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Abstract

If migration between communities is costless, and if policy mak-
ers in each community anticipate the migration response to policy
changes, then the interests of the two communities are perfectly aligned.
Decentralization is efficient. Here, the consequences of positive migra-
tion costs for this incentive equivalence are considered. In contrast
with most of the literature, migration costs are assumed the same for
everyone. This provides a more simple (if less realistic) model than the
usual “attachment to home” assumption of heterogeneous migration
costs. Conditional on the direction of migration, interests of differ-
ent communities are still perfectly aligned. But natives of different
communities may prefer different directions of migration, weakening
incentive equivalence if local policy makers have the power to induce
large changes in migration flows.

1 Introduction

Boadway (1982) showed that mobility across jurisdictions aligns the incen-
tives of self–interested local policy makers, if these policy makers recognize
the impact of their policies on migration. This observation has given rise to
an extensive literature. Following Wellisch (2000), the theme of this litera-
ture will be described here as “incentive equivalence”.

This theme is the relation between outcomes of two allocation mecha-
nisms, in a nation consisting of two communities. In the first, a benevolent
central planner chooses policies for both communities, so as to maximize some
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measure of national welfare. In the second, agents in each community pick
policies for that community, seeking to maximize some parochial measure of
welfare of natives of their own community. The outcomes under this second
mechanism are the Nash equilibria, when the 2 communities’ policy mak-
ers act simultaneously and non–cooperatively. Much of the literature shows
that the two sets of outcomes are the same, if people are mobile between
communities.

In Boadway (1982), the policies being chosen are the level of expenditure
in each community of some publicly provided consumption good. There are
no costs to migration between communities. Transfers are not made between
communities.

When the publicly provided good is not perfectly rivalrous, free mobility is
actually inefficient, as noted by Flatters, Henderson and Mieszkowski (1974),
and Boadway and Flatters (1982). The central planner in the first allocation
mechanism would like to make non–zero transfers between communities if
these were possible, and if migration could not be controlled directly. My-
ers (1990) extends the set of government instruments, by allowing for such
transfers. He shows that incentive equivalence still holds, if the two local
decision makers have — between them — the same set of policy instruments
as does the central planner.

Mansoorian and Myers (1993) relax the assumption of costless mobility,
by assuming that migration costs vary among people. They show that a
form of incentive equivalence still holds : all Nash equilibria are efficient.
However, the introduction of migration costs introduces some conflict : there
is a trade–off between the net income of natives of the two communities.

Much of the literature has used the Mansoorian–Myers “attachment to
home” formulation of migration costs.1 The key feature of this formulation
is that the cost of moving from community 1 to community 2 is distributed
over some interval on both sides of zero.

Here a slightly different imperfection to mobility is considered. All resi-
dents, regardless of their place of origin, face an identical, fixed, non–negative
cost µ of moving to the other community. Hercowitz and Pines (1991) use this
specification, in a dynamic, stochastic model, in which productivity shocks
occur over time.

1For example, Wellisch (1994), Mansoorian and Myers (1997), and Caplan, Cornes and
Silva (2000). The specification of the distribution of transport costs in Kanbur and Keen
(1993) is formally equivalent to this formulation.
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There are two issues which are examined here. The first is the potential
conflict between equity and efficiency which is introduced by non–zero mi-
gration costs. This conflict has been examined elsewhere 2, but arises here in
a fairly stark and simple manner. The second is the implications of non–zero
mobility costs for incentive equivalence.

The basic model, presented in the following section, is quite standard,
and represents something of a special case of those used in the very large
literature on incentive equivalence which has developed in the last quarter–
century or so. A distinguishing feature of the analysis is an emphasis on
large policy deviations. A subsidiary message of this paper is that calculus
is not necessary for many of the results on incentive equivalence — and
that calculus is not sufficient for many of the results unless strong convexity
assumptions are imposed.

2 The Model

There are two communities. The number of people born in community i is
N̄i. The cost of migration between communities is µ ≥ 0 ; this cost is the
same for all people. The population of community i will be denoted by Ni,
with N1 +N2 = N̄1 + N̄2.

The fiscal variables chosen in community i will be divided. There is a
vector zi of “policies” : the obvious example here would be the quantity
provided of a pure public good. Distinct from that is a special head tax ti
devoted to financing transfers to the other community. So if t1 > 0 is chosen
for community 1, then every resident of community 1 has to pay a special
tax of t1, and every resident of community 2 gets a transfer of N1

N2
t1. The net

transfer to each resident of community i therefore is

gi ≡
Nj

Ni

tj − ti

where j indexes the other community.
So the tax ti pays only for transfers to the other community’s residents.

The cost of domestic policies zi is divided equally among all residents of the
community.

The utility anyone gets from living in community i will be denoted

U i(Ni, gi, z
i)

2It is a major concern in Mansoorian and Myers (1993)
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with ∂U i

∂gi
> 0.

Several aspects of this specification of preferences should be noted :

• The form of the utility function may vary between communities : one
community may have a more attractive climate, or distinctive features
which affect the net effect of public expenditure.

• The utility function does not vary among people : immigrants and
natives have the same U i(Ni, gi, z

i)

• This measure U i is gross of migration costs : a native of community 1
would get a payoff of U1(N1, g1, z

1) if she stayed at home, and a payoff
of U2(N2, g2, z

2)− µ if she migrated to community 2.

• The cost of public expenditure is included in the impact of each com-
ponent in zi : so ∂U i

∂zi
k

would be the benefit of increases in the quantity

of the public good (if zik is the quantity of the public good), minus the
harm from the increased costs paid by each resident.

• There are no spillovers.

Costs of migration are measured in utility units. This assumption that
preferences are separable in migration costs simplifies the analysis consider-
ably. If migration costs were measured in dollars, and if preferences were not
quasi–linear, then income effects would imply that immigrants to community
i would prefer a different policy zi than natives of the community.

The above specification includes as a special case a more specific model,
in which : (i) a homogeneous output is produced in community i using a
concave production function F (Ni) ; (ii) residents of community i are paid
a wage equal to their marginal product ; (iii) all residents of the nation
share equally in the rents earned from production ; (iv) the fiscal policy is
the quantity Z of a single pure public good ; (v) people have quasi–linear
preferences, getting utility x + vi(Z) if they consume x units of the private
good and Z units of the public good. In this special case

U i(Ni, gi, z
i) ≡ F ′i (Ni) + r + vi(Zi)−

Zi
Ni

(1)

where the rent share r is defined by

r =
F1(N1) + F2(N2)− F ′(N1)N1 − F ′(N2)N2

N̄1 + N̄2
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In fact, the generality is quite spurious. All of the counter–examples con-
structed in subsequent sections will involve this special case. The special case
described by equation (1) will be denoted below as the “standard example”.

3 Public Policies and Migration Responses

For ease of comparison, the same set of policy instruments will be avail-
able, whether a national central planner is in charge, or whether policies are
decentralized to local authorities.

In the first case, the national central planner chooses the policy vector
(t1, t2, z

1, z2) to maximize some national welfare function, taking into account
the migration response of people to the policies chosen. In the second case,
the authority in community i chooses the fiscal variables (ti, z

i) for her own
community, taken as given the fiscal variables chosen in the other community,
as well as the migration response of people to the policies chosen. As in Myers
(1990), I assume that communities can give, but cannot take unilaterally :
under decentralization, each ti is constrained to be non–negative.3

No redistribution among residents of a given community is allowed. There
are no direct impediments to mobility. These restrictions imply that all
natives of a given community will get the same payoff, whether authority is
centralized or decentralized. If ui denotes the utility achieved by a native of
community i, then the central planner’s preferences can be represented by
some welfare function W (u1, u2). For the most part, all that will be assumed
about the welfare function is that it is strictly monotonic. But for some
results, it will be further assumed that the central planner has “equalizing”
preferences.

The welfare function W (u1, u2) is equalizing if :

1. W (u1, u2) is a quasi–concave function.

2. W1(u,u)
W2(u,u)

= N̄1

N̄2
whenever utility is the same for natives of each community

These assumptions ensure an equalizing central planner would choose
complete equality of utility if the utility possibility frontier were a line, N1u

1+
N2u

2 = Ū .

3For symmetry, the central planner as well can choose ti for each community, and must
have ti ≥ 0. This non–negativity restriction is not needed for the central planner, since
one of the tax instruments is redundant.
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It also should be emphasized what is implied by not allowing redistribu-
tion among residents of a given community. Any transfer system based on
people’s place of birth is being ruled out.4 In a first–best world, in which
productivity differences between communities are large, and migration costs
are fairly high, an egalitarian central planner might want to induce migra-
tion from the less–productive to the more–productive community, but then
to redistribute these productivity gains by paying transfers to the less–well–
off natives of the less–productive community. By resdistributing based on
people’s place of origin, rather than their place of residence, the planner
would avoid distorting migration choices. In this paper, such redistribution
based on place of origin is not allowed. This restriction raises the possibil-
ity of a conflict between equity and efficiency. As in most of the literature
on incentive equivalence, the issue is whether mobility between communities
eliminates this conflict.

The migration response to a pair of fiscal variables is defined in the usual
manner. People are assumed numerous enough that they ignore their own
impact on utility attainable in each community. Then a “migration outcome”
is any pair (N1, N2), with N1 + N2 = N̄1 + N̄2, such that no–one wants to
move. Given that migration can go in either direction, and that corner
solutions may occur, 5 possible types of migration outcome can arise :

Given fiscal variables (t1, t2, z
1, z2), a migration outcome is any popu-

lation pair (N1, N2), with N1 +N2 = N̄1 + N̄2, such that one of the following
5 conditions holds :

i. N1 = 0 and U1(N1, g1, z
1)− U2(N2, g2, z

2) < −µ

ii. 0 ≤ N1 ≤ N̄1 and U1(N1, g1, z
1)− U2(N2, g2, z

2) = −µ

iii. N1 = N̄1 and µ > U1(N1, g1, z
1)− U2(N2, g2, z

2) > −µ

iv. N̄1 ≤ N1 ≤ N̄1 + N̄2 and U1(N1, g1, z
1)− U2(N2, g2, z

2) = µ

v. N1 = N̄1 + N̄2 and U1(N1, g1, z
1)− U2(N2, g2, z

2) > µ

For any set of fiscal variables (t1, t2, z
1, z2), some migration outcome must

exist, provided only that the U i’s are continuous in the population levels. But
the problem is that there may be multiple migration outcomes. This problem

4except when there is no migration
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was outlined clearly by Stiglitz (1977). In the standard example described
in the previous section, population increases in a community have two ef-
fects, one “stabilizing” and one destabilizing. With a concave production
function, migration lowers the wage in a community, making the community
less attractive. But migration lowers the per capita cost of the public sector,
making the community more attractive. If the latter effects, the consequences
of non–rivalry in consumption of the public good, are strong, then U1 − U2

may increase as N1 increases and N2 decreases, leading to the possibility that
there are multiple migration outcomes corresponding to a given set of fiscal
variables.

With a single central planner, the multiplicity of migration outcomes is
usually not taken as a great difficulty. As is standard, it is assumed here that
the central planner can somehow pick the migration outcome she wants, if
there are multiple migration outcomes for the fiscal variables chosen. So the
set of utility pairs (u1, u2) which can be achieved by a central planner are
those pairs corresponding to some vector (N1, N2, t1, t2, z

1, z2) such that

a. (t1, t2, z
1, z2) is feasible

b. (N1, N2) is a migration outcome for (t1, t2, z
1, z2)

c. ui = max(U i(Ni, gi, z
i), U j(Nj, gj, z

j)−µ) j 6= i, where g1 = N2

N1
t2− t1

and g2 = N1

N2
t1 − t2

Under decentralization, the selection of a migration outcome may be more
problematic. If authorities in some community are somehow allowed to pick
and choose among migration outcomes, then deviation from a given outcome
becomes more attractive. But is it sensible for a community to expect to
attract population by making the community less attractive to immigrants?
If this sort of selection appears unreasonable, then the following selection
rule may be a useful restriction on the consequences of changes in fiscal
variables. Here a unilateral change of fiscal variables in one community can
affect the utility from living in the other community, since an increase in t1
must increase g2 = N1

N2
t1 − t2.

Selection Rule : Suppose that (N1, N2) is a migration outcome for
fiscal variables (t1, t2, z

1, z2), and community 1 is considering a unilateral
deviation to some set of other, less attractive fiscal variables (t′1, z

1′
), for

which U1(N1, g
′
1, z

1′
)−U2(N2, g

′
2, z

1′
, z2) < U1(N1, g1, z

1)−U2(N2, g2, z
1, z2)
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(where g′1 ≡ N2

N1
t2− t′1 and g′2 ≡ N1

N2
t′1− t2). Then the new migration outcome

(N ′1, N
′
2) corresponding to (t′1, t2, z

1′
, z2) obeys the selection rule if N ′1 ≤

N1. An analogous rule applies for unilateral changes in community 2’s fiscal
variables.

In other words, the selection rule says that authorities expect to lose
population if they make their policies less attractive.

For any unilateral policy deviation, there always must be some migration
outcome satisfying the selection rule, so that this rule is a fairly convenient
way of making more precise the consequence of policy changes in a decen-
tralized environment.

Lemma 1 If (N1, N2) is a migration outcome for fiscal variables (t1, t2, z
1, z2),

then for any feasible change in fiscal variables by community i, which lowers
U i − U j, there exists a new migration outcome (N ′1, N

′
2) satisfying the selec-

tion rule. If N1 6= N̄1 initially, and 0 < N1 < N̄1 + N̄2 [that is, if there is
some migration, and if both communities still are populated], then any new
migration outcome satisfying the selection rule does so with strict inequal-
ity. [That is, if N1 6= N̄1 initially, for any change in community 1’s fiscal
variables which lowers U1 − U2, holding population constant, there is a new
migration outcome for which N ′1 < N1.]

Proof Without loss of generality, only changes in fiscal variables by commu-
nity 1 will be considered here. Five cases are possible for the initial migration
outcome.

In each case, the proof consists of considering the effects of changes in
fiscal variables on the function defining U1 − U2 as a function of N1. This
function is continuous. By construction, the change in fiscal variables must
lower this curve, at the initial migration outcome N1.

case 1 , N1 = 0 : Initially, before the change in fiscal variables, U1−U2 <
−µ, from the definition of migration outcome. The change in fiscal variables
in community 1 lowers U1 − U2 at N1 = 0, so that N1 = 0, N2 = N̄1 + N̄2 is
still a migration outcome after the change in fiscal variables.

case 2, 0 < N1 < N̄1 : Initially, before the change in fiscal variables,
U1 − U2 = −µ, from the definition of migration outcome. The change in
fiscal variables lowers U1 − U2 below −µ at the initial population level N1.
Continuity then implies that either U1 − U2 < −µ for all 0 ≤ N ′1 ≤ N1, in
which case there is a migration outcome at N1 = 0, or that there is some N ′1
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in (0, N1) for which U1 − U2 = −µ ; such an N ′1 < N1 would be a migration
outcome for the new fiscal variables.

case 3, N1 = N̄1 : Initially, before the change in fiscal variables, µ ≥
U1 − U2 ≥ −µ, from the definition of migration outcome. If the change in
fiscal variables lowers the U1 − U2 curve by a small amount at N1 = N̄1, so
that U1 − U2 still is greater than or equal to −µ, then N1 = N̄1 still is a
migration outcome. On the other hand, if U1 − U2 < −µ at N1 = N̄1 after
the change, then the analysis of case 2 above applies.

case 4, N̄1+N̄2 > N1 > N̄1 : Initially, before the change in fiscal variables,
U1 − U2 = µ, from the definition of migration outcome. After the change,
U1 − U2 < µ at the original N1. If there is some N ′1 in [N̄1, N1) for which
U1 − U2 = µ, then there is a new migration outcome, with N̄1 ≤ N ′1 < N1.
If not, then U1 − U2 < µ at N1 = N̄1 after the change, and the analysis of
case 3 above applies.

case 5, N1 = N̄1 +N̄2: Since N1 is as large as it can be initially, no change
in fiscal variables can increase N1. If U1 − U2 ≥ µ at N1 = N̄1 + N̄2 after
the change in fiscal variables, then the new migration outcome is still N1 =
N̄1 + N̄2. Otherwise, the analysis of case 4 applies, and N ′1 < N1 = N̄1 + N̄2

after the change.

In cases 2 and 4, the new migration outcome must be a strictly smaller
population for community 1, so that the second part of the lemma has also
been proved. •

For a stable migration outcome, in which U1 − U2 is a decreasing func-
tion of N1, this rule is consistent with using the implicit function theorem to
calculate the migration response to a policy change. (But if the initial migra-
tion outcome were unstable, then using the selection rule means expecting
big changes in migration in response to arbitrarily small policy changes.) Of
course, this selection rule does not guarantee a unique migration outcome :
there might be several different migration outcomes for which N ′1 < N1.

It also should be noted that the stability of migration response here is
sensitive to the specification of the authorities’ fiscal variables. Here the
tax rate t1 which finances any transfers to community 2 has been taken as
the strategic variable. That means that the actual transfer paid to each
resident of community 2, N1

N2
t1, will vary with the population distribution.

An alternative formulation would be to assume that the transfer was held
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constant, and that the tax varied to satisfy the government budget constraint.
This latter formulation would lead to less stability, which is why it was
not chosen. Bucovetsky (2003) provides more detail on the sensitivity of
migration responses to the specification of fiscal variables.

4 Zero Migration Costs

Nothing new is presented in this section. It is included to emphasize that
instability, non–convexity and selection rules really do not complicate matters
much if migration is costless.

Lemma 2 When µ = 0, the central planner’s utility possibility frontier con-
sists of a single point.

Proof Perfect mobility implies u1 = u2 in any migration outcome. Any
policy which increases u1 must also increase u2. •

Proposition 1 When µ = 0, any optimum to the central planner’s problem
can be sustained as a Nash equilibrium under decentralization.

Proof Suppose the fiscal variables (t∗1, t
∗
2, z

1∗, z2∗), and the resulting migra-
tion outcome (N∗1 , N

∗
2 ), maximize W (u1, u2). Under decentralization, would

authorities in community 1 have any incentive to deviate from (t∗1, z
∗) if com-

munity 2’s fiscal variables were (t∗2, z
∗)? They would want to change their

fiscal variables unilaterally only if this change yielded a higher value of u1, for
some migration outcome to the new policies. But u1 = u2 in any migration
outcome, so any change which raises u1 must raise u2, which would contra-
dict the optimality of the original fiscal variables. Analogously, community
2’s authorities have no incentive to deviate unilaterally. •

Without imposing further strong restrictions on the utility functions, it
will not be true that every Nash equilibrium under decentralization is effi-
cient. But the possibility of inefficient Nash equilibria is no more surprising
nor significant than the fact that both (t, L) and (b, R) are Nash equilibria
to the coordination game below, even though both players are better off at
(t, L).
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1\2 L R

t (5, 5) (0, 0)
b (0, 0) (2, 2)


In situations depicted by pure coordination games, any pre–play commu-

nication will solve the problems of players picking the wrong equilibrium ;
presumably policy makers in different communities can communicate, and
cheap talk here would enable them to coordinate on the best outcome.

As will be shown below (for the case in which µ > 0), at any Nash
equilibrium the fiscal variables chosen must satisfy the first–order conditions
for optimality. So the possibility of multiple equilibria, which can be Pareto–
ranked (as in the game depicted above) arises only if the central planner’s
problem has multiple local extrema. But the discussion below also indicates
that if there are multiple local extrema, the possibility of a Nash equilibrium
which is not a global optimum cannot be ruled out.

5 Positive Migration Costs with No Public

Good

Suppose that the only influence of population on utility was through the
productivity of workers. That is, take the standard example defined by
equation (1), and set v1(G) = v2(G) = 0 for all G. To further simplify,
assume that the initial population each community is the same. The pro-
duction function Fi(N) in each community is assumed increasing and strictly
concave. For specificity, and to give a possible reason for migration, assume
that community 1 has the more productive technology

F ′1(N̄) > F ′2(N̄)

where N̄ is the identical initial population of each community.
Under these simplifications, there is a natural measure of net national

income, as a function of the distribution of population,

B(N1) ≡ F1(N1) + F2(2N̄ −N1)− µ(N1 − N̄) (2)

Expression (2) is only valid when N1 ≥ N̄ , but population distributions in
which there is reverse migration (N1 < N̄) will never be Pareto optimal under
the assumption that F ′1(N̄) > F ′2(N̄).
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The function B(N1) is concave ; it is still concave when extended to the
“inefficient” population distributions by setting B(N1) = F1(N1) + F2(2N̄ −
N1) + µ(N1 − N̄) for N1 < N̄ . The derivative B′(N) falls discontinuously at
N1 = N̄ , and B(N1) has a unique local (and global) maximum.

The population level N∗1 which maximizes B(N1) will be N1 = N̄ if and
only if B′+(N1) ≤ 0 at N1 = N̄ . Otherwise, N∗1 is the unique population level
for community 1 for which

F ′1(N∗1 )− F ′2(2N̄ −N∗1 )− µ = 0 (3)

Governments do not have much to do here. There is no public sector, and
the only fiscal variables are transfers between communities. If there were no
transfers, then migration would be efficient : the unique migration outcome
when g1 = g2 = 0 is the population distribution which maximizes B(N1).

But when lump–sum transfers (based on place of origin) are impossible,
the Pareto optimum may not be unique. If N∗1 > N̄ , then the utility combi-
nation

(u1∗, u2∗) ≡ (
F1(N∗1 ) + F2(2N̄ −N∗1 )

2N̄
+
µ

2
,
F1(N∗1 ) + F2(2N̄ −N∗1 )

2N̄
− µ

2
)

must be on the utility possibility frontier. This is the outcome under complete
laissez–faire.

But any utility combination (u1, u2) with (u1 + u2)N̄ = F1(N̄) + F2(N̄)
and µ ≥ u1 − u2 ≥ −µ is also feasible for a central planner : all that is
needed is a transfer from community 1 to community 2 which is large enough
to eliminate the incentive to migrate, and not so large as to induce reverse
migration. The best of these combinations for the natives of community 2 is
the utility combination

(ũ1, ũ2) ≡ (
F1(N̄) + F2(N̄)

2N̄
− µ

2
,
F1(N̄) + F2(N̄)

2N̄
+
µ

2
)

If this latter combination is better for natives of community 2, if ũ2 > u2∗,
then the utility possibility frontier has two parts : the downward–sloping

line (with slope −1) connecting (ũ1, ũ2) with (F1(N̄)+F2(N̄)

2N̄
− u2∗, u2∗) and the

isolated point (u1∗, u2∗).
Given the definition of u2∗ and ũ2, the condition that ũ2 > u2∗ is equiv-

alent to the gain in total output from moving to the optimal population
distribution (F1(N∗1 ) + F2(2N̄ −N∗1 )− F1(N̄)− F2(N̄)) be less than 2µ(N̄).
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The shape of the utility possibility frontier means that a central planner
may not prefer the population distribution N∗1 . Certainly a Benthamite
planner, with welfare function W (u1, u2) = N̄(u1 + u2) will always want
to induce the outcome which maximizes B(N1). But if the social welfare
function is quasi–concave, then the planner may prefer an outcome with
no migration, even though it involves lower net national income. Without
lump–sum taxation, the only way to transfer income to natives of the poorer
community 2 is to make residence–based payments. And these payments will
alter the distribution of income only if they are large enough to prevent any
migration.

If the planner’s welfare function is equalizing, then there are at most two
points the planner might choose on the utility possibility frontier. One is
the Benthamite optimum (u1∗, u2∗). The other is the point on the utility
possibility frontier at which

u1 = u2 =
F1(N̄) + F2(N̄)

2N̄

This latter point will be on the utility possibility frontier only if productivity
differences are relatively small, or migration costs are relatively high. But if
F1(N̄)+F2(N̄)

2N̄
> u2∗, then the planner will prefer either big transfers, or none

at all. For example, suppose the planner had an iso–elastic welfare measure

W (u1, u2) =
1

1− ω
[(u1)1−ω + (u2)1−ω] ω ≥ 0

Then there is some threshold value for the inequality aversion parameter ω
which determines the planner’s policy. For lower values of ω, the planner
makes no transfers between communities, and the migration outcome is the
population level N∗1 which maximizes net national income, and which leads
to community 1’s natives being better off. For higher values of ω, the opti-
mal policy is a transfer from community 1 to community 2, which equalizes
income and which cuts off all migration.

Put otherwise : starting from laissez–faire, a small increase in transfers to
community 2 actually makes everyone worse off, as the migration outcome
moves to some inefficient N1 in (N̄ ,N∗1 ). Only when the transfer is large
enough to cut off all migration do increases in the transfer begin to benefit
natives of community 2.
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Figure 1 : the central planner’s utility possibility frontier with costly
migration
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Figure 1 illustrates the utility possibility frontier, for a case in which
migration costs are low enough that the Benthamite optimum requires mi-
gration, but the costs are high enough that the Benthamite optimum is not
the only Pareto optimum.5

Consider the total level of welfare W (u1, u2) as a function of the central
planner’s only policy instrument, the transfer between communities. Even
when W (u1, u2) is concave, and even though net national output is a concave
function of the transfer, welfare is not a concave function of the transfer.
As long as the downward–sloping portion of the utility possibility frontier
crosses the 45–degree line (as in Figure 1), there must be two local maxima
for welfare, as a function of the transfer, if the welfare measure is equalizing.
The planner’s iso–welfare curve must be tangent to the upf where it crosses
the 45–degree line. This outcome can be achieved by net payments gi to
residents of community i, where

g2 =
F ′1(N̄)− F ′2(N̄)

2
= −g1

Since u1 = u2 whenever the transfer to community 2 is too small to prevent
emigration, welfare attains a local maximum as a function of the transfer at
g1 = g2 = 0, whenever F ′1(N̄)− F ′2(N̄) > µ.

Figure 2 illustrates welfare as a function of the transfer g1 paid to residents
of community 1, for the technology underlying figure 1, when the central
planner’s welfare measure is

W (u1, u2) = N̄1

√
u1 + N̄2

√
u2

Although the presence of positive migration costs does introduce some
heterogeneity among people, and thus may lead to more than one Pareto
optimal outcome, incentive equivalence still holds.

Proposition 2 In the standard example without public goods, there is a
unique pair of Nash equilibrium payoffs 6 when communities each choose their
ti’s (the head tax which funds transfers to the other region) non–cooperatively,
and these payoffs are Pareto optimal.

5The upf in figure 1 would arise if N1 = N2 = 100, µ = 20, F1(N) ≡ 7925
√
N−250N−

53000 and F2(N) ≡ 7925
√
N − 310N − 47000. In this case net output per capita is 120 if

there is no migration, and is maximized at 130 when N1 = 110.
6which may actually be achieved by many different pairs of equilibrium strategies ; the

outcome is unique, not the Nash equilibrium
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Proof It suffices to show that t1 = t2 = 0 is a Nash equilibrium, and that all
other Nash equilibria achieve the same payoffs, since complete laissez–faire
will always maximize the sum of utilities B(N1) in the standard example
when there is free migration, and when there are no public goods.

case 1 : B′+(N̄1) > 0 In this case, the Benthamite optimum involves
migration. Any deviation from t1 = 0, t2 = 0 must lower u1, so community
1 would not want to change its strategic variable from t1 = 0. Any increase
in t2 above 0 must lead to more migration from community 2 to community
1, lowering both u1 and u2, so that community 2 would not want to deviate
from t2 = 0, since it is constrained to choose non–negative tax rates. So
(0, 0) is a Nash equilibrium.

Consider any other pair of strategic variables (t1, t2), for which the mi-
gration outcome is not the N∗1 which maximizes B(N1). If the resulting N1

is greater than N1, then it must be the case that t2 > 0. Then community
2 would want to lower t2 slightly, thereby lowering N1, and increasing both
u1 and u2. If the resulting N1 is less than N∗1 , then it must be the case
that t1 > 0, so that community 1 would gain by lowering t1 slightly, thereby
raising N1 and increasing both u1 and u2.

case 2 : B′+(N̄1) ≤ 0 In this case, the Benthamite optimum is no migration
at all. For either community, an increase in ti must lower ui if it does not
induce migration ; and this increase must lower it even more if it does induce
migration, since migration lowers B(N1).

Any choice of taxes which leads to migration (to community 1) must have
t2 > t1 ≥ 0 ; community 2 would want to deviate by lowering t2, thereby
reducing migration and increasing u2. If (t1, t2) led to reverse migration, then
it would have to be true that t1 > t2 ≥ 0, so that community 1 would want
to deviate.

And if (t1, t2) 6= (0, 0) and there were no migration, then the community
making a positive transfer would want to reduce it. •
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Figure 2 : social welfare as a function of the inter-jurisdictional transfer
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6 Incentive Equivalence in the General Case

In the fairly special case of section 5, despite the possible multiplicity of
Pareto optima, a fairly strong form of incentive equivalence must hold in
both directions. A particular Pareto optimum – the Benthamite optimum —
must be achievable as a Nash equilibrium. And any Nash equilibrium must
be Pareto optimal.

Without the convexity of the B(N1) function, neither direction of incen-
tive equivalence need hold.

The transfers, which may be necessary to attain the Benthamite optimum
when there are public goods, are a cause of the problems with the first
direction of incentive equivalence. If the transfers go in one direction, the
Benthamite optimum can still be decentralized, as the following proposition
indicates. If they go in the other direction, then this may not be possible, as
the examples in section 8 indicate.

Proposition 3 If the Benthamite optimum involves some migration, and if
the Benthamite optimum requires non–negative transfers from the destination
community for the migration, to the origin community, then this optimum can
be achieved as a Nash equilibrium if communities choose their fiscal variables
non–cooperatively, and if each community’s decision makers use the selection
rule to forecast the impact of any changes in fiscal variables.

Proof Suppose that the Benthamite optimum requires migration from com-
munity 2 to community 1. The hypothesis of the Proposition then requires
that g1 ≤ 0 ≤ g2. Let (g∗1, g

∗
2, z

1∗, z2∗) be the policies which implement this
optimum for the central planner, and (N∗1 , N

∗
2 ) the resulting population dis-

tribution.7 This optimum can be decentralized if each community chooses
fiscal variables (t∗i , z

i∗), where

t∗1 = −g∗1 ; t∗2 = 0

Does either community have an incentive to change its fiscal variables? Since
the initial situation is the Benthamite optimum, and since migration equi-
librium requires U1 = U2 +µ in this initial situation, the utility of natives of
community 1 is maximized (over all feasible outcomes) in the initial situation.
Policy makers in community 1 have no incentive to deviate.

7the fiscal variables may not be unique ; the population distribution may not be unique
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Possible deviations by community 2 consist of some combination of an
increase in t2 above 0, and changing some of the policies z2 away from their
optimal level. But any increase in t2 above 0, or any change in z2 away from
z2∗ must lower U2(N∗2 , g2, z

2)−U1(N∗1 , g1, z
1∗). The selection rule then implies

that any feasible unilateral change in community 2’s fiscal variables must
lead to more emigration to community 1 in the new migration outcome. The
new migration outcome, after any changes in community 2’s fiscal variables,
therefore must have U1 −U2 = µ (or U1 −U2 > µ if the change leads to the
complete depopulation of community 2). The fact that the initial situation
maximizes U1 therefore implies that no feasible unilateral change in fiscal
variables by community 2 can increase U2. The policies (t∗1, z

1∗), (t∗2, z
2∗)

must be a Nash equilibrium.
If the Benthamite optimum involved migration in the reverse direction,

then an analogous argument applies : the optimum is a global maximum for
U2, and any feasible change in fiscal variables by community 1 must lead to
more emigration to community 2. •

The reverse direction of incentive equivalence — that any Nash equilib-
rium is Pareto optimal — can be demonstrated easily only when the Ben-
thamite measure of net national income B(N) is is quasi–concave. Any “in-
terior” Nash equilibrium will satisfy a central planner’s first–order conditions
for optimality.

Proposition 4 If the strategic variables (tN1 , z
1N), (tN2 , z

2N) are a Nash equi-
librium, with migration outcome (NN

1 , N
N
2 ) such that 0 < NN

1 < N̄1, or
N̄1 < N1 < N̄1 + N̄2, then the corresponding central planner’s policies
(gN1 , g

N
2 , z

1N , z2N), with

gN1 =
N2

N1

− tN1 ; gN2 =
N1

N2

t1 − tN2

satisfy the first–order conditions for the maximization of

N̄1U
1(N1, g1, z

1) + N̄2U
2(N2,−

N1

N2

g1, z
2)− µ|N1 − N̄1|

with respect to N1, N2, g1, z
1 and z2 subject to the constraints N1 + N2 =

N̄1 + N̄2 and

U1(N1, g1, z
1)− U2(N2, g2, z

2) =

{
−µ if N1 < N̄1,

µ if N1 > N̄1.
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Proof Without loss of generality, suppose that the Nash equilibrium led to
an outcome where migration flowed from community 2 to community 1.

Suppose that the central planner’s first–order conditions for optimality
were not satisfied at the Nash equilibrium. Then a small change in one of the
planner’s choice variables would increase the planner’s payoff. Since small
changes in the choice variables do not change the direction of migration,
therefore a small change in one of the planner’s variables would lead to an
increase in both u1 and in u2, since u1 = u2 + µ whenever migration occurs
from community 2 to community 1.

The planner can also be viewed as choosing (g1, z
1, z2) to maximize the

sum of utilities, taking into account the migration response to these variables
(and the budget constraint N1g1 +N2g2 = 0). So if the planner’s first–order
conditions for optimality were not satisfied at the Nash equilibrium, then
both u1 and u2 could be increased by some small change in g1, or in one of
the components of z1 or z2.

Under decentralization, decision makers in community i control zi. So if
a small change in zi from ziN could increase ui (and uj), then the original
choice of strategic variables could not be a Nash equilibrium.

Community 2’s decision makers can increase g1 unilaterally (and decrease
g2 = −N1

N2
g1) by raising t1. Community 1’s decision makers can decrease g1

unilaterally. So if a small change – in either direction — in g1 were to increase
u1 and u2, then the original situation cannot be a Nash equilibrium, since
either community 1 will want to lower g1 or community 2 will want to raise
g1.

Therefore, if the central planner’s first–order conditions for optimality
were not satisfied at a Nash equilibrium in which N1 > N̄1, then decision
makers in one of the two communities would want to change one of their
strategic variables : the original choice of fiscal variables cannot be a Nash
equilibrium.

An analogous argument applies if the migration went in the opposite di-
rection. Not satisfying the planner’s first–order conditions means not being a
Nash equilibrium, so that the contrapositive must hold : if (tN1 , z

1N), (tN2 , z
2N)

are Nash equilibrium choices (and lead to migration) then the first–order con-
dition for the central planner’s optimum must hold. •

Since utilities in the two communities move together whenever there is
migration, the form of the central planner’s maximand did not matter in the
above proof. The result can be strengthened to
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Corollary : If the strategic variables (tN1 , z
1N), (tN2 , z

2N) are a Nash
equilibrium, with migration outcome (NN

1 , N
N
2 ) such that 0 < NN

1 < N̄1,
or N̄1 < N1 < N̄1 + N̄2, then the corresponding central planner’s policies
(gN1 , g

N
2 , z

1N , z2N), with

gN1 =
N2

N1

− tN1 ; gN2 =
N1

N2

t1 − tN2

satisfy the first–order conditions for the maximization of W (u1, u2) with re-
spect to N1, N2, g1, z

1 and z2 subject to the constraints N1 + N2 = N̄1 + N̄2

and

U1(N1, g1, z
1)− U2(N2, g2, z

2) =

{
−µ if N1 < N̄1,

µ if N1 > N̄1.

where W (u1, u2) is any strictly monotonic welfare function, and where ui is
the maximum of U i and U j − µ.

Even with zero migration costs, there may be inefficient Nash equilib-
ria. The presence of pure public goods (or anything else that leads to non–
convexities) means that B(N1) may have multiple local extrema in the in-
terval (N̄1, N̄1 + N̄2). All of these local extrema involve positive migration
from community 2 to community 1. So u1 = u2 + µ for each of them, and
the local extrema can be Pareto ranked. But it still may be the case that
some local optimum which is not a global optimum may be sustained as a
Nash equilibrium. It is even possible that a local minimum for B(N1) might
be sustained as a Nash equilibrium. Figure 3 illustrates. In the figure, the
solid line represents what a central planner can achieve. The dotted lines
represent what a single community planner can achieve unilaterally, starting
from policies which achieve sub–optimal outcome. The solid line is the upper
envelope of the dotted lines.

The problem is that moving from a sub–optimal local optimum of B(N1)
to a global optimum involves changing policies in both communities. If the
move involves increasing N1, it typically will require an increase in Z1 and
a decrease in Z2, if Zi is the quantity of a pure public good provided in
community i. Given the perfect mobility, community i cannot increase utility
as much as the central planner, since it conjectures that community j is not
cooperating.
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Figure 3 : inefficient Nash equilibria
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Positive migration costs exacerbate the problem of multiple equilibria in
two ways. First, they may make it more likely that the planner’s optimum
has multiple extrema. When µ > 0, B′(N) falls discontinuously at N1 = N̄1,
increasing the likelihood that there is local maximum with no migration.
Figure 4 illustrates this sort of problem. Unlike figure 3, the values for the
payoffs here are computed from an explicit example of decreasing–return
technology and public goods provision. In the figure, the sum of payoffs has
a local maximum at N1 = N̄1, but also at a positive level of N1.

This figure shows a standard example, with utility a quasi–linear function
of private consumption and public good consumption. Each resident of each
community is paid the value of her marginal product, and the remaining
rents are shared equally by all residents of all communities. In this case,
N̄1 = N̄2 = 100, µ = 5.4, the production functions are

Fi(Ni) = aiN
0.5
i ; a1 = 200 ; a2 = 100

the unit cost of the public good is 1, and the valuation function (in each
community) for the public good is

v(Z) = A+
α

1− β
Z1−β

For Z ≤ 358.964,

A = 0 ; α = 0.011 ; β = 0.05

but for Z > 358.964,

A = 6.03952 ; α = 1056.19 ; β = 2

so that both v(Z) and v′(Z) are continuous at the break point.
In this example, natives of country 1 certainly do better at the Benthamite

global optimum (at N1 ≈ 138). But they cannot unilaterally improve their
payoff from a Nash equilibrium with no migration : the outcome with mo-
bility is only more attractive if community 2 lowers its public good provision
(and pays a transfer to residents of community 1), and community 1 cannot
achieve this unilaterally.

23



Figure 4 : A “low level no migration trap”
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The second way in which migration costs exacerbate the problem of multi-
ple equilibria probably is more serious. The complete commonality of interest
is broken. In a game of complete coordination, such as the game in strate-
gic form depicted in section 4, pre–play communication can plausibly enable
players to avoid the inferior Nash equilibrium, even when talk is cheap. It
is not nearly so plausible that cheap talk can enable players to coordinate
on an outcome which maximizes the sum of their payoffs when payoffs are
not perfectly coordinated. In the game below there is an obvious conflict be-
tween players, and both will try and bluff their way to their preferred Nash
equilibrium if there is pre–play communication.

1\2 L R

t (10, 5) (0, 0)
b (0, 0) (2, 7)


Local politicians do communicate with each other. But without a central
government to enforce agreements between them, they may not easily be
able to commit to actions.

7 Local Incentive Equivalence

As long as there is some migration between communities, the fixed migra-
tion costs ensure that the interests of the jurisdictions are perfectly aligned.
Consider, for example, the policies which result in a migration outcome in
which N1 > N̄1. Any policies which maximize u1 — subject to there being
some positive migration into community 1 — must also maximize u2 = u1−µ
subject to this constraint.

So suppose that there is some Pareto optimum in which there is some
migration from community 2 to community 1. Suppose that the policies
(t1, z

1), (t2, z
2) achieve this optimum (through some migration outcome (N1, N2)

in which N1 > N̄1). Then neither community’s policy maker would wish to
deviate from this policy, if the deviation did not cut off or reverse the migra-
tion flow.

It seems reasonable that if policy changes are small enough, then they
will not have a large effect on migration. So a migration outcome will be
described as stable if migration flows are continuous in the policy variables.
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Stable Migration Outcome : The migration outcome (N0
1 , N

0
2 ) result-

ing from community policies (t01, z
10), (t02, z

20) is stable if N1 and N2 are con-
tinuous functions of the community policies at (t1, z

1), (t2, z
2) = (t01, z

10), (t02, z
20).

A local Nash equilibrium is defined in the usual way :

The policies (t01, z
10), (t02, z

20) are a local Nash equilibrium if there is
some ε > 0 such that it is impossible for community i to increase its payoff
ui by any unilateral deviation to any policy (ti, z

i) within a distance ε or less
of (t0i , z

i0).

The following result then follows, virtually by definition :

Proposition 5 If the policies (t∗1, z
1∗), (t2, z2∗) and the resulting stable mi-

gration outcome (N∗1 , N
∗
2 ) are Pareto optimal, and N∗1 6= N̄1, then the policies

(t∗1, z
1∗), (t2, z2∗) are a local Nash equilibrium.

Proof Without loss of generality, assume that N∗1 > N̄1. Then stability
of the migration outcome implies that, if ε is small enough, any unilateral
deviation by community i to some (ti, z

i) within ε of (t∗i , z
i∗) will still result

in a migration outcome for which N1 > N̄1. If the deviation increased one
community’s payoff ui, then it must increase the other community’s payoff,
since u1 = u2 + µ when N1 > N̄1. So if the deviation increased one commu-
nity’s payoff, then the original outcome could not have been Pareto optimal,
contradicting the hypothesis of the proposition. •

Although the stability of the migration outcome may seem a relatively
weak assumption, the possibility of pure public goods (or other forms of in-
creasing returns to population) does imply that making a community more
attractive might set in motion an unstable process, if the increased immigra-
tion into the community itself also made it more attractive.

But the definition of stability of a migration outcome here is stronger
than the usual stability notion, that U1−U2 be a decreasing function of N1,
for given policies. The selection rule does not guarantee the stability of a
migration outcome, as defined in this section.

Suppose that the utility difference U1 − U2 is decreasing in N1 (when
the policies are (t∗1, z

1∗), (t2, z2∗)). This weaker notion of stability ensures
that there must be some migration outcome (N1, N2) near (N∗1 , N

∗
2 ), if the

policies (t1, z
1), (t2, z

2) are near (t∗1, z
1∗), (t2, z2∗). But there may also be

other migration outcomes corresponding to (t1, z
1), (t2, z

2), some of them
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far away, and some of them involving no migration, or migration in the
opposite direction. The definition of stability here requires agents not to
decide to jump to another migration outcome, in response to a small change
in policy. In other words, it requires not only that the implicit function
theorem holds, but that all agents choose to use the implicit function in
predicting the migration response to small changes in policies.

8 Counter–examples

Perhaps the most important incentive equivalence result is that any Pareto
optimum can be sustained as a Nash equilibrium, when communities set
policies non–cooperatively.

Proposition 3 indicates that this incentive equivalence will hold when
migration costs are positive (and identical for all residents) — provided that
transfers go in the right direction. The proof of that Proposition used the
fact that any transfers flowed from the destination community for migration,
to the origin community.

In this section, a few simple numerical examples are presented, in order to
show that this incentive equivalence need not hold without the assumptions
of the Proposition. In each example, the Benthamite optimum requires mi-
gration from community 2 to community 1, but also requires transfers from
residents of community 2 to community 1. But policy makers in community 2
will not want to make these transfers ; they can gain by cutting the transfers
to zero and eliminating (or reversing the direction of) the migration.

The examples are quite contrived ; the assumptions of Proposition 3
certainly are not necessary for incentive equivalence. But they do show that
positive migration costs can drive a wedge between communities’ interests.

In the standard example, Flatters, Henderson and Mieszkowski (1974)
show that transfers should be paid from community 2 to community 1 if and
only if Z1/N1 > Z2/N2 at the optimum. In the first two counter–examples,
this condition on public good provision is forced on the communities, by
assuming that no benefit can be obtained from the public good in community
2 under any circumstances, so that Z2 = 0.
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8.1 Counter–Example 1

In this first counter–example, community 2 does not provide a public good at
all. That means that the only policy to be chosen there, if decision–making
is decentralized, is how much of a grant to pay to residents of community 1.

The total absence of public good provision in community 2, and its pres-
ence in community 1, may seem artificial and adhoc. But it might arise if the
two communities had different physical settings, and only community 1’s was
suitable for some leisure activity which was non–rivalrous but which required
some public expenditure.

Here N̄1 = N̄2 = 100. The cost of migration µ is 2. The production
technology is

F1(N) = 10N + 100
√
N ; F2(N) = 30N + 100

√
N

The valuation function for the public good in community 1 is

v1(G1) =
(G1)0.3

0.3

The cost of a unit of the public good is 1.
Each community has its advantage here. Community 1 provides better

consumption opportunities, but community 2 has a better production tech-
nology. If there were no migration, and no transfers, and if community 1
provided the optimal quantity of the public good corresponding to a popula-
tion of N̄1, then here u2−u1 ≈ 3.2 > µ. To prevent migration to community
2, transfers would have to be made to residents of community 1.

But the sum of utilities is increased by shifting population from commu-
nity 2 to community 1. Here B(N1) is a strictly concave function, and it
reaches a global maximum at N∗1 = 155.63 > 100 = N̄1.

The planner’s policy (g∗1, Z
∗
1 , g
∗
2, Z

∗
2) which yields the Benthamite opti-

mum, with a level of migration N∗1 − N̄1 > 0, is

g∗1 = 1.930, g∗2 = −6.769, Z∗1 = 1353.823, Z∗2 = 0

Transfers must flow from the “worse off” community 1 to the better off com-
munity 1 here, since Z1 > Z2 = 0. Consistent with Flatters, Henderson and
Mieszkowski (1974), the net transfer which supports this efficient outcome is

g∗1 − g∗2 =
Z∗1
N∗1
− Z∗2
N∗2
≈ 8.7
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The payoffs to natives of the two communities at this outcome is

u1 = 49.8116 ; u2 = 47.8116

The sum of everyone’s utilities here is 9762.312 ; that exceeds the sum of
people’s utilities if there were no migration (and if community 1 provided
the optimal level of the public good for a population of N̄1, G1 = 719.686),
which equals 9679.267.

The outcome which maximizes B(N1) requires a high transfer from resi-
dents of community 2 to residents of community 1, t∗2 = 6.769, because of the
importance of the public good in community 1. But natives of community 2
would not want to see a small decrease in this transfer ; as long as the trans-
fer results in net migration from community 2 to community 1, everyone’s
interests are in harmony and everyone wants to stay at the sum–of–utility–
maximizing policies. But if a change in policy is large enough to eliminate,
or reverse, migration, the harmony disappears.

In response to community 1’s choice of the (efficient) policies Z1 = 1353.823,
t1 = 0, community 2’s policy makers do not actually wish to eliminate all
transfers to community 1. If they did so, then “reverse migration” would
result, and this immigration makes natives of community 2 worse off (in this
example). So their best response to Z1 = 1353.823, t1 = 0 is to set t2 = 1.271,
a much smaller transfer than is required to sustain the Benthamite optimum.
This lower transfer leaves natives of community 1 on the margin of wanting
to migrate to community 2. Given community 1’s policy, setting t2 = 1.271
results in no migration at all, and payoffs of u1 = 46.7292, u2 = 48.7292.

Natives of community 2 gain from deviation from the transfer which sus-
tains the Benthamite optimum. But they only gain by making such a large
deviation that all migration is eliminated. If the payoff to natives of commu-
nity 1 is graphed as a function of the transfer t2 they choose, this payoff has
a local maximum at t2 = 6.769. But (if Z1 = 1353.823, t1 = 0), the payoff is
not a concave function of t2, and it has a global maximum at t2 = 1.271.

In this example there are two different migration patterns which a central
planner might choose. N1 = N∗1 > 100 maximizes the sum of utilities. But
an outcome with no migration at all is better for natives of community 2.
A policy of Z1 = 719.686, and 0.604 ≤ g1 ≤ 2.604 will lead to a migration
outcome with no migration, and the efficient supply of the public good in
community 1. If g1 < 2.189 then this outcome without migration is better
than the Benthamite outcome for natives of community 2.
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Figure 5 : payoffs in counter–example 1
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There is an efficient — although not sum–of–utility–maximizing — alloca-
tion here which can be sustained as a Nash equilibrium. The most–preferred
policy for natives of community 2 is to cut off all migration with the min-
imum possible transfer. If (t1, Z1) = (0, 719.686), and (t2, Z2) = (0.604, 0)
here, then natives of community 1 are just on the margin of wanting to
migrate to community 2. This allocation maximizes the utility of commu-
nity 2 natives. Given community 2’s policies, community 1 cannot induce
migration, and cannot achieve any higher utility.

So in counter–example 1, there is an efficient outcome which can be sus-
tained as a Nash equilibrium. But no efficient outcome involving migration
can.

Figure 5 shows the payoffs to natives of each community in this example,
and the average of their payoffs, as functions of the distribution of population.

8.2 Counter–example 2

This second counter–example is a slight modification of the first : produc-
tivity differences are smaller, and migration costs are higher. The one qual-
itative difference is that now transfers are not needed in order to sustain
no migration as an outcome : when N1 = N̄1 (and community 1 sets its
public good supply optimally), the difference between utilities in the two
communities is less than the migration cost.

Other than the migration cost, which is 5 instead of 2, and the production
function in community 2, which is 25N +

√
N instead of 30N + 100

√
N ,

technology and tastes are exactly as in the previous counter–example.
Now the population which maximizes B(N1) is N∗1 ≈ 168. The policy

(g∗1, g
∗
2, Z

∗
1 , Z

∗
2) which can implement this allocation is

(1.438,−7.550, 1510.126, 0), and the resulting payoffs are
(u1, u2) = (49.4365, 44.4365). As in the previous counter–example, commu-
nity 2 can benefit by deviating unilaterally from its (t∗2, Z

∗
2) which would

implement the Benthamite outcome. In (slight) contrast to the previous ex-
ample, here cutting the transfer t2 will not induce reverse migration. If com-
munity 1 chooses the policy Z1 = 1510.126, t1 = 0 consistent with the Ben-
thamite optimum, community 2’s best response is to choose Z2 = 0, t2 = 0,
a policy which will eliminate all migration, and result in utility levels of
u1 = 44.8616, u2 = 45.00.
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8.3 Counter–example 3

The absence of any value from public good provision in community 1 is not
necessary to generate counter–examples to incentive equivalence. What is
needed is that the public good provision be higher in the destination com-
munity at the Benthamite optimum. So what is required, if the destination
community has a larger population, is that the price elasticity of demand for
the public good to be high, since the per capita price of the public good in
community i is proportional to 1/Ni.

In this third example, communities are identical in every respect, except
for the initial population. The production function in each community is

F (Ni) = 10Ni + 100
√
Ni

the unit cost of the public good is 1 in each community, and the valuation
function for consumption of the public good is

v(Gi) =
(Gi)

0.3

0.3

The cost µ of migration is 3.
Now the initial population levels are N̄1 = 120, N̄2 = 80. Because of com-

munity 1’s higher initial population (and because of the non–zero migration
costs), the Benthamite optimum exploits scale economies in population in
provision of the public good, and involves large–scale migration from com-
munity 2 to community 1. At this optimum 8

N∗1 = 183, Z∗1 = 1706.369, Z∗2 = 57.251, g∗1 = 0.507, g∗2 = 5.456

The payoffs to natives of the two communities are u1 = 48.4814, u2 = 45.4814.
As in the previous example, decision makers in community 2 can gain

if they reduce their transfer from the level (t∗2 = 5.456) which sustains the
Benthamite optimum to zero. In this case, responding to Z1 = 1706.369, t1 =
0 by setting Z2 = 258, t2 = 0 leads to a migration outcome in which no–one
wants to move : u1 = 45.5393, u2 = 45.9397. Since natives of community 2
gain from this deviation, the Benthamite optimum cannot be sustained as a
Nash equilibrium.9

8The positive migration costs, and the declining marginal productivity of labour, imply
that the Benthamite planner does not want a corner solution, in which all population moves
to the larger community.

9The public output level Z2 = 258 is not the optimal level for community 2, if there is
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9 Subsidiarity

In all the counter–examples (to the sustainability of a Pareto optimum as
a Nash equilibrium), reductions in transfers were used by a community to
increase its natives’ payoff. Proposition 3 indicates that a community will
never want to deviate from a Pareto optimum by changing only “domestic”
fiscal variables zi.

These results are consistent with a version of the subsidiarity principle
: they suggest that transfers among regions are best left to higher levels
of government, but public expenditure decisions should be devolved to the
lowest possible level of government.

In particular, suppose that the policy–setting game is played by three
policy makers. Now community i gets to choose zi, but the transfers (t1, t2)
between communities are chosen by a central government. The central gov-
ernment’s payoff is some welfare function W (u,u2).

Assume that all three players move simultaneously. This is the simplest
case to analyze. So the central government is not endowed with the com-
mitment power sometimes ascribed to it in models of federalism in which it
moves first. Neither can it respond to local government policies by adjust-
ing marginal utilities, as in Wellisch’s extension of the attachment–to–home
model, in which the central government moves last.

Since the source community for migration cannot attract migrants by
changing zi if the original situation is Pareto optimal, it may not be surprising
that Nash equilibria can be sustained once the power to adjust transfers is
given to the central government.

Proposition 6 Suppose that a central government chooses transfers (t1, t2),
and community i chooses zi. The central government’s payoff is some wel-
fare measure W (u1, u2) depending on communities’ payoffs. If communities’

no migration. But the selection criterion is being imposed here. The policy which is best
for community 2, should there be no migration, is actually Z2 = 523.259. But such a high
level of public output would be very expensive if community 2 only had 17 inhabitants,
as it does at the Benthamite optimum. The selection criterion says that community 2
can expect to reverse migration flows only if it deviates to a policy (Z2, t2) which offers
natives of community 2 a utility level greater than what they would get (net of migration
costs) from moving to community 1, at the population distribution N1 = 183, N2 = 17
corresponding to the Benthamite optimum. If Z2 = 258 and t2 = 0, then U1−U2 < µ = 3
when N1 = 183, N2 = 17, so that the policy deviation does increase the relative attraction
of remaining in community 2, as required by the selection criterion.
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decision makers use the selection rule, then any policy which maximizes the
central planner’s welfare measure can be sustained as a Nash equilibrium in
this 3–player game.

Proof Let t∗1, z
1∗, t∗2, z2∗ be the policies which lead to the central govern-

ment’s preferred outcome. Clearly the central government has no incentive
to change its transfer (t1, t2) from the transfers (t∗1, t

∗
2) which lead to its

most–preferred outcome. If the outcome is Pareto optimal, and if it leads
to migration to community 1, then the outcome must maximize u1 over all
feasible policies, so that community 1’s planners have no incentive to devi-
ate. If the outcome is Pareto optimal, then z2∗ maximizes U2(N∗2 , t2∗, z2).So
any deviation by community 2’s policy makers would reduce U2(N∗2 , t2∗, z2),
which, under the selection rule, would lead to a migration outcome in which
N1 > N̄1. Therefore the change in z2 cannot increase u2 = u1 − µ.

An analogous argument shows that none of the three governments would
want to change policies if the outcome involved migration to community 2
(and was Pareto optimal).

Finally, suppose there were no migration at the central government’s pre-
ferred outcome. Again, zi∗ must maximize U i(N̄i, t

∗
i , z

i). So a deviation by
community i must lower ui = U i(N̄i, t

∗
i , z

i) if it did not induce migration.
By the selection rule, if it induces any migration, it would induce emigration
from community i. So if the policy led to an increase in ui to ũi, it would lead
to a payoff of ũi + µ to natives of the other community. If such a deviation
is beneficial for community i, then ũi > ui∗. But the fact that there was
no migration originally implies that uj∗ ≤ ui ∗ +µ, o that if the deviation
increased ui it would also increase uj, which contradicts the fact that the
original policy maximized W (u1, u2). •

10 Spillovers

Community i’s fiscal variables have been divided between the “domestic poli-
cies” zi and the transfer ti to the other region. Under the selection rule used
here, it is only changes in the transfers which can induce unilateral deviation
from a Pareto optimal outcome.10.

The key distinction between the domestic policies and the transfers is not
that the former are quantities of goods and the latter are changes in income

10as Propositions 3 and 6 suggest

34



: domestic policies typically consist of both quantities of locally consumed
public goods, and the local taxes used to finance them.

The key distinction is that the utility U i from residing in community i
depends on the community’s own zi and ti, and transfers tj received from the
other community, but not on the domestic policies zj in the other community.
If some policies in community i affected directly11 the well–being of residents
of community j, then Propositions 3 and 6 need not apply. In particular,
the taxonomy used here rules out spillovers of the benefits of public goods
provided in a community, and shifting of some of the burden of community
i’s own taxes onto residents of community j.

Why are deviations from the efficient policies zi∗ unattractive for policy
makers in community i, if there are no spillovers? Efficiency implies that each
component of zi∗ maximizes U i(Ni∗, g∗i , zi), given the efficient population
N∗i and the efficient net transfer g∗i . So any deviation from zi∗ must lower
U i(Ni∗, g∗i , zi). With no spillovers, this deviation must therefore also lower
U i(Ni∗, g∗i , zi)−U j(N∗j , g

∗
j , z

j∗), since zi does not affect U j directly. And the
selection rule implies that a fall in U i − U j must lead to more emigration
from i to j, which implies natives of community i won’t want to change their
domestic policies.

If there are spillovers associated with domestic policy k, then the efficient
policy does not maximize U i, it maximizes U i(N∗i , g

∗
i , z

i, zj∗)+U j(N∗j , g
∗
j , z

j.
And a change in a domestic policy in community i might increase U i − U j,
even if it decreased U i.

So suppose that that one of the public goods provided in community 2
produced strong positive spillovers for residents of community 1. Suppose as
well that this public good is financed by a head tax on residents of community
2. Efficiency requires that community 2 provide a higher quantity of this
public good than is optimal from a myopic, self–interested perspective. (That
is, if community 2’s policy makers ignored migration, they would provide an
inefficiently low quantity of this public good.) So starting from an optimum,
a reduction by community 2 in the quantity of this public good would raise
U2 and it would lower U1.

If the spillovers are important enough, and if the non–convexities are sig-
nificant enough, reducing the supply of this spillover–producing public good
might reverse the direction of migration. Spillovers (or tax exporting) give a
community the opportunity to reverse migration flows through a unilateral

11that is, holding constant the population Nj
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policy change, just as positive transfers from source to destination made it
possible for the source community to reverse migration by eliminating trans-
fers (in all the examples in section 8).

So mobility alone may not be sufficient to internalize externalities among
communities. As with voluntary transfers, incentive equivalence fails only
when migration costs are large, and when scale economies in population are
significant enough that there are multiple Pareto optima. As with voluntary
transfers, externalities pose no threat to incentive equivalence if changes are
small ; the only possible value to a community from deviating from efficiency
is inducing an elimination or reversal of outbound migration.

11 Concluding Remarks

The basic incentive equivalence result is a powerful one. Uncoordinated,
self–interested behaviour by lower–level governments is efficient. No policy
coordination, or intervention by a higher level of government is needed.

The argument underlying this result is quite a simple one, which can be
applied fairly generally — if migration costs are 0. If each player gets the
same payoff as the other player, in any cell of a two–player game, then the
strategies which maximize that common payoff must be a Nash equilibrium.

Here, two consequences of positive migration costs are emphasized. First,
there may be a conflict between equity and efficiency, even if agents are
identical except for place of birth. This conflict can arise even when multiple
maxima are not a problem. World output may be a strictly convex function
of the amount of migration. It may be maximized by inducing migration
from community 2 to community 1. But if migration costs are positive,
natives of community 2 may be better off in an inefficient outcome without
any migration, if lump–sum transfers based on place of birth are not possible.

The second consequence is purely an efficiency issue, and arises only if
non–convexities are important. The policy which maximizes the sum of peo-
ple’s utilities may not be sustainable as a Nash equilibrium under decentral-
ization, if there are multiple local maxima to this sum.

Finally, it should be emphasized that this second consequence requires
both positive migration costs and non–convexities. If migration costs are
zero, any Pareto optimal outcome will be a Nash equilibrium, regardless of
the extent of non–convexities. If the sum of people’s payoffs is convex (as
a function of population), then any Pareto optimal outcome will be a Nash
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equilibrium, regardless of migration costs.
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