the bootstrap DGP µ∗ be characterized
by a sequence λ∗ ≡ λ(µ∗) that satisfies the conditions of this section on
the orders of λ∗ − λ0 and its expectation. Then the rejection probability
error of the bootstrap test at nominal level α can be written as

n−1r
(

Qα + n−1qα, n−1/2ν − ηα
)

, (24)

where Qα ≡ Q(α, λ0), and the sequence ηα, which is at most of order unity
as n → ∞, is such that the distribution of τ − n−1γα is characterized by
the sequence λ0 + n−1/2ηα.

Remarks: Expression (24) makes it clear that, under the conditions of the theorem,
the ERP of the bootstrap test is of order n−1 at most, in accord with the results of
Beran (1988).
Since r is linear with respect to its second argument, the ERP (24) can also be written
as −n−1r(Qα + n−1qα, ηα) + n−3/2r(Qα + n−1qα,ν). Note that this expression is
complete: It is not just an approximate expression correct through order n−3/2.
If ηα = O(n−1/2), then the entire bootstrap ERP is of order n−3/2 at most. This will
turn out to be the case whenever τ and µ∗ are asymptotically independent.
For some purposes, the dependence of the sequence ηα on α is inconvenient. Fortu-
nately, there exists another representation of the ERP in which ηα is replaced by a
sequence that does not depend on α.
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Corollary 1
There exists a sequence θ, of order at most unity as n → ∞, independent
of α, such that the ERP (24) can be written as

n−1r(zα, n−1/2ν − θ). (25)

Remark: The bootstrap P value is expressed as R(Φ(τ), λ∗) in the notation of this
section. By Theorem 1, the probability that this P value is less than α is α plus the
ERP (24), or, equivalently, (25). Thus the Edgeworth expansion of the distribution of
the bootstrap P value is

Pr(p∗ < α) = Φ(zα) + n−1
∑

i

(n−1/2νi − θi)Hei−1(zα)

= R(α, n−1ν − n−1/2θ).
(26)

In the next theorem, we obtain expressions, similar to (24), for the approximations to
the bootstrap ERP.

Theorem 2
Under the conditions of Theorem 1, the approximate rejection probability
errors ERP2 and ERP1, estimated by (9) and (10) respectively, are equal to

n−3/2r(Qα,ν) and n−3/2r(Qα + n−1qα, ν). (27)

Remarks: The results of Theorem 2 do not depend on whether τ and µ∗ are
asymptotically independent. Expressions (27) are just algebraic consequences of the
definitions of the approximate ERPs that follow from the statistical properties of τ
and µ∗ separately, and not from their joint distribution.
Whether either of the expressions (27) is a reasonable approximation to the true boot-
strap ERP (24) depends on the impact of the sequence ηα on (24). In any event, it
is clear why, in favorable cases, ERP1 is a better approximation than ERP2, since the
former, like (24), evaluates r at Qα + n−1qα rather than at Qα.
In the next theorem, we obtain results on the order of magnitude of the elements of ηα.

Theorem 3
Under the conditions of Theorem 1, the first component of ηα, ηα

1 , is of order
at most n−1. When τ and µ∗ are independent, all components of ηα except
the first two are O(n−3/2), these two components being O(n−1). When τ
and µ∗ are asymptotically independent, in the precise sense that, for all i,
the covariance of li and τ is of order at most n−1/2, all components other
than the first may be of order n−1/2. When τ and µ∗ are not asymptotically
independent, however, all components of ηα except the first may be of
order 1.
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Remarks: Without the asymptotic independence of τ and µ∗, the bootstrap
ERP (24) is in general of order n−1, the highest order allowed by the results of Beran
(1988).
If τ and µ∗ are independent, the contribution to the bootstrap ERP made by ηα is
of order at most n−2. Thus the ERP (24) is of order at most n−3/2, and and the
approximate expressions in (27) coincide with (24) and each other at least through
order n−3/2.
If τ and µ∗ are only asymptotically independent, which is of course more frequent in
practice than full independence, then the contribution to the ERP from ηα may be
of order n−3/2. In that case, (24) is, as in the case of independence, of order at most
n−3/2, but the approximations in (27) may differ from (24) already at this order. It
is beyond the scope of this paper to investigate this issue in greater detail, but in
many cases of asymptotic independence it can be seen that the O(n−3/2) contribution
from ηα is in fact of lower order. Exceptions in the framework of regression models
include cases in which both regressors and error terms are skewed, or in which there
is no constant term in the regression; see Hall (1992) for more details.

Finally, in the next theorem, we present results on the orders of the ERPs of tests
based on the FDB P values and the genuine double bootstrap P value.

Theorem 4
Under the conditions of Theorem 1, the ERP of either one of the FDB meth-
ods for nominal level α is

−n−1r
(

Qα,ηα + O(n−1)
)

+ O(n−5/2). (28)

For the full double bootstrap method, there exists ζα such that the ERP is

n−3/2r
(

Q(α, n−1ν − n−1/2θ), ζα
)

,

where θ is the sequence defined in Corollary 1, and ζα is of order 1 in
general, but of order n−1/2 if τ and µ∗ are asymptotically independent.

Remarks: Without the asymptotic independence of τ and µ∗, the ERP of the
FDB methods can be of the same order as that of the ordinary bootstrap test. Whether
there is any advantage to using an FDB method is therefore not revealed by this sort
of analysis.

With asymptotic independence, the ERP of the FDB methods is of order at most
n−3/2, and with full independence, at most n−2. Thus, with only asymptotic inde-
pendence, the ERP may be of the same order as that of the ordinary bootstrap test.
However, the FDB methods knock out the term in (24) proportional to ν.
Without asymptotic independence, the double bootstrap ERP is in general of the same
order as that of FDB with asymptotic independence. It too benefits from an added
refinement with asymptotic independence.
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The analysis of this section applies only to one-tailed tests based on statistics that
are asymptotically distributed as N(0, 1). In particular, we have not studied, as does
Hall (1988), refinements that may arise when two-tailed tests are used. Nevertheless,
the simulation results of Section 6 make it clear that similar considerations apply to
statistics in asymptotically χ2 form. It cannot be too much emphasized that analyses
based on Edgeworth expansions are at best indicative of the actual behavior of test
statistics and bootstrap P values in finite samples. Terms of order n−3/2 may be com-
pletely dominated by terms of order n−2 with certain configurations of the coefficients
in the expansion. Further, since it is rare that Hermite polynomials of degree greater
than 4 appear in truncated expansions, it is clear that the first four polynomials do
not provide anything like enough functional flexibility to capture the actual distribu-
tions of many statistics. With these caveats, however, we have obtained in this section
some intuition as to why the approximate bootstrap ERPs and the FDB procedures,
in appropriate circumstances, work so well in practice.

8. Conclusion

In this paper, we have proposed two different, but closely related, techniques to solve
two rather different problems. The first problem is the high cost of Monte Carlo
experiments that involve bootstrap tests. Our procedures make it possible to study
the finite-sample performance of bootstrap tests for only about three or four times
the computational cost of studying asymptotic tests. In contrast, with the standard
approach, the cost is generally hundreds of times as great.

The second problem is the errors in rejection probability that sometimes occur for
bootstrap tests. Our FDB1 procedure seems to reduce these errors quite substantially
in some cases. Of course, bootstrap tests often work so well that there is no point trying
to reduce the ERP any further. In many cases, the principal reason for calculating the
FDB1 P value is simply to verify that it is similar to the ordinary bootstrap P value.
When that is the case, the investigator can feel very confident that both of them are
providing good estimates of the true P value.

In both cases, the method based on the estimate ̂RP1 of (10) seems to work better than
the other method, based on ̂RP2 of (9). The second method is therefore recommended
primarily as a way of checking that the first one is giving reasonable results. If the
two methods yield sharply different results, neither should be trusted.
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Appendix

Proof of Lemma 1: The Cornish-Fisher expansion of Q(α, λ) can be written
schematically as follows:

Q(α, λ) = zα + n−1/2
∑

i

λiHei−1(zα) + n−1
∑

i

∑

j

λiλjhij(zα)

+ n−3/2
∑

i

∑

j

∑

k

λiλjλkhijk(zα) + . . . ,
(29)

where zα is the α quantile of the N(0, 1) distribution, and where the hij , hijk, and so
on, are polynomials, of which we will not need the explicit form, that can be expressed
in terms of the Hermite polynomials. It is, however, easy to see that the term of
order n−1/2 in (29) is the one given there.
By definition, q∗α = n

(

Q(α, λ0 + n−1/2l)−Q(α, λ0)
)

. Using (29), we obtain

q∗α =
∑

i

liHei−1(zα) + n−1/2
∑

i

∑

j

(λ0
i lj + liλ0

j )hij(zα) + O(n−1).

The right-hand side of this equation is plainly of order 1. Similarly

qα = n
(

Q(α, λ0 + n−1ν)−Q(α, λ0)
)

= n−1/2
∑

i

νiHei−1(zα) + O(n−1), (30)

which is of order n−1/2. Thus we see that, with accuracy through order n−1/2,

γα =
∑

i

(li − n−1/2νi)Hei−1(zα) + n−1/2
∑

i

∑

j

(liλ0
j + λ0

i lj)hij(zα). (31)

Thus γα = O(1), and the expectation of γα is zero through order n−1/2 at least, and
so is in general of order no greater than n−1.

Proof of Theorem 1: The event that leads to rejection by the bootstrap test at
nominal level α is τ < Q(α, λ∗). Since Q(α, λ∗) = Qα + n−1q∗α = Qα + n−1(qα + γα),
this is equivalent to the event τ − n−1γα < Qα + n−1qα, where all random quantities
are on the left-hand side.
The sequence ηα was defined to be such that the Edgeworth expansion of the distri-
bution of τ − n−1γα is characterized by the sequence λ0 + n−1/2ηα. By Lemma 1,
γα = O(1), and so ηα is O(1) at most.
The rejection probability of the bootstrap test at nominal level α is the probability
that the random variable τ − n−1γα is less than the critical value Qα + n−1qα. This
probability is

R
(

Φ(Qα + n−1qα), λ0 + n−1/2ηα
)

. (32)
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By the definition of qα and the relation (21), we have that

R
(

Φ(Qα + n−1qα), λ0 + n−1ν
)

= α. (33)

It follows that the ERP of the bootstrap test at nominal level α is just the difference
between (32) and (33). Using (22) and (23), we see that the ERP of the bootstrap
test becomes

n−1r
(

Qα + n−1qα, n−1/2ν − ηα
)

. (34)

This completes the proof, since (34) is just expression (24) in the statement of the
theorem.

Proof of Theorem 2: In Section 3, it was shown that the distribution of the
statistic τ∗ under the DGP µ0 was given by Eµ0

(

R(α, µ∗)
)

, or, in the notation of
Section 7, Eµ0

(

R(α, λ∗)
)

. Thus expression (8), to which (9) tends as the number of
simulations becomes large, is given by this expression evaluated at α = Q(α, µ0), in
the notation of Section 3, and α = Φ(Q(α, λ0)), in that of Section 7. Thus (8) becomes
Eµ0

(

R(Φ(Q(α, λ0)), λ∗)
)

= Eµ0

(

R(Φ(Qα), λ0 + n−1/2l)
)

. Since R is linear with re-
spect to its second (sequence) argument, this expectation is just R

(

Φ(Qα),λ0 + n−1ν
)

.
Since R

(

Φ(Qα), λ0
)

= α, it follows that (8) is

R
(

Φ(Qα), λ0
)

−R
(

Φ(Qα),λ + n−1ν
)

= n−3/2r(Qα, ν).

This demonstrates the assertion of the Theorem for (9) and ÊRP2.
The expressions in (10) make use of the α quantile of the distribution of τ∗, which
is given by Q(α, λ0 + n−1ν) = Qα + n−1qα. Thus it is clear that RP1, estimated
by the ̂RP1 in (10), tends to the probability that τ , generated by µ0, is less than
Qα + n−1qα. This is equal to R

(

Φ(Qα + n−1qα), λ0
)

. Since, by the definition of qα,
R

(

Φ(Qα + n−1qα),λ0 + n−1ν
)

= α, it follows at once that the ERP estimate in (10)
tends to n−3/2r(Qα + n−1qα, ν).

Proof of Theorem 3: By the results following (19) and derived from it, we see
that

λ0
1 + n−1/2ηα

1 = n1/2Eµ0(τ − n−1γα).

By the same token, n1/2Eµ0(τ) = λ0
1, and so ηα

1 = −E(γα) = O(n−1), by Lemma 1.
This result holds generally, regardless of the nature of the joint distribution of τ and µ∗.
For the second component, we have that

λ0
2 + n−1/2ηα

2 = 1−
2
n1/2E

(

(τ − n−1γα)2 − 1
)

= 1−
2
n1/2(E(τ2 − 1) + E(−2n−1τγα + n−2γ2

α)
)

= λ0
2 − n−1/2E(τγα − n−1γ2

α/2),

whence ηα
2 = −E(τγα−n−1γ2

α/2). If τ and µ∗ are independent, it follows that τ and γα

are independent, and in that case E(τγα) = E(τ)E(γα) = O(n−3/2). Since the second
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term in ηα
2 is O(n−1), this implies that ηα

2 = O(n−1). If τ and γα are not independent,
then in general the first term of ηα

2 is O(1), since both τ and γα are O(1) in general. For
the case of asymptotic independence, note that by (31) γα is a deterministic function
of the li. If, therefore, τ and the li are asymptotically independent in the sense of the
statement of the theorem, E(τγα) = E(τ)E(γα)+O(n−1/2) = O(n−1/2). In this case,
then, ηα

2 = O(n−1/2).
For all other components, we note that, from (19) with j > 2,

λ0
j + n−1/2ηα

j = n1/2 1
j!

E
(

Hej(τ − n−1γα)
)

and λ0
j = n1/2 1

j!
E

(

Hej(τ)
)

.

Thus
ηα

j =
n
j!

E
(

Hej(τ − n−1γ + α)−Hej(τ)
)

.

Now, since Hej(x) is a polynomial of degree j in x, we have that

Hej(τ − n−1γα)−Hej(τ) =
j

∑

i=1

1
i!

(−1)in−iγi
αHe(i)

j (τ).

One of the properties of the Hermite polynomials (see, for instance, Abramowitz and
Stegun (1965), p. 783) is that He′j(x) = j Hej−1(x), from which it follows that the
ith derivative, for i ≤ j, is

He(i)
j (x) =

j !
(j − i)!

Hej−i(x).

Thus we find that

ηα
j =

1
j !

j
∑

i=1

n−(i−1)(−1)i
(

j
i

)

E
(

γi
αHej−i(τ)

)

. (35)

In general, the first term on the right-hand side of (35) is O(1). In the case of full
independence of τ and γα, we have E(γαHej−1(τ)) = E(γα)E(Hej−1(τ)) = O(n−3/2),
and E(γ2

αHej−2(τ)) = O(n−1/2). Thus the first two terms in (35) are of order n−3/2,
and the others are of order no greater than n−2. With only asymptotic independence,
the first term may be of order n−1/2, the second of order n−1, and all others of order
no greater than n−2. We have now proved all the assertions in the statement of the
theorem.

Proof of Corollary 1: It is clear from (35) and the expressions in the proof of
Theorem 3 for ηα

1 and ηα
2 that all elements of the sequence ηα depend on α only

through γα. In turn, it is clear from (31) that γα is a sum of terms each of which is
the product of a random variable independent of α and a polynomial in zα. Thus, for
all j, ηα

j is a sum of terms each of which is the product of an expectation independent
of α and a polynomial in zα.
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Any polynomial can be expressed as a linear combination of the Hermite polynomials.
Therefore, it follows that

r(zα, ηα) ≡ φ(zα)
∑

i

ηα
i Hei−1(zα)

can be expressed, by expanding the ηα
i as described above, multiplying the polynomials

in zα by the Hei−1(zα), and rearranging, as an expression of the form

φ(zα)
∑

i

θiHei−1(zα) = r(zα,θ), (36)

where the order as n →∞ of θi cannot be greater than the maximal order of the ηα
i .

We can see from (29) and (30) that Qα + n−1qα is equal to zα plus a sum of terms of
the same type as those in ηα. Since the derivative of φ(x)Hei−1(x) is −φ(x)Hei(x), a
Taylor expansion shows that r(Qα + n−1qα, θ) can also be expressed in the form (36),
with a suitable redefinition of θ, in which each element is changed by a quantity of order
at most n−1/2. Since r is linear with respect to its second argument, the conclusion of
the corollary follows.

Proof of Theorem 4: Conditional on τ and µ∗, the properties of the τ∗j and
the τ∗∗j in (11), (12), and (13) are the same as those of τ and τ∗ in the proofs of the
earlier theorems, except that µ0 is replaced by the realization µ̂ of µ∗. Thus the FDB2

P value p∗∗2 to which (13) tends as B →∞ is the random variable

2p∗ −R
(

Φ(τ), λ∗ + n−1ν∗
)

, (37)

where p∗ ≡ R
(

Φ(τ), λ∗
)

is the ordinary bootstrap P value, and ν∗, the bootstrap
version of ν, is nonrandom conditional on µ∗. It is easy to see that (37) becomes

R
(

Φ(τ), λ∗
)

+ n−3/2r(τ, ν∗) = R
(

Φ(τ),λ∗ − n−1ν∗), (38)

by (23).
The quantity Q̂∗(p̂∗) in (11) is an estimate of the p∗ quantile of the distribution
characterized by the sequence λ∗ + n−1ν∗. Since the τ∗ are generated by µ∗, their
distribution is characterized by λ∗. Thus, as B →∞, (11) tends to

R
(

Φ(Q(p∗,λ∗ + n−1ν∗)),λ∗
)

= p∗ + n−3/2r
(

Q(p∗, λ∗ + n−1ν∗), ν∗
)

, (39)

as in the proof of Theorem 2. From (29), it can be seen that Q(p∗, λ∗ + n−1ν∗) =
Q(p∗,λ∗) + O(n−3/2). Further,

Q(p∗,λ∗) = Q
(

R(Φ(τ), λ∗), λ∗
)

= τ,

by (21). Thus the P value (39) becomes

R
(

Φ(τ), λ∗
)

+ n−3/2r(τ, ν∗) + O(n−3),
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which is the same as (38) except for the O(n−3) term. We may therefore treat both
FDB P values as the same up to any order in which we are interested.
The P value (38) can now be considered as a random variable, being a deterministic
function of τ , λ∗, and ν∗. The probability, under the DGP µ0, that (38) is less than α
is then just the probability that τ < Q(α, λ∗ − n−1ν∗), and this probability can be
evaluated using the method of the proof of Theorem 1. Since ν∗ is a bootstrap estimate
of ν, in exactly the same sense that λ∗ is a bootstrap estimate of λ0, we have that
ν∗ = ν + n−1/2r, with r = O(1), and E(r) = n−1/2ρ, with ρ = O(1). We obtain that

λ∗ − n−1ν∗ = λ0 + n−1/2l− n−1ν − n−3/2r.

Thus the sequence ν in the proof of Theorem 1 is to be replaced here by nE(n−1/2l−
n−1ν − n−3/2r) = n−1ρ. By (30) therefore, qα is replaced by a quantity of order n−1.
Similarly, we see that q∗α in Theorem 1 is changed here only by a quantity of order n−1.
Thus γα is changed only at order n−1, and consequently also ηα. Making these changes
in (34) gives (28).
For the full double bootstrap, note that the p̂∗∗j in (14) have the same properties,
conditional on τ and µ∗, as the ordinary bootstrap P value p∗ under µ0, of which the
distribution is given by (26). Thus the distribution of the p∗∗j is given by (26) with ν
and θ replaced by ν∗ and θ∗, their bootstrap counterparts. As B →∞, therefore, the
double bootstrap P value tends to this distribution evaluated at the single bootstrap
P value, p∗, so that the ideal double bootstrap P value is

p∗∗ = R(p∗, n−1ν∗ − n−1/2θ∗).

The double bootstrap test rejects at nominal level α if p∗∗ < α, that is, if

Φ−1(p∗) < Q(α, n−1ν∗ − n−1/2θ∗). (40)

The rest of the proof closely mirrors the proof of Theorem 1. As with ν∗, we may write
θ∗ = θ +n−1/2h, with E(h) = O(n−1/2). Then we implicitly define δα by the relation

Q(α, n−1ν∗ − n−1/2θ∗) = Q(α, n−1ν − n−1/2θ)− n−3/2δα,

where, by use of (29), we see that δα =
∑

i hiHei−1(zα)+O(n−1/2). Inequality (40) can
now be written as Φ−1(p∗) + n−3/2δα < Q(α, n−1ν − n−1/2θ). Let the distribution of
the left-hand side of this inequality be characterized by n−1ν−n−1/2θ−n−1ζα, where
ζα is of order at most unity. As can easily be checked, it is at most of order n−1/2 in the
case of asymptotic independence of τ and µ∗. Thus the probability that (40) holds is

R
(

Φ(Q(α, n−1ν − n−1/2θ)), n−1ν − n−1/2θ − n−1ζα),

and so the ERP is n−3/2r
(

Q(α, n−1ν − n−1/2θ), ζα), as required.
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Table 1. Rejection frequencies at .05 level, 10,000 replications

n B Bootstrap FDB1 FDB2 Double Bootstrap
Case 1 50 199 0.04030 0.04930 0.05870 0.04660
Case 1 80 199 0.04490 0.05120 0.05950 0.04870
Case 1 120 199 0.05050 0.05400 0.06180 0.05210
Case 2 50 199 0.05790 0.04630 0.05900 0.03420
Case 2 80 199 0.04940 0.05090 0.05920 0.04970
Case 2 120 199 0.04600 0.04980 0.05660 0.04700
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Figure 1. Rejection Frequencies at Nominal .05 Level, Asymptotic Tests
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Figure 3. Rejection Frequencies at Nominal .05 Level, Case 2
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Figure 4. Rejection Frequencies at Nominal .05 Level, Case 3
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Figure 5. Rejection Frequencies at Nominal .05 Level, Case 4
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Figure 6. P value discrepancy plots, Case 1
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..................
..................
..................
...................
..................
..................
....................
...................
......................
.......................
.......................................


...................................................................................................................................................................................................................

.........................
......................................................................................

...............................
............................
..........................
....................
...................
.......................
.......................
...............................
..............................................

......................
..........................
...................
..................
.............................
........................
..................................
..................
..................
.....................
...........................
..........................
..................
..................
....................
.......................
...................
...................
....................
...................
....................
...................
....................
..................
....................
...................
...................
......................
.....................
...................
.........................
........................
......................
...................
...................
.....................
.....................
.....................
..........

.............................................................................................................................................................................................. ÊRP2, n = 50
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Figure 7. P value discrepancy plots, Case 4
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