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Abstract

ABSTRACT: To model decisions and learning under short-term memories,

a two armed bandit problem is studied where the decision maker can only

recall the most recent outcome of his past decisions. Unlike the full memory

case, optimal learning strategies are shown to involve random and periodic

experimentation (in choosing the risky arm). We find that any optimal

strategy is necessarily time inconsistent, unless it calls for experimentation

with probability one or zero regardless of history. We show through an

example that the decision maker with short-term memories can benefit from

memory manipulation, sometimes by choosing to forget his past experience.



1 Introduction

People and society frequently learn from past experiences, either their own

or of past generations. Often however the complete record of past outcomes

maybe lost and only the recorded experiences of recent generations maybe

available to guide the actions of the present generation. In choosing this

action, it may differ from the advice of previous generations as each gener-

ation maybe skeptical of the experiences and stories of previous generations

as told to them by their parents. Further, in passing down their experience

to future generations, one may choose what memory to pass on, if at all. In

this paper we study issues of optimal decision-making, time inconsistency

and memory management in generational learning under the constraint of a

short-term memory.

The formal model we use is that of a single decision maker with short

term memories facing a two armed bandit. The two armed bandit prob-

lem, with one safe arm yielding a known, constant per-period payoff and

one risky arm with a stochastic per-period payoff and an unknown mean,

is a canonical model of dynamic learning and has been well-studied for a

decision-maker with full memory of all past experiences. In each period

the decision maker chooses, based on his entire history of past outcomes,

whether or not to experiment, i.e. play the risky arm. Instead we study

here the problem when the decision maker can only recall the outcome of

his previous period’s decision and must therefore make his decision based

on this one-period experience only. We use this particular form of imperfect

recall to capture an essential feature of generational learning, namely that

memory, both personal and societal, is often short-lived. Relatedly, with-

out imperfect recall, the issues of time inconsistency in decision-making and

deliberate memory manipulation would not arise.

We show that optimal learning strategies generally involve random and

periodic experimentation. Unlike in the case of full memory, here the opti-

mal probability of experimentation after getting an unfavorable payoff from
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the risky arm can be strictly between zero and one. Without such random-

ization, the decision maker with short term memories would be forced to

make a tough choice between stopping experimentation right after the first

unfavorable payoff form or continuing experimentation even after repeated

negative information about the risky arm. Instead, the optimal strategy

carefully calibrates the probability of experimentation to balance the need

to engage in some experimentation and the need to respond to negative

information. In periodic experimentation, the decision maker adopts a pos-

itive probability of resuming experimentation after having drawn the safe

arm in the previous period. Optimal strategies require the right combination

of periodic experimentation with random experimentation as a response to

the constraint of short term memories.

In deriving optimal learning strategies, we assume that at the start of

time the decision maker can commit not to modify his plan along the entire

learning process. Such commitment is extreme in the context of generational

learning. We show that optimal strategies are generally time inconsistent if

the decision maker is introspective in spite of the constraint of a short term

memory. That is, if he updates his belief based on the experience that he

recalls and the knowledge that he has acted according to the optimal strat-

egy in the past, then there exists points at which the decision maker would

want to deviate from this strategy. Only when the optimal strategy calls

for experimentation with probability one or zero regardless of information,

would it be time consistent. This happens only when the prior about the

risky arm is either extremely optimistic or extremely pessimistic, so that

the decision maker optimally disregards any information. Thus, the urge

to respond to new information and the incentive to deviate from ex ante

optimal learning go hand-in-hand in generational learning.

Random and periodic experimentation as part of an optimal learning

strategy reflects the need for the decision maker to retain the flexibility

in how to make use of information. This raises the possibility that the
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decision maker may benefit from managing or manipulating his “memory”

in the sense of not necessarily recording his experience truthfully (or even

not at all). Of course we assume that the decision maker knows his own

manipulation strategy, so that a simple relabeling of memory states has no

effect on his ex ante welfare. We demonstrate through an example how

memory manipulation can work without assuming that the decision maker

engages in any form of direct self deception. In this example, instead of

recording the outcome resulting from his most recent experimentation, the

decision maker chooses to sometimes retain the “clean slate” of null history

. This form of memory manipulation via “endogenous forgetfulness” allows

the decision maker to enrich the state space of his strategy, and helps improve

his ex ante welfare by responding better to new information.

The two armed bandit problem without the short term memory con-

straint is a simple example of a class of problems studied by Gittins (1989).

The short term memory constraint considered here is a type of complexity

constraints that focus on limited memory (see Lipman (1995) for a survey

of the literature). A standard way of modeling limited memory is a finite

automaton, which consists of a finite set of memory states, an action rule

that maps the set of states to a finite set of choices, and a transition rule that

maps the set of states and (finite set of) outcomes to the set of states (see

Rubinstein (1986) for an application of finite automata to repeated games

and for references to the literature on finite automata). A feasible strategy

for our decision maker with short term memories can be thought of as a

finite automaton with the set of per-period payoffs as the set of states and

the fixed transition rule that gives the state of the next period as the payoff

resulting from the current choice. To our knowledge, there is no work on

finite automata playing bandits; the closest is a recent paper by Börgers

and Morales (2004), who study a bandit model but with perfectly revealing

outcomes (about the two arms) and limited scope for learning. The present

paper is motivated by issues of time consistency and memory manipulation
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in generational learning, and we find the assumption of short term memories

more natural than generic finite automata. In particular, the issue of mem-

ory manipulation cannot be addressed with a finite automaton approach,

as the meaning of each memory state is optimally chosen and is therefore

endogenous with such an approach.1 Our assumption of short term mem-

ories is also a form of imperfect recall. The need for randomization and

the problem of time inconsistency under imperfect recall have been pointed

out by Piccione and Rubinstein (1997) using a particular example.2 We

also add to this literature by characterizing the solution to a well-studied

dynamic learning model under an intuitive constraint on memory capacity

and highlighting similar randomization and time consistency properties.

The rest of the paper is organized as follows. In the next section, we

describe the basic problem of a two armed bandit with short term memories.

Section 3 characterizes optimal learning strategies and shows that this can

involve random and periodic experimentation. In section 4 we show that

any optimal strategy is necessarily time-inconsistent, unless it calls for ex-

perimentation with probability one or zero regardless of history. In section 5

we consider the case of memory manipulation and show through an example

that memory management can improve ex ante welfare. Section 6 lists some

topics for further research. Detailed proofs of the propositions can be found

in the appendix.

1The same is true for decision models with limited memory and one time decisions,

such as Wilson (2004). Her characterization of optimal recording of outcomes in coarse

learning shares similarities with what we call memory manipulation here. The issue of

time inconsistency and experimentation however does not arise there as it involves once

and for all decisions. The same is true in Meyer (1991) where the memory states have

fixed, exogenous meanings.
2Studies of randomization under imperfect recall go back to Kuhn (1953). Kalai and

Salon (2003) define “non interactive” Markov decision problems, and show that under

imperfect recall, optimal strategies generally require randomization, but not in the action

rule. Our two armed bandit problem is interactive because the decision maker controls

the set of possible outcomes through his choice in each period.
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2 A Two Armed Bandit Problem with Short Term

Memories

To model a simple situation of experimentation and learning, we consider an

infinite horizon two armed bandit problem, with discrete time t = 1, . . . ,∞.
One of the arms is safe and gives a certain per-period payoff of 0. The risky

arm has either high average payoffs (state h) or low payoffs (state l), with

the decision maker’s prior probability in period 0 equal to η for the state

being h. We assume that the normalized per-period payoff from the risky

arm is either +1 or −1, with Pr[+|h] = Pr[−|l] = q and 1
2 < q < 1. Thus,

the risky arm has a symmetric binary signal structure.

In each period a decision maker must choose between the risky arm

(experimentation, e) and the safe arm (stop, s). The decision maker maxi-

mizes the period 0 discounted sum of his expected utility, with a per-period

discount factor δ ∈ (0, 1).
Without any memory constraint, in each period the decision maker can

recall all of his past experience and can base his action on the entire history of

past occurrences. His optimal learning strategy is then given by the solution

to a Bellman equation. Let p denote the current belief for state h, and U(p)

denote the optimal value of the decision maker’s objective function. The

Bellman equation for this problem is

U(p) = max{δU(p), (2p− 1)(2q − 1) + δ(pq + (1− p)(1− q))U(p(+))

+ δ((1− p)q + p(1− q))U(p(−))},

where

p(+) =
pq

pq + (1− p)(1− q)
, p(−) = p(1− q)

p(1− q) + (1− p)q

are Bayesian updates of the belief after getting payoffs of +1 and −1 respec-
tively from the risky arm. It is straightforward to establish the following: (i)

there is a unique function U(p) that satisfies the Bellman equation; (ii) U(p)
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is increasing and convex; and (iii) there exists p̂ < 1
2 such that U(p) = 0

(and the optimal choice is s) if p ≤ p̂ and U(p) > 0 (and the optimal choice

is e) if p > p̂.

In the present paper we are interested in exploring the consequences

of short-term memory on learning and experimentation strategies in this

framework. We thus make the extreme but simple assumption that in any

period the decision maker can only remember his experience from the pre-

vious period. To model this memory constraint, we assume that there are

four memory states: null memory (∅), a positive payoff of 1 from the risky

arm (+), a negative payoff of −1 from the risky arm (−), and a payoff of 0
from the safe arm (c). Denote a memory state as m ∈ {∅,+,−, c}. In line
with our focus on short-term memory, we make the assumption that except

for the first period, the decision-maker is unable to distinguish calendar-

time; thus, his chosen strategy is required to be time-independent. A pure

strategy sends each memory state m to a choice of experiment (e) or stop

(s). A behavioral strategy β maps each m to a probability βm of playing

e.3 The decision maker chooses β = (β∅, β+, β−, βc) to maximize his period

0 discounted sum of expected utilities.

3 Optimal Learning Strategies

Fix a strategy β. Suppose that the state is h. From the perspective of

period 0, the probability Xh
t of choosing the risky arm in period t = 1, 2, . . .

satisfies

Xh
t+1 = (1−Xh

t )βc +Xh
t (qβ+ + (1− q)β−).

Denoting Bh = qβ+ + (1− q)β− − βc, we thus have

Xh
t+1 = BhXh

t + βc.

3Since this is a decision problem with imperfect recall, Kuhn’s (1953) theorem of equiv-

alence of behavioral and mixed strategies does not hold. A mixed strategy in our model is

a period 0 randomization of pure strategies. It is easy to see that mixed strategies will not

improve over pure strategies given the von-Neumann expected utility formulation here.
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Using the above formula recursively and Xh
1 = β∅, we obtain

Xh
t = β∅(B

h)t−1 +
βc(1− (Bh)t−1)

1−Bh
.

Symmetrically, in state l, from the perspective of period 0 the probability

X l
t of experimenting in period t is given by

Xl
t = β∅(B

l)t−1 +
βc(1− (Bl)t−1)

1−Bl
,

where Bl = (1− q)β+ + qβ− − βc.

From a period 0 perspective, the expected payoff to experimentation in

any period t is 2q−1 in state h, and −(2q−1) in state l. Thus, the decision
maker’s period 0 discounted sum of expected utilities from the strategy β is

given by

V (β) = (2q − 1)(ηV h(β)− (1− η)V l(β)),

where

V h(β) =
∞X
t=1

δtXh
t ; V l(β) =

∞X
t=1

δtX l
t

Completing the geometric sums, we have

V (β) = δ(2q − 1)
µ
β∅ +

δβc
1− δ

¶µ
η

1− δBh
− 1− η

1− δBl

¶
. (1)

An optimal strategy β maximizes V (β) subject to βm ∈ [0, 1] for each m ∈
{∅,+,−, c}.

Intuitively, when the prior η on the state being h is very high, it would

be optimal to experiment for all memory states, while if it is very low, then

playing the safe arm would be optimal. The interesting decisions on whether

to experiment or not (and for which memory states) occur for intermediate

ranges of η. To characterize optimal strategies, we need the following three

threshold values for the prior η. Define

η0 =
1− δq

2− δ
and η1 = q.
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Note that η0 and η1 satisfy

1− η0
η0

=
1− δ(1− q)

1− δq
;

1− η1
η1

=
1− q

q
.

Since q > 1
2 , we have η0 <

1
2 < η1. Also define η∗ such that

1− η∗
η∗

=

µ
1− η1
η1

¶µ
1− η0
η0

¶2
.

It is straightforward to verify that η∗ ∈ (η0, η1) because q > 1
2 and δ < 1.

Next, for each η ∈ [η∗, η1], define K(η) such thatµ
1− q

q

¶µ
1 + δqK(η)

1 + δ(1− q)K(η)

¶2
=
1− η

η
. (2)

Note that K is a strictly decreasing function in η, with K(η∗) = 1/(1 − δ)

and K(η1) = 0.

We have the following characterization of optimal learning strategies:4

Proposition 1 An optimal strategy β satisfies: (i) (no experimentation)

β∅ = βc = 0 for η ≤ η0; (ii) (pure experimentation) β∅ = β+ = 1 and

β− = βc = 0 for η ∈ (η0, η∗]; (iii) (random and periodic experimentation)

β∅ = β+ = 1, and β− and βc satisfy (1 − β−)/(1 − δ(1 − βc)) = K(η) for

η ∈ (η∗, η1]; and (iv) (always experiment) β∅ = β+ = β− = 1 for η > η1.

Thus, a pure strategy is uniquely optimal in cases (i), (ii) and (iv) above.

For a sufficiently pessimistic prior (case (i), η ≤ η0), the optimal strategy

calls for no experimentation from the start and no experimentation ever. In

the opposite extreme when the prior is sufficiently strong (case (iv), η > η1),

the optimal strategy calls for experimentation from the start and continuing

4We do not give the value of βm for an optimal strategy if m occurs with 0 proba-

bility under the strategy. Thus, β+ and β− are unrestricted in case (i) below and βc is

unrestricted in case (iv).
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experimentation regardless of the experience from the risky arm. For inter-

mediate priors just above the no experiment region (case (iii), η ∈ [η0, η∗)),
the optimal strategy calls for initial experimentation, continuing experimen-

tation until the first negative payoff from the risky arm and no experimen-

tation thereafter.

The most interesting region is the case of intermediate priors just below

the always experiment region. Here there exists a continuum of optimal

strategies involving β− and βc. From the expression for V (β) in (1), we can

see that it is always optimal to set β∅ to 0 or 1. Further, it is intuitive that

as the memory state “+” is the most favorable, β+ should be set to 1 if there

is a positive probability of experimentation in any memory state.5 However,

the memory states “−” and “c” can involve random and periodic experimen-
tation. By “random experimentation,” we mean that β− is strictly between

0 and 1 i.e. in the memory state “−”, it is optimal to randomize between
experimentation and not. By “periodic experimentation,” we mean that βc
is great than 0 i.e. there maybe a continuous series of adopting the safe arm,

followed by experimentation (even though no new information has been ob-

tained). Such random and/or periodic experimentation is never observed

under full memory. Optimal strategies under short-term memory (if the

prior η is in the intermediate range (η∗, η1])require the right combination of

periodic experimentation with random experimentation, so that6

1− β−
1− δ(1− βc)

= K(η).

Since K(η) is decreasing in η, a more favorable prior about the risky arm

tends to increase both β− and βc. However, due to the multiplicity of op-

5The proof of Proposition 1 makes this point formal by showing that the derivative of

V with respect to β+ is strictly positive whenever the derivatives of V with respect to βc
or β− are weakly positive.

6Since β+ = 1, how frequent a learning strategy plays the risky arm is determined by

β− and βc. Intuitively, the ratio
1−β−

1−δ(1−δc) measures how frequent the learning strategy

plays the safe arm. The constraint on β− and βc below shows that β− and βc matter only

through their effects on this ratio.
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timal strategies, the experimentation probabilities in memory states “−”
and “c” are not necessarily monotone in the prior η. Instead, the two vari-

ables β− and βc are carefully calibrated to balance the need to engage in

some experimentation and at the same time the need to respond to negative

information.

Since K(η) satisfies

0 ≤ K(η) ≤ 1

1− δ

for all η ∈ [η∗, η1], the constraint on βc and β− can always be satisfied by

βc = 0 and β− = 1− (1− δ)K(η). Thus, there is always an optimal strategy
that uses random experimentation alone. Periodic experimentation can be

optimal but is not implied by optimality.

On the other hand, for a range of values of η in the random and periodic

experimentation region, there is an optimal learning strategy that does not

use random experimentation. Define η∗∗ such that K(η∗∗) = 1, orµ
1− q

q

¶µ
1 + δq

1 + δ(1− q)

¶2
=
1− η∗∗
η∗∗

.

Since K(η) is a decreasing function, we have η∗ < η∗∗ < η1. Then, for all

η ∈ [η∗, η∗∗], we can find βc ∈ [0, 1] such that

1

1− δ(1− βc)
= K(η).

Thus, in this range random experimentation can be optimal but is not im-

plied by optimality. Alternately, for η ∈ (η∗∗, η1], any optimal strategy under
short-term memory must involve random experimentation i.e. β− > 0.

4 Time (In)consistency

In this section we ask whether any of the optimal strategies characterized

in the previous section is time consistent. The decision-maker here chooses

his strategy β once-and-for-all at the beginning of period 0; so the question

here is whether given a chance, he would like to change his optimal strategy
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at any point in time. To answer this question, we need to assume that the

decision maker is “introspective” in spite of the short memory constraint.

This assumption requires that the decision maker remember the strategy he

is carrying out, and be capable of updating his belief about the risky arm

based on the current memory state and the knowledge that he has acted (pre-

viously) according to the optimal strategy. The issue of time (in)consistency

of an optimal strategy then reduces to the question of whether or not there

is a memory state m along the path at which the decision maker wants to

deviate from the (original) prescribed choice βm, with his updated belief

now taken as the prior i.e. whether βm = β∅(η
u
m), where η

u
m is the updated

prior when the memory state is m.

The short term memory constraint means that the decision maker can

not recall the calendar time except at the very first period, i.e. when the

memory state m is ∅. Thus, we have Pr[h|∅] = η, and there remain three

updated beliefs to compute, Pr[h|m] for m ∈ {+,−, c}. To define how the
belief about the risky arm is updated under any given strategy β, we use

the concept of “consistent beliefs” a la Piccione and Rubinstein (1997). The

idea is to use “Bayes’ rule” to compute the updated beliefs along the path

implied by β, even though the constraint of short term memory implies that

the numbers assigned to events are not probability numbers because they can

exceed 1. Further, due to the infinite horizon in our model, these numbers

can be infinity. We resolve this issue by introducing a small probability τ in

every period that the decision problem terminates in that period after the

choice between e and s is made, and then take τ to zero in the limit.7 Then,

we have

Pr[h|+] = lim
τ→0

η
P∞

t=1 τ(1− τ)tqXh
t

η
P∞

t=1 τ(1− τ)tqXh
t + (1− η)

P∞
t=1 τ(1− τ)t(1− q)X l

t

.

The interpretation is the decision maker assesses the belief about the risky

arm conditional on that the decision problem has stopped and the memory
7We are inspired by Wilson’s (2004) model of limited memory capacity with one time

decisions and an exogenous termination probability.
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state is +. Using the expressions for Xh
t and X l

t and taking the limit, we

have

ηu+ = Pr[h|+] =
ηq(1−Bl)

ηq(1−Bl) + (1− η)(1− q)(1−Bh)
.

Similar calculations lead to

ηu− = Pr[h|−] =
η(1− q)(1−Bl)

η(1− q)(1−Bl) + (1− η)q(1−Bh)
,

and

ηuc = Pr[h|c] =
η(1− βc −Bh)

η(1− βc −Bh) + (1− η)(1− βc −Bl)
.

Using these updated beliefs as the priors in the respective memory states,

we have the following result regarding time consistency of optimal learning

strategies.

Proposition 2 An optimal strategy for prior η is time consistent if and

only if η ∈ [0, η0] ∪ [η1, 1].

One can easily verify thatµ
1− q

q

¶µ
1−Bh

1−Bl

¶
≤ 1

for any β, with equality if and only if β− = 1 and βc = 0. Therefore,

ηu+ = Pr[h|+] ≥ η

i.e. the decision maker always becomes more optimistic about the risky

arm after a positive payoff regardless the strategy he is using (not just the

optimal strategies). Note that the optimal strategies given by Proposition

1 have the property that β+ is either 0 or 1, and whenever β+ = 1 for some

η then β∅ = 1 for all higher priors. Since a positive payoff never depresses

the decision maker’s belief, if an optimal strategy calls for experimentation

after a positive payoff i.e. if β+ = 1, he would not want to change the

decision if he takes the updated belief as his prior i.e. β∅(η
u
+) = 1. Therefore,
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the issue of time inconsistency does not arise after a positive payoff from

experimentation.

Time consistency does not necessarily arise after a negative payoff from

the risky arm. When the decision maker starts with a very optimistic belief

(in the always experiment region i.e. for η > η1), it turns out that his

updated belief after a negative payoff, ηu−, remains sufficiently upbeat so

that he will not deviate from the prescribed choice of β− = 1.

However, time consistency becomes a problem for all intermediate values

of the prior; this is however for different reasons, depending on whether the

prior is in the pure experimentation region or in the random and periodic

experimentation regions. In the former case, the decision maker is supposed

to stop at the first instance of a negative payoff, but the updated belief ηu−
would suggest experimentation is optimal. In fact, in this case the updated

belief in the memory state “−” is equal to the prior η – according to the

optimal strategy in this region, the first negative payoff could be either after

a series of positive payoffs from the risky arm, which would lead to a rather

favorable belief, or actually the first payoff, which would result in an unfa-

vorable belief. The situation in the random and periodic experimentation

region is more complicated. Essentially, since the probability of experimen-

tation at the beginning of the decision process (i.e. for the null history ∅) is
either 0 or 1 in any optimal strategy (except for the prior η = η0), random

and periodic experimental decisions (i.e. β− and/or βc in the interior) can

not be time consistent because they would require the updated beliefs, ηu−
and/or ηuc , to be precisely η0.

Thus, an optimal strategy is time consistent only in the never experi-

ment and always experiment regions. These two regions are precisely where

the decision maker does not respond to new information, and there is no

learning going on. In our model of dynamic decisions with short term mem-

ory, optimal learning and time consistency are necessarily linked to each

other. Since η0 decreases with q and η1 increases with q, the incidence of
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time inconsistency in optimal learning increases with the quality of signal.

Further, since η0 decreases with δ, time inconsistency in optimal learning is

more likely to arise with a more patient decision maker.

5 Memory Manipulation

If one casts the behavioral strategies of the decision maker with a short

term memory as finite automata, then we have considered only varying the

action rule while exogenously fixing the transition rule from one memory

state to another, namely the memory in any period is the previous period’s

experience. However, the characterization of optimal learning strategies

in Proposition 1, and in particular, random and periodic experimentations

being optimal, strongly suggests that the decision maker may want to vary

the transition rule as well. In other words, given that has a short-term

memory constraint, he may choose to manipulate what he remembers from

a particular period’s experience.

In general, different forms of memory manipulation may be considered.

For example, the decision maker may record a negative payoff as being pos-

itive. Since we assume that the decision maker can recall his own strategy,

including possible manipulations of memory states, pure relabeling of mem-

ory states will not add value. Hence we will directly assume that while the

decision-maker cannot deliberately misrepresent his current experience, he

may choose to simply not record it, instead retaining his memory state at

the beginning of the period. This may be thought of as “endogenous for-

getfulness.” The questions we are interested in exploring are when is such

forgetfulness optimal, and relatedly, what type of experience will it be opti-

mal to forget?

In this section we focus on the possible manipulation of only the initial

memory. Recall that the decision maker begins period 0 with the memory

state ∅. Here we investigate whether the decision maker can improve his
period 0 discounted sum of expected utilities by retaining the “clean slate”
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of null history (i.e., the memory state ∅) instead of recording the payoff
from the most recent experimentation. The interpretation in generational

learning would be that the generation that has made their choice does not

always admit its experience to the next generation of decision makers.

Formally, if the memory state at the beginning of a period is ∅, then
for each current period outcome m ∈ {+,−, c}, let γm be the probability of

replacing the memory state ∅ with m. While in the previous section γm = 1,
now γm is a choice variable for the decision-maker. Memory manipulation

with respect to the null history state ∅ occurs when γm < 1 for some m ∈
{+,−, c}. To simplify the analysis and build insight, memory manipulation
in memory states other than γm are ruled out by assumption, so that when

the beginning of period memory state is any m 6= ∅, then with probability
1 the decision maker replaces m with his current period experience.

Denote γ = (γ+, γ−, γc). Along with β, the decision maker now chooses

γ as well to maximize W (β; γ), the period 0 discounted sum of expected

utilities.

Fix a strategy β and γ. Suppose that the underlying true state is h. Let

Ph
t , N

h
t , Z

h
t and Fh

t be the ex ante probability (i.e., from period 0 perspec-

tive) of the memory state being +, −, c and φ respectively, at the beginning
of period t, t = 1, 2, . . .. The decision maker then makes her experimental

decision according to β, and her memory decision for the following period

according to γ. Together, the evolution of (Ph
t , N

h
t , Z

h
t , F

h
t ) is determined

by the following transition matrix:⎡⎢⎢⎢⎢⎢⎣
β+q β−q βcq β∅qγ+

β+(1− q) β−(1− q) βc(1− q) β∅(1− q)γ−

1− β+ 1− β− 1− βc (1− β∅)γc

0 0 0 Λh

⎤⎥⎥⎥⎥⎥⎦
where

Λh = (1− β∅)(1− γc) + β∅(q(1− γ+) + (1− q)(1− γ−)).
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Note that Λh = 0 if there is no memory manipulation, and we are back

in the formulation of the previous section. The initial values are given by

Ph
1 = Nh

1 = Zh
1 = 0 and Fh

1 = 1. It follows from the transition matrix that

Fh
t = (Λ

h)t−1

for each t.

Define

Xh
t = Ph

t β+ +Nh
t β− + Zh

t βc + Fh
t β∅

as the aggregate probability of experimentation in period t from a period 0

perspective. We claim that

Xh
t+1 = BhXh

t + βc +GhFh
t

for each t ≥ 1, where Bh is as defined in section 3 and

Gh = (β∅−β+)β∅q(1−γ+)+(β∅−β−)β∅(1−q)(1−γ−)+(β∅−βc)(1−β∅)(1−γc).

This can be verified by using

Ph
t +Nh

t + Zh
t + Fh

t = 1

for each t ≥ 1 and the transition matrix to establish it as an identity in Ph
t ,

Nh
t , Z

h
t and Fh

t . The explicit solution to the above difference equation is

then

Xh
t = β∅(B

h)t−1 +
βc(1− (Bh)t−1)

1−Bh
+

Gh((Λh)t−1 − (Bh)t−1)

Λh −Bh
.

As in section 2, define

Wh(β; γ) =
∞X
t=1

δtXh
t

=
δ

1− δBh

µ
β∅ +

δβc
1− δ

+
δGh

1− δΛh

¶
.

This reduces to V h(β) of section 2 when there is no memory manipulation.
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Symmetrically, defining

W l(β; γ) =
∞X
t=1

δtX l
t

and deriving X l
t in the same way as for X

h
t , we have

W l(β; γ) =
δ

1− δBl

µ
β∅ +

δβc
1− δ

+
δGl

1− δΛl

¶
,

where

Λl = (1− β∅)(1− γc) + β∅((1− q)(1− γ+) + q(1− γ−)),

and

Gl = (β∅−β+)β∅(1−q)(1−γ+)+(β∅−β−)β∅q(1−γ−)+(β∅−βc)(1−β∅)(1−γc).

Finally, we can write

W (β; γ) = (2q − 1)(ηWh(β; γ)− (1− η)W l(β; γ))

which is equal to V (β) when γ = 1. Comparing the case of manipulation

versus no-manipulation of memory, we have the following result:

Proposition 3 For all η ∈ (η∗, η1), maxβ V (β) < W (β0; γ) for some β0 and

γ 6= 1.

By definition, maxβ W (β; 1) is the optimal value of the period 0 dis-

counted sum of utilities when there is no memory manipulation. From the

characterization of Proposition 1 over the range η ∈ (η∗, η1), this optimal
value can be attained by using random and periodic experimentation, with

β∅ = β+ = 1 and β− and βc such that (1 − β−)/(1 − δ(1 − βc)) = K(η).

The claim of Proposition 3 is established by showing at any such optimal β

with no manipulation, there exists γ 6= 1 such that W (β; γ) > W (β; 1).

The rough intuition behind Proposition 3 may be understood as fol-

lows. Without memory manipulation, there are effectively only three mem-

ory states, +, − and c, because the initial memory state of ∅ exists only for
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the first period.8 Unlike those for +, − and c, the experimental decision

corresponding to ∅ is one time only. By the characterization of the optimal
learning strategy in Proposition 1, this decision β∅ is equal to 1 if the value

of objective function under an optimal learning strategy is positive, and 0

otherwise. In contrast, memory manipulation allows the decision maker to

make the memory state ∅ a recurring state. This can help improve the de-
cision maker’s ex ante welfare because an additional memory state can be

used to enrich the state space and allow the strategy to better respond to

new information. Of somewhat greater interest is the precise way that this

increase in value is achieved through memory manipulation i.e. which is/are

the memory states that the decision chooses to forget?

This can be made more precise by following the steps of the proof of

Proposition 3. We first observe that with β∅ = β+ = 1, the decision maker

attains the same ex ante payoff by setting γ+ = 0 and γ− = 1 as by no

memory manipulation (i.e. by setting γ+ = γ− = 1). The path of decisions

is identical in these two scenarios: if the payoff from the risky arm in the

first period is negative then because γ− = 1, one exits from the memory

state ∅, and follows the same path as no memory manipulation; while if the
first period payoff is positive, then too the same sequence of decisions are

made even though γ+ = 0, as β∅ = β+.

We ask if the decision maker can improve his ex ante payoff by reducing

γ− from 1 while maintaining γ+ = 0. The key is to note that under γ+ = 0

and γ− = 1 the memory state of ∅ carries information distinct from the

memory state of +: the state of ∅ occurs only after a string of positive
payoffs from the risky arm, whereas the state of + occurs only after getting

at least one negative payoff in the past. The former suggests a more favorable

belief about the risky arm and thus should lead to a greater probability

of experimentation than the latter, but such a distinction cannot be made

when there is no memory manipulation by the decision maker. With memory

8By assumption, the decision maker does not recall calendar time but is able to distin-

guish the first period from the rest of decision nodes.
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manipulation, this can be exploited by the decision maker by reducing γ− to

just below 1. Then, the decision maker has a positive probability of ignoring

a negative payoff when the current memory state is ∅. For small reductions
in γ−, the benefit of increasing experimentation when the state is likely to

be h outweighs the potential cost of repeatedly ignoring the unfavorable

information of negative payoffs.

Proposition 3 is proved by changing γ while maintaining the same op-

timal β as under no manipulation. This raises the question of whether the

decision maker not only wants to change γ but also wishes to deviate from

the optimal β with no manipulation. The answer is yes. To see this, for any

β and γ such that β∅ = β+ = 1, we can write W (β; γ) as

δ(2q − 1)η
1 + δ(1− q)K

µ
1

1− δ
+

δ(1− q)(1− γ−)K

1− δΛh

¶
− δ(2q − 1)(1− η)

1 + δqK

µ
1

1− δ
+

δq(1− γ−)K

1− δΛl

¶
,

where

K =
1− β−

1− δ(1− βc)
,

and

Λh = q(1− γ+) + (1− q)(1− γ−); Λl = (1− q)(1− γ+) + q(1− γ−).

Thus, as in section 2, β− and βc matter only through K. The derivative of

W (β; γ) with respect to γ+ has the same sign as

− η(1− q)

1 + δ(1− q)K

q

(1− δΛh)2
+
(1− η)q

1 + δqK

(1− q)

(1− δΛl)2
.

It is straightforward to verify that the second derivative of W (β; γ) with

respect to γ+ is strictly positive when the first derivative is zero. Similarly,

the derivative of W (β; γ) with respect to γ− has the same sign as

− η(1− q)

1 + δ(1− q)K

1− δq(1− γ+)

(1− δΛh)2
+
(1− η)q

1 + δqK

1− δ(1− q)(1− γ+)

(1− δΛl)2
,
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with a strictly negative sign for the second derivative when the first deriv-

ative is zero. Further, one can easily check that ∂W/∂γ+ ≥ 0 implies that
∂W/∂γ− > 0. It follows that the optimal value for γ+ is either 0 or 1, and

γ− ≥ γ+ at an optimum.

The derivative of W (β; γ) with respect to K has the same sign as

− η(1− q)

(1 + δ(1− q)K)2
Ah +

(1− η)q

(1 + δqK)2
Al,

where

Ah = 1− (1− δ)(1− γ−)

1− δ + δqγ+ + δ(1− q)γ−
;

Al = 1− (1− δ)(1− γ−)

1− δ + δ(1− q)γ+ + δqγ−
.

If γ+ < γ−, then Ah < Al and therefore ∂W (β; γ)/∂K > 0 at K = K(η).

We already know from Proposition 3 above that for any η ∈ (η∗, η1) (i.e. in
the random and periodic experimentation region), the decision maker can

improve ex ante welfare by memory manipulation without changing the op-

timal learning strategy β under no manipulation. At any such manipulation

we must have γ+ < γ−, which then implies that the decision maker could

further increase his ex ante payoff with changes in the learning strategy β

by increasing K.9

This issue of doing better through memory manipulation by at the same

time deviating from the no-manipulation β acquires more importance in the

pure experimentation range i.e. η ∈ (η0, η∗] where the optimal no manipu-
lation β consists of β∅ = β+ = 1 and β− = βc = 0. Denote this β as β

nm.

Now for a given γ, we have:

Wh(βnm; γ)−Wh(βnm; 1) =
δ2

1− δq

(1− q)(1− γ−)

1− δ[q(1− γ+) + (1− q)(1− γ−)]

9Given the interpretation ofK as a measure of the frequency of playing the safe arm, an

increase in K compensates the increase in the probability of experimentation that comes

with memory manipulation (i.e. a decrease in γ− to below 1).
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Similarly computingW l(βnm; γ)−W l(βnm; 1) and combining the two, we

obtain the difference between memory-manipulation and no-manipulation as

W (βnm; γ)−W (βnm; 1) =

δ2(2q − 1){ η

1− δq

(1− q)(1− γ−)

1− δ[q(1− γ+) + (1− q)(1− γ−)]

− 1− η

1− δ(1− q)

q(1− γ−)

1− δ[(1− q)(1− γ+) + q(1− γ−)]
}

This expression has the same sign as:

E =
η

1− η
− q

1− q

1− δq

1− δ(1− q)

1− δ[q(1− γ+) + (1− q)(1− γ−)]

1− δ[(1− q)(1− γ+) + q(1− γ−)]

It is easy to check that the second term here is increasing in γ+ and de-

creasing in γ−, and thus achieves its lowest value when γ+ = 0 and γ− = 1.

Therefore we have

E ≤ η

1− η
− q

1− q

µ
1− δq

1− δ(1− q)

¶2
=

η

1− η
− η∗
1− η∗

which is non-positive for η ∈ (η0, η∗]. Thus, in the pure experimentation
region, we have W (βnm; γ) −W (βnm; 1) with equality only if and only if

η = η∗. This implies that in this range if there is to be any gain from memory-

manipulation, one has to necessarily deviate from the no-manipulation op-

timal strategy of βnm.

6 Open Questions

This paper analyzes a simple model of dynamic decisions with short term

memories. We have looked at a two armed bandit problem as a framework

suggestive of the time inconsistency and memory manipulation issues we

want to study in generational learning. The short term memory constraint

takes a particularly simple form in our model. It will be worthwhile to pur-

sue more general forms of such a constraint, for example by allowing the

decision maker to recall the past experience of more than a single period.
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In particular, we have shown that optimal learning strategies are necessarily

time inconsistent if they are responsive to new information. Whether this is

true with more general dynamic decision problems and more general short

term memory constraints remain to be seen. Further, the memory manipu-

lation considered in this paper is one of many ways available to the decision

maker. Whether, and how, other kinds of manipulation can improve the

ex ante welfare of the decision maker are interesting topics that we plan to

pursue in future research. Finally, we have treated the issues of time incon-

sistency and memory manipulation separately. Is there a link between these

two issues? In particular, does manipulation make the optimal policy more

likely to be time inconsistent?

7 Appendix: Proofs

7.1 Proof of Proposition 1

Since V (β) is linear in β∅, we have β∅ = 1 if V (β) > 0 at any optimal β, and

β∅ = 0 otherwise. The 0 payoff can be implemented by setting β∅ = βc = 0,

regardless of β+ and β−. We have:

V (β∅ = βc = 0) = 0.

For the remainder of the proof, we assume that β∅ = 1.

The derivatives of V (β) with respect to β−, βc and β+ are given by:

∂V

∂β−
=

δ2

1− δ
(2q − 1) (1− δ + δβc)

µ
η(1− q)

(1− δBh)2
− (1− η)q

(1− δBl)2

¶
,

∂V

∂βc
=

δ2

1− δ
(2q − 1)

µ
η(1− (qβ+ + (1− q)β−))

(1− δBh)2
− (1− η)(1− ((1− q)β+ + qβ−)

(1− δBl)2

¶
,

∂V

∂β+
=

δ2

1− δ
(2q − 1) (1− δ + δβc)

µ
ηq

(1− δBh)2
− (1− η)(1− q)

(1− δBl)2

¶
.

It is straightforward to verify that

1− q

q
≤ 1− (qβ+ + (1− q)β−)

1− ((1− q)β+ + qβ−)
≤ q

1− q
,
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with the first as an equality if and only if β+ = 1, and the second as an

equality if and only if β− = 1.

It follows that the signs of the derivatives of V (β) with respect to β−,

βc and β+ are ordered: ∂V/∂β− ≥ 0 implies that ∂V/∂βc > 0 if β+ < 1,

and the two have the same sign if β+ = 1; while ∂V/∂βc ≥ 0 implies that
∂V/∂β+ > 0 if β− < 1, and the two have the same sign if β− = 1. We

distinguish the following three cases.

(1) If β+ = 0, then ∂V/∂β+ ≤ 0 at the optimum, implying that ∂V/∂βc < 0
and ∂V/∂β− < 0, and therefore βc = β− = 0. In this case

V (β∅ = 1, β+ = β− = βc = 0) = δ(2q − 1)(2η − 1).

(2) If β+ is in the interior, then βc = β− = 0 as in case (1). We have:

∂V

∂β+
=

δ2(2q − 1)
1− δ

µ
ηq

(1− δqβ+)
2
− (1− η)(1− q)

(1− δ(1− q)β+)
2

¶
.

Thus, there can be at most one critical point at which ∂V/∂β+ = 0. Eval-

uating the second derivative at this point, we find that ∂2V/∂β2+ has the

same sign as
q

1− δqβ+
− 1− q

1− δ(1− q)β+
,

which is positive because q > 1
2 . It follows that an interior β+ can not be

optimal.

(3) If β+ = 1, then ∂V/∂β+ ≥ 0 at the optimum. This case allows for

interior solutions in βc and β−. Since β+ = 1, the signs of ∂V/∂βc and

∂V/∂β− are the same, and so both βc and β− can be interior at the same

time. Indeed, with β∅ = β+ = 1, we can rewrite V as:

V =
δ(2q − 1)
1− δ

µ
η

1 + δ(1− q)K
− 1− η

1 + δqK

¶
,

where

K =
1− β−

1− δ(1− βc)
.
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By definition, we have 0 ≤ K ≤ 1/(1 − δ). Since V depends on β only

through K, we can take derivatives with respect to K and get the following

first order condition:

− η(1− q)

(1 + δ(1− q)K)2
+

(1− η)q

(1 + δqK)2
= 0.

Define K(η) as the point that satisfies the above first order condition. This

is done in (2). It is straightforward to verify that the second order condition

is satisfied at K = K(η). Thus, if K(η) ∈ [0, 1/(1− δ)], the maximal payoff

with β∅ = β+ = 1 is reached when βc and β− satisfy

1− β−
1− δ(1− βc)

= K(η).

Using the definitions of K(η), η1 and η∗, we have K(η) ≥ 0 if and only if
η ≤ η1, while K(η) ≤ 1/(1 − δ) if and only if η ≥ η∗. The maximal payoff

with β∅ = β+ = 1 for η ∈ [η∗, η1] is thus given by

V (β∅ = β+ = 1, β− and βc s.t.
1− β−

1− δ(1− βc)
= K(η))

=
δ(2q − 1)
1− δ

µ
η

1 + δ(1− q)K(η)
− 1− η

1 + δqK(η)

¶
.

For all η > η1, one can verify that ∂V/∂K < 0 for all K > 0, implying

that K = 0 at the optimum and thus β− = 1 (βc is unrestricted). The

maximal payoff with β∅ = β+ = 1 for η ≥ η1 is then given by

V (β∅ = β+ = β− = 1) =
δ(2q − 1)(2η − 1)

1− δ
.

For all η < η∗, we have ∂V/∂K > 0, implying that K = 1/(1− δ) at the

optimum and thus β− = βc = 0. The maximal payoff with β∅ = β+ = 1 for

η ≤ η∗ is then given by

V (β∅ = β+ = 1, βc = β− = 0) = δ(2q − 1)
µ

η

1− δq
− 1− η

1− δ(1− q)

¶
.

From the definition for η0, this is positive if and only if η > η0.
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Comparing case (3) with case (1), note that K = 0 yields the same value

as 1
1−δV (β∅ = 1, β+ = β− = βc = 0). Therefore whenever case (1) gives

a positive value for V, it is dominated by case (3). Thus, case (1) can not

occur at the optimum.

The complete characterization of optimal strategies in Proposition 1 then

follows immediately from the analysis of case (3).

7.2 Proof of Proposition 2

We check time consistency for each of the four cases in Proposition 1 sepa-

rately.

Case (i) η ≤ η0: The only memory state that occurs with positive prob-

ability after the initial period is c. To calculate Pr[h|c], we need to make
assumptions on the values of β+ and β−, which are unrestricted in this case.

We choose β+ = β− = 0, implying that

Pr[h|c] = η

η + (1− η)
= η.

Since the updated belief stays at η, the optimal strategy (β∅ = β+ = β− =

βc = 0) is time consistent in this case.

Case (ii) η ∈ (η0,η∗]: Here we have

Pr[h|−] = η(1− q)q

η(1− q)q + (1− η)q(1− q)
= η,

which is greater than η0 by assumption, while β− = 0. Thus, the optimal

strategy is time inconsistent in this case.

Case (iii) η ∈ (η∗,η1]. Note that the optimal β∅ is either 0 or 1, except when
η = η0, in which case an interior β∅ can be optimal because the decision

maker is indifferent e and s. Since at least one of βc or β− must be in the

interior in any optimal strategy in case (iii), time consistency would require

the corresponding updated belief Pr[h|c] or Pr[h|−] to equal η0.
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In this case,

Pr[h|−] = 1

1 +
(1−η)q[βc+(1−q)(1−β−)]
η(1−q)[βc+q(1−β−)]

, Pr[h|c] = 1

1 +
(1−η)q(1−β−)
η(1−q)(1−β−)

Thus,

Pr[h|c] ≤ Pr[h|−],

with equality if and only if β− = 1, which can only occur when η = η1. Since

at least one of βc or β− must be in the interior (and β− 6= 1 for η < η1) the

only possibility for consistency is that Pr[h|−] = η0 > Pr[h|c] and βc = 0.

However this would then imply Pr[h|−] = η which in this case exceeds η0
as η∗ > η0. Thus in this case, there is no optimal strategy which is time

consistent.

Case (iv) η > η1: We have

Pr[h|−] = η(1− q)

η(1− q) + (1− η)q
.

Using the definitions of η0 and η1, we can verify that Pr[h|−] > η0 for all

η > η1 because η0 < 1
2 . Since β− = 1 (and also β+ = 1), the optimal

strategy is time consistent in this case.

7.3 Proof of Proposition 3

For any η ∈ (η∗, η1), let β be such that β∅ = β+ = 1, β− = 0 and βc satisfies

1

1− δ(1− βc)
= K(η).

Then, we can write the difference betweenW (β; γ) for any γ andW (β; γ+ =

γ− = 1) as

δ2(2q − 1)
µ

(1− q)(1− γ−)ηK

(1 + δ(1− q)K)(1− δΛh)
− q(1− γ−)(1− η)K

(1 + δqK)(1− δΛl)

¶
,

where

Λh = q(1− γ+) + (1− q)(1− γ−);

Λl = (1− q)(1− γ+) + q(1− γ−).
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Note that

W (β; γ+ = 0, γ− = 1)−W (β; γ+ = γ− = 1) = 0.

The derivative of W (β; γ)−W (β; γ+ = γ− = 1) with respect to γ−, evalu-

ated at γ− = 1, has the same sign as

− (1− q)ηK

(1 + δ(1− q)K)(1− δq(1− γ+)
+

q(1− η)K

(1 + δqK)(1− δ(1− q)(1− γ+))
.

Since

(1− q)η

(1 + δ(1− q)K(η))2
=

q(1− η)

(1 + δqK(η))2
,

the sign of the derivative evaluated at K = K(η) is the same as

δ(2q − 1)K(η)
1− δ(1− γ+)

µ
K(η)− 1− γ+

1− δ(1− γ+)

¶
.

For γ+ = 0, we have K(η) > 0 and K(η) < 1/(1 − δ) for all η ∈ (η∗, η1).
Thus, the derivative of W (β; γ) −W (β; γ+ = γ− = 1) with respect to γ−,

evaluated at γ− = 1, γ+ = 0 and K = K(η) is strictly positive for all

η ∈ (η∗, η1). The proposition follows immediately.
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