Lecture 3: Other Selling Mechanisms

by

Ruqu Wang
1. Introduction to Bargaining and Posted Prices

- Posted Prices & Take-It-or-Leave-It Offers
 -- Posted prices: usually the seller posts the prices
 -- Take-it-or-leave-it offers: can be made by the seller or the buyer

 e.g. A seller and a buyer discussing the price of transaction
 $V_b=$buyer’s valuation, $V_s=$seller’s valuation
 $V_b \sim F(v), \ V_s \sim G(v)$; both are private information

 Posted price: seller maximizes $(p-V_s)[1-F(p)]$
 Take-it-or-leave-it offer made by the buyer:
 buyer maximizes $(V_b-p)G(p)$
Simultaneous Bargaining
-- buyer and seller make offers simultaneously
\[P_b = \text{buyer’s offer} \]
\[P_s = \text{seller’s offer} \]
-- determination of transaction price
\[\text{If } P_b < P_s, \text{ no trade;} \]
\[\text{If } P_b > P_s, \text{ transaction at } p = (P_b + P_s)/2 \]
-- this is fully efficient if \(P_b = V_b \) and \(P_s = V_s \)
 (truthful reporting of valuation)
 not an equilibrium without subsidies or surpluses
-- Characterization of equilibrium strategy
buyer \(P_b = B(V_b) \), seller \(P_s = S(V_s) \)
buyer maximizes \[\int_{V_s}^{S^{-1}(P_b)} \left(V_b - \frac{P_b + S(V_s)}{2} \right) g(V_s) dV_s \]
seller maximizes \[\int_{B^{-1}(P_s)}^{{\bar{V}_b}} \left(\frac{B(V_b) + P_s}{2} - V_s \right) f(V_b) dV_b \]

=> 2 simultaneous differential equations
=> equilibrium not fully efficient
=> it is second best: the most efficient solution with budget balance

-- If there is no uncertainty (i.e., \(V_s \) and \(V_b \) are known), then there are multiple equilibria with full efficiency.
 (There are also equilibria with no trade => not efficient)
2. Alternating-Offer Bargaining Models (perfect info)

- Rubinstein bargaining model
 - 2 players sharing a pie
 - Player 1 makes an offer, player 2 says “Yes” or “No”
 - If “Yes”, negotiation ends
 - If “No”, player 2 makes a counter-offer
 - Player 1 can now say “Yes” or “No”

........................
- Order of players making offers: 1, 2, 1, 2, 1, 2,........
- Game ends when an agreement is reached, or when pre-specified number of rounds (T) is reached
- If T=∞, negotiation could last indefinitely
3. Delays in Bargaining Models (private info)

- Delays or costly actions can be used to reveal private information
e.g. Strikes, Protests

- A model of one-sided uncertainty
 - seller’s value = \(s \)
 - buyer’s value = \(b \sim F(b) \)
 - continuous time
 - identical discount rate
 - once buyer’s value is revealed, \(p = (s+b)/2 \)
 (splitting the surplus of \(b-s \))
 - equilibrium strategy with delays
 - seller makes an offer of \(p(t) \) at time \(t \)
a buyer of type \(b \) accepts the offer at time \(T(b) \)

\[T^{-1}(t) \]

=> the type of buyer accepting an offer at \(t \) must be \(T^{-1}(t) \)

-- equilibrium conditions:

\[p(t) = \frac{s + T^{-1}(t)}{2} \]

\[t = T(b) \] maximizes

\[(b - p(t)) e^{-rt} = \left(b - \frac{s + T^{-1}(t)}{2} \right) e^{-rt} \]

equivalently, if the buyer pretends to be type \(b^* \), then \(b^* = b \) maximizes

\[\left(b - \frac{s + b^*}{2} \right) e^{-rT(b^*)} \]
First order condition:

\[T'(b) = -\frac{r}{b - s} \]

Let \(B(t) \) be the inverse function of \(T(b) \). Then

\[B'(t) = -\frac{B(t) - s}{r} \]

or

\[(B(t) - s)' = -\frac{B(t) - s}{r} \]

This is a completely separating equilibrium. (There could be partially pooling equilibria in this game.)
A model of two-sided uncertainty

-- seller’s value = \(s \sim G(s) \)

-- buyer’s value = \(b \sim F(b) \)

-- completely separating equilibrium strategy:

\[
b = B(t) \quad \text{reveals his type at} \quad t
\]
\[
s = S(t) \quad \text{reveals his type at} \quad t
\]

-- First order condition:

\[
(B(t) - S(t))' = -\frac{B(t) - S(t)}{r}
\]
4. Auctions vs Posted Price Selling

● Model Setup
-- Continuous time, infinite horizon, no discounting
-- One seller, one object
-- Buyers arrive according to Poisson process with rate of arrival λ
-- A buyer’s valuation $v \sim F(v)$, i.i.d.
-- The seller can use either auctions or posted prices
-- If the object is not sold, the seller can sell it later
-- Selling by posted prices \Rightarrow cost of display θ_d
-- Selling by auctions \Rightarrow cost of storage θ_s + auction fee Θ_a
• Sell by Posted Prices

-- Suppose the price is \(p \)

-- An arriving buyer buys with probability \(1-F(p) \)

-- The seller’s profit

\[
\Pi^S(p) = p - \frac{\theta_d}{\lambda(1-F(p))}
\]

-- First order condition:

\[
\frac{d}{dp} \Pi^S(p) = 1 - \frac{\theta_d f(p)}{\lambda(1-F(p))^2} = 0
\]

-- Define virtual function:

\[
J(v) = v - \frac{1-F(v)}{f(v)}
\]

-- At the optimal price, \(\Pi^S(p) = J(p) \)
Sell by Auctions

-- Auctioning off the object T units of time apart

-- Buyers arriving during $[0,T]$ are notified of the auction to be held at T

$[T,2T] \Rightarrow$ auction held at $2T$, ……

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>$2T$</td>
<td>$3T$</td>
</tr>
</tbody>
</table>

-- If k buyers arrive during the period of time, with reserve price p, the seller’s profit becomes

$$
\Pi(k, p) = \int_{p}^{\tilde{v}} vk(k-1)[1 - F(v)]F^{k-2}(v)f(v)dv
$$

$$
+ pk[1 - F(p)]F^{k-1}(p) + F^k(p)\Pi^A
$$
-- where

\[\Pi^A = \sum_{k=0}^{\infty} \Pi(k, p)P_k(T) - \theta_s T - \Theta_a \]

-- \(P_k(T) \) is the prob. that \(k \) buyers arrived within \(T \) units of time

● Conclusion:

-- Auctions more profitable when the valuation distribution is more dispersed
-- The dispersion concept is different from the variance of a distribution.
-- It is related to the slope of the virtual function \(J(v) \)
Figure 1. The Cumulative Distribution Functions and the Supports of Distributions
Plan for next lecture:
Mechanism Design

- Reading materials

