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Abstract

“Comparative Statics of Optimal Nonlinear Income Taxation
in the Presence of a Publicly Provided Input”

by

Craig Brett and John A. Weymark

Comparative static properties of the solution to an optimal nonlinear income tax
problem are provided for a model in which the government both designs a redistributive
income tax schedule and provides an input into the production process. The presence of
the public input implies, in contrast to most existing studies of the comparative statics of
optimal nonlinear income tax problems, that wage rates are endogenous. The parameters
for which comparative statics are obtained are the weights in a weighted utilitarian social
welfare function, a taste parameter that measures the onerousness of working, and a
technological parameter that determines the price of the publicly provided input.

Journal of Economic Literature classification numbers: D82, H21.
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1. Introduction

The study of optimal nonlinear income taxation focuses on the tension between a gov-
ernment’s assumed desire to set taxes according to an ability-to-pay criterion and the
practical reality that the government cannot directly observe anyone’s ability to pay.
In order to focus attention on the tradeoffs required to reconcile this tension and the
concomitant economic distortions, much of the literature on optimal nonlinear income
taxation follows the lead of Mirrlees (1971) by assuming that the sole purpose of taxa-
tion is to redistribute income, typically from individuals with higher abilities-to-pay to
individuals with lower abilities-to-pay. While redistribution is undoubtedly a significant
component of what governments do, the provision of various kinds of goods and ser-
vices features prominently on their agendas. These goods and services may be primarily
of value as consumption goods, both public goods per se and publicly-provided private
goods, or they may be publicly-provided inputs into production, such as infrastructure.
In this article, we derive comparative static properties for an optimal nonlinear tax prob-
lem in which the government provides inputs into the production process in addition to
redistributing income.

The literature on the interactions between optimal nonlinear taxation and govern-
mental provision of consumption goods is well-developed. One of the key insights in
this literature is that judicious deviations from first-best allocation rules can, in certain
circumstances, be used to implicitly redistribute income, thereby providing a useful sup-
plement to optimal distortionary income taxes. Christiansen (1981) and Boadway and
Keen (1993) describe when deviations from the Samuelson (1954) Rule for the provision
of public goods are justified on these grounds, while Boadway and Marchand (1995)
describes the circumstances under which public provision of a private good is merited
even in the presence of optimal nonlinear income taxes. A central feature in this class of
arguments is the possibility that individuals of different abilities have different responses
to public expenditures in their consumption-leisure choices. These diverse responses pro-
vide the government with additional information concerning abilities-to-pay, allowing it
to carry out redistribution more effectively.1

The study of interactions between distortionary income taxation and the provision of
public inputs is perhaps less prominent in the literature. Gaube (2005) argues that the
link between publicly provided inputs and redistributive income taxes, if one exists, must
be more indirect because the provision of inputs has no direct influence on individual
consumption or labor supply decisions. He shows that it optimal to deviate from first-best
public input decisions when the relative wages of different types of workers depend on the
level of the publicly provided input. The resulting production inefficiency is justified by
the implicit redistribution afforded by increasing the relative wages of less able workers.2

1When observable behavior is independent of public provision, as in, for example the Boadway–Keen
model under the assumption of a common utility function that is weakly separable between consumption
and labor supply, first-best provision rules remain optimal.

2Similar justifications for production inefficiency in models of optimal nonlinear income taxation are
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We develop a model of an economy with an arbitrary, finite number of individuals
who only differ in labor productivities. There may be several individuals with the same
labor productivity and the number of individuals may vary from skill class to skill class.
All individuals have the same preferences over a single private consumption good and
leisure. Unambiguous comparative static results can be obtained when these preferences
are quasilinear. For concreteness, we assume that these preferences can be represented
by a quasilinear-in-leisure utility function, as in Weymark (1987). Following Gaube
(2005), our model features a strictly convex aggregate production technology, thereby
abstracting from the issue of whether the first-best provision rule is marginal cost pricing
or the Samuelson-like rules for the provision of a public input derived by Kaizuka (1965)
and Sandmo (1972). The aggregate technology transforms total labor time in efficiency
units and a publicly provided input into an output good. The output good can be either
consumed or transformed into the publicly provided input at a constant marginal cost.
The government simultaneously chooses a nonlinear income tax schedule and a level of
the publicly provided input to maximize a weighted utilitarian social welfare function
subject to incentive compatibility constraints and an economy-wide resource constraint.

Our comparative static analysis focuses on the effects of changes in the following
variables: the weights in the social welfare function, a measure of the disutility of working,
and the marginal cost of the publicly provided good. The assumptions we make about the
technology imply that relative wages do not vary with the level of the publicly provided
input. Thus, there is production efficiency in our model. On the other hand, the wage
paid per unit of effective labor does change as the model parameters vary. These wage
effects lead to changes in optimal production and consumption plans that are not present
in models of nonlinear income taxation with linear production possibilities frontiers,
like the ones analyzed by Weymark (1987), Simula (2007), and Brett and Weymark
(2008a,b).3 In spite of the existence of the extra effects, we are able to obtain results on
the sign of the comparative static responses to parameter changes for every individual’s
consumption allocation and for the sign of the responses of aggregate effective labor and
publicly provided input usage to the welfare weights and the disutility parameter.

As noted by Lollivier and Rochet (1983) for a model with a continuum of skill types
and by Weymark (1987) with discrete types, it is possible to solve the optimal nonlinear
income tax problem in two stages when preferences are quasilinear in leisure and the
aggregate technology is linear. In the first stage, a reduced form unconstrained max-
imization problem is solved to determine the optimal allocation of consumption. The
allocation of before-tax income (labor supply) is determined in a second stage. It is not
possible to fully replicate the Lollivier–Rochet–Weymark argument when the technology
is not linear. However, it is possible to formulate a first-stage problem describing the
choice of consumption and input allocations as arising out of a maximizing problem con-
strained only by the economy-wide resource constraint. We employ techniques borrowed
from the theory of consumer demand to derive comparative static results for our reduced

provided, albeit in other contexts, by Naito (1999) and Blackorby and Brett (2004).
3Simula (2007) assumes that preferences are quasilinear in consumption.

2



form.
In Section 2, we present our model and describe the government’s decision problem.

We derive and characterize the solution to our reduced-form of the government’s problem
in Section 3. In Section 4, we conduct our comparative static exercises. We offer some
concluding remarks in Section 5. Our proofs are gathered in an Appendix.

2. Model

The economy is populated by N types of individuals, where an individual of type i has
skill level si > 0. The number of individuals of type i is ni > 0. The types are numbered
so that s1 < s2 < · · · < sN . An individual’s skill level measures the rate at which his
labor time, li, is transformed into his effective labor supply, yi. Specifically, yi = sili.

The producer sector is described by a production function, f , that transforms a pub-
licly provided input, R, and effective labor, y, into the output f(R, y), where f is contin-
uous, twice continuously differentiable, and strictly concave with f(R, 0) = f(0, y) = 0
for all nonnegative R and y. We also assume that effective labor and the publicly pro-
vided input are complements in production in the sense that fyR(R, y) > 0 for all input
combinations.4 The output good may be used for consumption, c, or transformed into
the public input according to a constant marginal rate of technical substitution process
in which the opportunity cost of one unit of the public input is q units of consumption.
Thus, the aggregate technology satisfies

c+ qR ≤ f(R, y). (2.1)

There is perfect competition in both input and output markets so that producer prices are
equal to their respective marginal rates of transformation. In particular, the aggregate
wage paid to effective labor, w, is

w =
∂f(R, y)

∂y
. (2.2)

The before-tax income of an individual of type i is given by

zi = wyi = wsili. (2.3)

All individuals have a common, cardinally significant utility function representing
preferences that are quasi-linear in leisure given by

V (c, l) = v(c)− γl, (2.4)

where γ > 0. The function v is assumed to be twice continuously differentiable at all
c 6= 0, continuous and nondecreasing on R+, strictly increasing on R++, and strictly
concave on R++ with v(0) = 0, vc(0) = ∞, and vc(c) → 0 as c → ∞. The limiting

4This assumption is satisfied when the technology exhibits constant returns to scale.
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assumptions on v ensure that the optimal tax problem has a solution and that individuals
of all types have positive consumption at this solution. The parameter γ measures the
marginal disutility of labor. Following Weymark (1986b, 1987), we conveniently represent
preferences by the type-specific monotonic transformation of (2.4)

U i(c, y) = siv(c)− γy. (2.5)

Equation (2.5) describes preferences over consumption and effective labor supply. The
marginal rate of substitution between effective labor and consumption for an individual
of type i is

MRSi(ci, yi) =
γ

siv′(ci)
, (2.6)

This marginal rate of substitution is decreasing in the skill level. Thus, preferences for
income and consumption satisfy the standard single-crossing property. The representa-
tion of preferences given by (2.5) is linear in y and in the unobserved characteristic s.
This linearity is heavily exploited in the analysis of Section 3.

As is common in models of nonlinear income taxation, for all i, the government can
observe both ci and zi, but cannot observe li or si. It can observe the aggregate wage
rate w, so that it can infer yi at the individual level. Because li is unobserved, the
government uses distortionary income taxes. The tax system specifies tax payments as
a function of observed labor income. Equivalently, the government can be viewed as
selecting consumption levels and effective labor time for each type of worker, subject to
the standard incentive compatibility constraints

siv(ci)− γyi ≥ siv(cj)− γyj, ∀i, j = 1, . . . , N. (2.7)

It is well known that the self-selection conditions imply that the consumption allocations
must satisfy the conditions

c1 ≤ c2 ≤ · · · ≤ cn.
5 (2.8)

The tax system consistent with an allocation satisfying (2.7) is typically nondifferentiable.
Thus, marginal tax rates are only implicitly defined by the difference between producer
and consumer prices at the an individual’s consumption bundle. The implicit marginal
tax rate (IMTR) for labor income is given by

IMTRi = 1− γ

wsiv′(ci)
. (2.9)

An allocation is a vector a = (y1, . . . , yN ; c1, . . . cN ;R) consisting of the effective labor
supply and consumption of each type of worker and a level of the publicly provided input.
A production-feasible allocation satisfies

N∑
i=1

nici + qR ≤ f(R, y), (2.10)

5Effective labor supplies satisfy analogous monotonicity conditions, but these follow necessarily from
(3.3) below.
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where

y =
N∑
i=1

niyi, (2.11)

is the aggregate supply of effective labor.
The government has the weighted utilitarian social welfare function W : R2N

+ → R
given by

W (a) =
N∑
i=1

µiniV (yi, ci) =
N∑
i=1

λini[siv(ci)− γyi] (2.12)

for a collection of positive welfare weights µ = (µ1, . . . µn), where the skill-normalized
welfare weights

λi = µi/si, i = 1, . . . , N, (2.13)

are assumed to be decreasing in the skill level. Thus, the skill-normalized weights satisfy

0 < λN < · · · < λ1. (2.14)

This assumption is satisfied if the objective function is utilitarian, that is, if the weights
µi are all equal. Because any welfare maximization problem is invariant to multiplying
the welfare function by an arbitrary constant, we assume that the normalized welfare
weights sum to the total number of individuals in the economy; that is,

N∑
i=1

niλi =
N∑
i=1

ni. (2.15)

The government’s decision problem is defined formally as follows.

The Optimal Nonlinear Tax Problem. The government chooses an allocation a to
maximize the social welfare function (2.12) subject to the self-selection constraints (2.7)
and the materials balance constraint (2.10).

In stating the Optimal Nonlinear Tax Problem, we have not explicitly included non-
negativity constraints on the allocation vector a. Provided that y1 > 0 at the solution to
this problem, our assumptions ensure that all components of the optimal allocation are
positive. Henceforth, it is assumed that the optimal value of y1 is positive.

3. Preliminary Analysis

Lemma 1. At a solution a to the optimal nonlinear income tax problem

siv(ci)− γyi = siv(ci−1)− γyi−1, ∀i = 2, . . . , N. (3.1)

In the language of screening models, Lemma 1 states that optimality requires that all
downward adjacent self-selection constraints bind. Monotonicity of the skill-normalized
welfare weights implies that the government wishes to redistribute consumption toward
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and/or redistribute effective labor time away from lower-skilled individuals. The natural
limit to this type of redistribution is a downward self-selection constraint.

For a given consumption allocation, the binding self-selection constraints (3.1) form a
system of N−1 linear equations in the N variables y1, . . . , yN . Given an aggregate supply
of effective labor, y, (2.11) provides an Nth linear equation in the yis. The solution to
the resulting system of equations is given in Lemma 2.

Lemma 2. For a given (c1, . . . , cn; y), the system of equations (2.11) and (3.1) have a
unique solution. Moreover, this solution can be written in the recursive form:

y1(c1, . . . , cn; y) =
1∑N
i=1 ni

y − 1

γ

N∑
j=2

N∑
i=j

nisj [v(cj)− v(cj−1)]

 ; (3.2)

yi(c1, . . . , cn; y) = y1(c1, . . . , cn; y) +
1

γ

i∑
j=2

sj [v(cj)− v(cj−1)] , i = 2, . . . , N. (3.3)

Lemmas 1 and 2 imply that the optimal nonlinear tax problem can be solved in
two steps. In the first step, (3.2) and (3.3) can be substituted into the social welfare
function (2.12). The resulting reduced-from objective function depends on consumption
levels and aggregate effective labor. Maximizing this objective function subject to the
production-feasibility constraint (2.10) yields optimal values (c∗1, . . . , c

∗
N ; y∗, R∗). In the

second step, Lemma 2 is used to compute the optimal effective labor supplies for each
type of individual.

Lemma 3. The optimal consumption vector, optimal aggregate effective labor, and opti-
mal level of the public input associated with the Optimal Nonlinear Tax Problem can be
found by solving

max
c1,...,cN ;y,R

N∑
i=1

βiv(ci)− γy subject to (2.8) and (2.10), (3.4)

where

βi = nisi +

(
i∑

k=1

(nk − nkλk)
)

(si+1 − si), i = 1, . . . , N (3.5)

and sN+1 is an arbitrary number.6

Henceforth, we assume that the monotonicity constraints (2.8) are all non-binding.
That is, we rule out the possibility of bunching at the optimal solution.7 Alternatively,
our comparative static results can be re-interpreted as applying to parameter changes
that leave the pattern of bunching unchanged.

6Note that the normalization (2.15) implies βN = nNsN .
7Conditions that guarantee that bunching does not occur at the optimum can be derived using the

arguments found in Weymark (1986a) and Simula (2007).
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The problem (3.4) is considerably more tractable than the original statement of the
Optimal Nonlinear Tax Problem. However, unlike the reduced forms obtained by Wey-
mark (1986b), Simula (2007), and Brett and Weymark (2008b), even when it is assumed
that the monotonicity constraints are not binding, (3.4) is not a fully unconstrained op-
timization problem. The nonlinearity of the production-feasibility constraint makes it
inconvenient to substitute this constraint into the objective function. Characterizing the
solution to and performing comparative static analysis concerning (3.4) is, nevertheless,
fairly straightforward.

Introducing a multiplier ψ, the shadow value of the constraint (2.10), allows the
first-order conditions for a solution to (3.4) to be written as

ci : βiv
′(ci)− ψni = 0, i = 1, . . . , n; (3.6)

y : − γ + ψfy = 0; (3.7)

R : fR − q = 0; (3.8)

ψ : f(R, y)−
N∑
i=1

nici − qR = 0. (3.9)

The first-order conditions have a recursive structure that greatly simplifies our anal-
ysis. Suppose that one can, perhaps by using information contained in all of equations
(3.6)–(3.9), find the optimal value of the multiplier associated with the resource con-
straint, say ψ̃. Substituting ψ̃ into the first-order conditions (3.6), (3.7), and (3.8) ren-
ders each equation in (3.6) independent of the other of these first-order conditions. Thus,
conditional on ψ̃, the optimal value of ci can be found by solving the first-order condition
associated with ci. In addition, given ψ̃, the optimal values of y and R can be found by
solving the two-equation system (3.7) and (3.8).

Proposition 1 summarizes the qualitative features of the optimal allocations that
follow directly from the first-order conditions.

Proposition 1. The following statements hold at the solution a to the Optimal Nonlinear
Tax Problem.

(i) The marginal product of the publicly provided input equals its price.

(ii) The labor supply of individuals of type N is not distorted; that is,

IMTRN = 1− βN
nNsN

= 0. (3.10)

(iii) The implicit marginal tax rate on the labor income of individuals of types 1, . . . , N−
1 is positive; specifically,

IMTRi = 1− βi
nisi

=
1

nisi

(
i∑

k=1

(nkλk − nk)
)

(si+1 − si) > 0, i = 1, . . . , N − 1.

(3.11)
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Part (i) of Proposition 1 states that there is no distortion in the provision of the
publicly provided input. Gaube (2005) argues that distortions in publicly provided inputs
are justified when relative wages vary with the level of the publicly provided input R. In
that case, R provides a mechanism to carry out implicit redistribution. However, when
relative wages are fixed, as they are here, changing R cannot enhance redistribution, so
there is no reason to deviate from the first-best allocation rule for the provision of the
public input. Parts (ii) and (iii) of Proposition 1 convey the standard pattern of labor
market distortions arising in redistributive optimal nonlinear tax schemes: no distortion
at the top and positive marginal income tax rates for all other types of individuals.

4. Comparative Statics

We now investigate how the optimal individual consumption levels, aggregate effective
labor supply, and provision of the publicly provided input respond to changes in some
of the parameters of the economy. These are the endogneous variables in the first-stage
optimization problem (3.4). As discussed by Weymark (1987) and Brett and Weymark
(2008a), it is generally not possible to obtain unambiguous comparative static results for
individual incomes when preferences are quasilinear in leisure, as is the case here. In our
model, the exogenous parameters are the technology parameter q, the taste parameter γ,
the skill parameters s1, . . . , sN , the welfare weights, λ1, . . . , λn, and the demographic pa-
rameters n1, . . . , nN . The skills and welfare weights enter the problem (3.4) only through
their influence on the reduced-form welfare weights β1, . . . , βN . Thus, we will investigate
how the optimal allocation depends on the reduced-form welfare weights. The parameter
vector we vary is ρ = (β1, . . . , βN , q, γ).

The techniques we use to compute comparative static effects recognize the joint deter-
mination of all the endogenous variables in the system of first-order equations (3.6)–(3.9).
The formal justification for our comparative statics procedures is given in Proposition 2.

Proposition 2. The optimality conditions (3.6)–(3.9) define a continuously differentiable
solution function F : RN+2

+ → RN+3
++ for the problem (3.4), where, for all ρ ∈ RN+2

+ ,

F (ρ) = (c̃1(ρ), . . . , c̃N(ρ), ỹ(ρ), R̃(ρ), ψ̃(ρ)). For all ρ ∈ RN+2
+ , the derivative DF of F at

ρ is given by
DF (ρ) = (A−1B)(ρ), (4.1)
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where

A(ρ) =



β1v
′′(c1) 0 · · · · · · 0 0 0 −n1

0 β2v
′′(c2) 0 · · · 0 0 0 −n2

... 0
. . .

...
...

...
...

...
...

. . . 0 0 0
...

0 0 · · · 0 βNv
′′(cN) 0 0 −nN

0 0 · · · · · · 0 ψfyy ψfyR fy
0 0 · · · · · · 0 fyR fRR 0
−n1 −n2 · · · · · · −nN fy 0 0


(4.2)

and

B(ρ) =



−v′(c1) 0 · · · · · · 0 0 0
0 −v′(c2) 0 · · · 0 0 0
... 0

. . .
...

...
...

...
...

. . . 0 0 0
0 0 · · · 0 −v′(cN) 0 0
0 0 · · · · · · 0 0 1
0 0 · · · · · · 0 1 0
0 0 · · · · · · 0 R 0


, (4.3)

and where all expressions on the right-hand sides of (4.2) and (4.3) are evaluated at the
solution to (3.4).

The right-hand side of equation (4.1) contains the responses of each of the choice
variables in the problem (3.4) to changes in the components of the parameter vector ρ.
In the remainder of this section, we investigate the signs of the components of the right-
hand side of (4.1) in order to deduce the respective directions of change in the choice
variables when the parameters change.

Weymark (1987) bases his comparative static analysis in a model without a public
input on an analysis of the first-order conditions for the choice of the consumption levels.
His first-order equation associated with ci contains only ci and model parameters, which
allows him to obtain an explicit solution for ci. The analogue of this equation in our
model, equation (3.6), contains an additional endogenous variable, ψ, the shadow value of
the economy’s resource constraint. Thus, it is not possible to follow Weymark’s strategy
to compute the effects of parameter changes on the optimal consumption levels. However,
recognizing the dependence of ψ on the model parameters, and solving (3.6) yields,

c̃i = v′
−1

(
niψ̃(ρ)

βi

)
, i = 1, . . . , N. (4.4)

Thus, in addition to the comparative static effects described by Weymark, a parameter
change induces consumption responses due to a change in the shadow value of the resource
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constraint. From (2.2) and (3.7), ψ varies inversely with the aggregate wage rate for fixed
γ. Hence, the additional responses we analyze can be interpreted as general equilibrium
effects arising from the production side of the economy.

We begin our comparative static analysis by examining how ψ, the shadow value of
the resource constraint, varies with the model parameters.

Proposition 3. A marginal increase in any of the components of ρ results in an increase
in the shadow value of the resource constraint ψ.

The intuition behind Proposition 3 is straightforward. In light of (3.4), an increase in
any βi increases the marginal value of consumption, and hence the social marginal value of
the consumption good, ψ. When resources are optimally allocated, the social marginal
value of output equals its social marginal cost. Thus, ψ increases when production
becomes more costly. An increase in either q or γ makes production more costly, either
in physical terms or in utility terms. Thus, ψ increases with both q and γ.

The responses of individual consumption levels to changes in the parameters can be
deduced directly from (3.6) or (4.4) and (the proof of) Proposition 3. First, an increase
in any component of ρ raises the shadow value of resources, thereby raising the social
marginal cost of providing ci. For changes in parameters that do not affect βi, this
results in the marginal cost of ci exceeding its marginal benefit. It is, therefore, optimal
for the government to adjust the value of ci downward. When βi increases, both the
social marginal benefit and the social marginal cost of ci increase at the initial optimal
value. It turns out that the direct effect on the social marginal benefit via an increase
in βi itself is stronger than the indirect effect that operates through changes in ψ. Our
results on consumption responses are collected in Proposition 4.

Proposition 4. The consumption level for an individual of type i at the solution to (3.4):

(i) increases when βi increases marginally;

(ii) decreases when βj (j 6= i), q, or γ increases marginally.

Weymark (1987) describes how consumption levels change in response to increases in
reduced-form welfare weights βi in his Proposition 5. Because the aggregate wage level
is fixed in Weymark’s model, his results capture only the direct effect of a change in βi
on ci. As we have already noted, Part (i) of Proposition 4 states that the direct effect
of a change in βi outweighs its indirect effect. Thus, the sign of this comparative static
result agrees with Weymark’s findings. Part (ii) is at odds, however, with his results. In
his model, ci is unaffected by a change in the reduced-form welfare weights of the other
types of individuals.

Conditional on the shadow value of resources, the optimal combination of aggregate
effective labor and the public input is determined by solving equations (3.7) and (3.8)
simultaneously. Naturally, changes in the parameters appearing in these two equations
affect the choice of inputs. So, too, do changes in the reduced-form welfare weights via
their effects on ψ.
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Proposition 5. Both the amount of aggregate labor in efficiency units and the provision
of the publicly provided input at the solution to (3.4):

(i) increase when βi increases marginally, for any type of individual i;

(ii) decrease when γ increases marginally.

It follows from Proposition 3 that the shadow value of resources increases when any
reduced-form welfare weight increases. Thus, in light of (3.7), the aggregate wage rate
decreases when any βi increases. As the wage rate falls, the optimal amount of labor
used increases. Because effective labor and the publicly provided goods are complements
in production, it is optimal to use more R as well. An increase in γ also produces an
increase in ψ and, with it, a rationale for increasing input usage. However, an increase
in γ also has a direct positive effect on the social marginal cost of effective labor. As the
social marginal cost of labor increases, it is optimal to reduce the amount of aggregate
effective labor and also to use less of the complementary publicly provided input. Part
(ii) of Proposition 5 states that the direct effect of an increase in γ on input usage is
stronger than the general equilibrium effect on input usage operating through ψ.

While it is possible to derive expressions for the marginal effect of an increase in the
price of the publicly provided input on the optimal usage of the two inputs in the produc-
tion process, it does not seem possible to sign these effects without further restrictions
on the model. The reason for this ambiguity is that a change in q exerts three effects on
governmental decisions. First, there is the direct effect on relative input prices, which
tends to reduce the provision of R and its complement in production, y. There are also
two effects on ψ: the real wage effect described in the previous paragraph and a direct
increase in ψ due to the increased cost of the initially optimal provision of R. This sec-
ond source of increase in the shadow value of the resource constraint may be sufficient
to render the general equilibrium effects of a change in q stronger than the direct effect
operating through input prices.

5. Conclusion

Our results extend the literature on the comparative static properties of optimal nonlinear
income taxation in several directions. Most obviously, we are able to describe how the
optimal provision of a publicly provided input, a novel ingredient in our model, varies
with changes in the underlying economy. In addition, we are able to extend the existing
comparative static results on consumption allocations to an environment with a nonlinear
resource constraint. When the resource constraint is nonlinear, parameter changes have
general equilibrium effects that are absent from standard models with linear production
functions. These general equilibrium effects are not strong enough to overturn existing
results concerning the sign of the effect of a change in reduced-form welfare weights on
own consumption. However, they do overturn existing results on the invariance of the
consumption allocated to individuals of a certain type to changes in the reduced-form
welfare weight attached to other types of individuals.
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It is possible to use our results to carry out other comparative static exercises. The
underlying welfare weights, λ1, . . . , λN , and the skill levels of the various types of in-
dividuals, s1, . . . , sN , enter into the reduced-form optimal nonlinear tax problem via
the reduced-form welfare weights alone. Thus, it is possible to use our results to com-
pute the marginal effects of changes in these parameters on the optimal allocations. In
a model without a public input, comparative static results for these parameters have
been obtained by Weymark (1987) and by Brett and Weymark (2008a), respectively.
The demographic structure of the economy, summarized by n1, . . . , nN , enters both the
reduced-form welfare weights and the economy’s resource constraint. Thus, computing
the effects of changes in the distribution of the population across skill types is more chal-
lenging, but not impossible. Hamilton and Pestieau (2005) and Boadway and Pestieau
(2007) have analyzed the effects of changes in the distribution of types when nonlinear
income taxes are chosen optimally, but they assume that preferences are quasilinear in
consumption, rather than quasilinear in labor, as we assume here.

A possible extension of our analysis would be to allow the relative wages of different
types of workers to respond to the provision of the publicly provided input, as in Gaube
(2005). Such an extension would pose the technical challenge of analyzing the Weymark
(1987) model without imposing a skill-normalization on the welfare weights. The reward
for surmounting these challenges might include some results on how the production sector
distortions identified by Gaube respond to changes in model parameters.

Appendix

Proof of Lemma 1. Let a∗ = (y∗1, . . . , y
∗
N , c

∗
1, . . . , c

∗
N , R

∗) be a candidate solution to the
optimal nonlinear income tax problem with the property that, contrary to the statement
of the lemma, there exists a type of individual j such that

sjv(cj)− γyj > sjv(cj−1)− γyj−1. (A.1)

Then let

ȳi =

y∗i − ε1, i = 1, . . . , j − 1;

y∗i + ε2, i = j, . . . , N,
(A.2)

for positive ε1 and ε2 chosen so that ȳi ≥ 0 for all i and so as to preserve the amount of
total effective labor supply in the economy; that is, so that

ε1

j−1∑
i=1

ni = ε2

N∑
i=j

ni.
8 (A.3)

Because a∗ does not violate any self-selection constraints, single-crossing and (A.1) im-
plies that the allocation ā = (ȳ1, . . . , ȳN , c

∗
1, . . . , c

∗
N , R

∗) does not violate any self-selection

8Our assumption that y∗i > 0 for all i ensures that such ε1 and ε2 exist.
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constraints for ε1 (hence, ε2) sufficiently small. Thus, the allocation ā is feasible. More-
over,

W (ā)−W (a∗) = γ

ε1

j−1∑
i=1

niλi − ε2

N∑
i=j

niλi

 (A.4)

≥ γ

ε1λj−1

j−1∑
i=1

ni − ε2λj
N∑
i=j

ni

 , (A.5)

by (2.14). Employing (2.14) again, along with (A.3) and(A.5), implies

W (ā)−W (a∗) ≥ γ

ε1

j−1∑
i=1

ni

 [λj−1 − λj] > 0, (A.6)

contradicting the optimality of a∗.

Proof of Lemma 2. The equation in (3.3) for type i follows straightforwardly from the
equations in (3.1) for j = 2, . . . i. Using (2.11), (3.3) implies

y =
N∑
i=1

niyi =
N∑
i=1

niy1 +
1

γ

 N∑
i=2

ni
i∑

j=2

sj [v(cj)− v(cj−1)]

 . (A.7)

Reversing the order of the double summation in (A.7) yields

y = y1

N∑
i=1

ni +
1

γ

N∑
j=2

N∑
i=j

nisj [v(cj)− v(cj−1)] . (A.8)

Equation (3.2) follows directly from (A.8).

Proof of Lemma 3. Let V i be the utility [as measured using (2.5)] of an individual of
type i associated with an allocation that satisfies (3.1). By (3.1)

N∑
i=1

niV
i =

N∑
i=1

niV
1 +

N∑
i=2

ni
i−1∑
j=1

(sj+1 − sj)v(cj)

=
N∑
i=1

niV
1 +

N−1∑
i=1

 N∑
j=i+1

nj

 [(si+1 − si)v(ci)] .

(A.9)

On the other hand, by (2.5) and (2.11),

N∑
i=1

niV
i =

N∑
i=1

nisiv(ci)− γ
N∑
i=1

niyi =
N∑
i=1

nisiv(ci)− γy. (A.10)

13



Combining (A.9) and (A.10) yields

V 1 =
1∑N
i=1 ni

 N∑
i=1

nisiv(ci)− γy −
N−1∑
i=1

 N∑
j=i+1

nj

 [(si+1 − si)v(ci)]

 . (A.11)

Now, for any allocation that satisfies (3.1),

W =

(
N∑
i=1

niλi

)
V 1 +

N∑
i=2

niλi

i−1∑
j=1

(sj+1 − sj)v(cj)


=

(
N∑
i=1

niλi

)
V 1 +

N−1∑
i=1

 N∑
j=i+1

njλj

 (si+1 − si)v(ci)

 .
(A.12)

Substituting (A.11) into (A.12) yields

W =

∑N
i=1 niλi∑N
i=1 ni

 N∑
i=1

nisiv(ci)− γy −
N−1∑
i=1

 N∑
j=i+1

nj

 (si+1 − si)v(ci)


+

N−1∑
i=1

 N∑
j=i+1

njλj

 (si+1 − si)v(ci)

 .
(A.13)

The normalization rule (2.15) allows the simplification of (A.13) to

W =
N∑
i=1

nisiv(ci)−
N−1∑
i=1

 N∑
j=i+1

nj

 [si+1 − si]v(ci)

+
N−1∑
i=1

[(
N∑
k=1

nk −
i∑

k=1

niλk

)
(si+1 − si)v(ci)

]
− γy.

(A.14)

Collecting terms in (A.14) yields

W =

 N∑
i

nisi +


N−1∑
i=1

(
N∑
k=1

nk

)
−

N−1∑
i=1

 N∑
j=i+1

nj

− N−1∑
i=1

i∑
k=1

nkλk

 (si+1 − si)

 v(ci)−γy.

(A.15)
Simplifying the term in braces in (A.15) gives

W =

[
N∑
i

nisi +

{
N−1∑
i=1

i∑
k=1

(nk − nkλk)
}

(si+1 − si)
]
v(ci)− γy. (A.16)

But the normalization rule (2.15) implies that the upper limit of first sum in the term
in braces in (A.16) can be extended to N because the Nth term is zero. Thus, for any
constant sN+1,

W =

[
N∑
i

nisi +

{
N∑
i=1

i∑
k=1

(nk − nkλk)
}

(si+1 − si)
]
v(ci)− γy, (A.17)
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which is exactly the objective function in (3.4). The constraint in (3.4) is the production-
feasibility constraint, which has not been substituted into the objective function during
the argument in this proof.

It remains to show that (3.1) and (2.8) imply (2.7). This implication follows from
the analysis in Matthews and Moore (1987) because (2.8) and (3.3) imply y1 ≤ · · · ≤
yn. Thus, the Matthews–Moore attribute ordering and ordering of marginal rates of
substitution conditions are satisfied. Therefore, (2.7) is also satisfied.

Proof of Proposition 1. Part (i) follows directly from (3.8).
Solving (3.6) for v′(ci) and substituting the result into (2.9) yields

IMTRi = 1− γ

wsi
ψni

βi

= 1− γ

wsi
γni

wβi

= 1− βi
nisi

, i = 1, . . . , N, (A.18)

where the second equality follows from (2.2) and (3.7). Part (ii) follows directly from
(A.18) because βN = nNsN .

Substituting (3.5) into (A.18) and simplifying yields the final equation in (3.11). It
remains to show that the inequality in (3.11) is satisfied. To that end, suppose, by way
of contradiction, that the inequality is not satisfied. Then

i∑
k=1

nkλk ≤
i∑

k=1

nk. (A.19)

Now, by (2.14)

λi
i∑

k=1

nk <
i∑

k=1

nkλk. (A.20)

Hence, by (A.19) and (A.20),

λk
i∑

k=1

nk <
i∑

k=1

nk. (A.21)

which implies that λi < 1.
Next, note that (2.15) and (A.19) imply

N∑
k=i+1

nkλk ≥
N∑

k=i+1

nk. (A.22)

Now, by (2.14)

λi+1

N∑
k=i+1

nk >
N∑

k=i+1

nkλk. (A.23)

Hence, by (A.22) and (A.23),

λi+1

N∑
k=i+1

nk >
N∑

k=i+1

nk, (A.24)

which implies that λi+1 > 1. Therefore, (A.21) and (A.24) imply λi+1 > λi, which
violates (2.14). This contradiction proves the inequality in (3.11).
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Proof of Proposition 2. Totally differentiating the optimality conditions (3.6)–(3.9) with
respect to the endogenous variables and the components of ρ (and suppressing the de-
pendence of A(ρ) and B(ρ) on ρ) yields

A



dc1
...

dcN
dy
dR
dψ


= B



dβ1
...

dβN
dq
dγ

 , (A.25)

where use has been made of (3.8). Proposition 2 follows from the Implicit Function
Theorem if the matrix A is invertible. In order to establish invertibility of A, rewrite A
in the form

A =

[
H Z
ZT 0

]
, (A.26)

where H is the (N + 2)× (N + 2) upper-left block of A,

ZT = [−n1, . . . ,−nN , fy, 0], (A.27)

and the zero in (A.26) is scalar. Because v and f are both strictly concave, H is negative
definite. Hence, H is invertible. It is straightforward to check that

A−1 =

[
H−1 − θH−1ZZTH−1 θH−1Z

θZTH−1 −θ

]
, (A.28)

where

θ =
1

ZTH−1Z
< 0. (A.29)

The inequality in (A.29) holds because H−1 is negative definite.

Proof of Proposition 3. The partial derivatives of ψ̃(ρ) are found in the bottom row of
(4.1). It follows from (A.28) that[

∂ψ̃
∂β1

· · · ∂ψ̃
∂βN

∂ψ̃
∂q

∂ψ̃
∂γ

]
=
[
θZTH−1 −θ

]
B (A.30)

The matrix H is block diagonal. It contains an upper-left block of size N ×N which is,
itself, diagonal, along with a 2× 2 lower-right block. Thus, it is clear that

H−1 =



1
β1v′′(c1)

0 · · · · · · 0 0 0

0 1
β2v′′(c2)

0 · · · 0 0 0
... 0

. . .
...

...
...

...
...

. . . 0 0 0
0 0 · · · 0 1

βNv′′(cN )
0 0

0 0 · · · · · · 0 fRR

∆
−ψfyR

∆

0 0 · · · · · · 0 −fyR

∆
ψfyy

∆


, (A.31)
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where
∆ = ψ

[
fRRfyy − (fyR)2

]
> 0. (A.32)

The inequality in (A.32) holds because f is strictly concave and, by (3.7), ψ > 0. Sub-
stituting (4.3), (A.27) and (A.31) into the right hand side of (A.30) and performing the
resulting matrix multiplications yields

∂ψ̃

∂βi
=
θniv

′(ci)

βiv′′(ci)
, i = 1, . . . N ; (A.33)

∂ψ̃

∂q
=
−θψfyfyR

∆
− θR; (A.34)

∂ψ̃

∂γ
=
θfyfRR

∆
. (A.35)

The right hand side of (A.33) is positive because θ < 0, v′(ci) > 0, and v′′(ci) < 0.
Both terms on the right hand side of (A.34) are positive. The first is positive because
fy(R, y) > 0, fyR(R, y) > 0, ∆ > 0, and θ < 0. The second is positive because θ < 0.
Finally, the right hand side of (A.35) is positive because fy(R, y) > 0, fRR(R, y) < 0,
∆ > 0, and θ < 0.

Proof of Proposition 4. Let µ denote the argument of the function v′−1. Differentiating
(4.4) yields

∂c̃i
∂ζ

=
∂v′−1

∂µ

ni
βi

∂ψ̃

∂ζ
, ζ = q, γ, βj (j 6= i). (A.36)

By the concavity of v, v′ is decreasing. Hence, v′−1 is also decreasing. Thus, by Propo-
sition 3, the right hand side of (A.36) is negative. Part (ii) of Proposition 4 follows from
these observations.

Differentiating (4.4) with respect to βi yields

∂c̃i
∂βi

=
∂v′−1

∂µ

[
ni
βi

∂ψ̃

∂βi
− ni
β2
i

ψ̃

]
. (A.37)

Using (3.6) and (A.33) to substitute for ψ̃ and its partial derivative, respectively, in
(A.37) yields

∂c̃i
∂βi

=
∂v′−1

∂µ

v′(ci)

βi

[
θn2

i

βiv′′(ci)
− 1

]
. (A.38)

Now, using (A.27), (A.29), and (A.31),

1

θ
=

N∑
j=1

n2
j

βjv′′(cj)
+
f 2
y fRR

∆
<

n2
i

βiv′′(ci)
. (A.39)
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The inequality in (A.39) holds because ∆ > 0 and the strict concavity of v and f imply
that every term in the sum appearing in the middle term of (A.39) is negative. Because
θ < 0, (A.39) implies

1 >
θn2

i

βiv′′(ci)
. (A.40)

Thus, the term in square brackets on the right hand side of (A.38) is negative. Because
v′−1 is decreasing, the entire right hand side of (A.38) is positive. Part (i) of Proposition
4 then follows.

Proof of Proposition 5. We present heuristic calculations that are justified by the Im-
plicit Function Theorem. The same results can be obtained by carrying out the matrix
calculations in (4.1).

In light of (4.2), rearranging rows N + 1 and N + 2 of (A.25) yields[
ψfyy ψfyR
fyR fRR

] [
dy
dR

]
=

[
dγ − fydψ

dq

]
. (A.41)

The solution to the matrix equation (A.41) is[
dy
dR

]
=

1

∆

[
fRR −ψfyR
−fyR ψfyy

] [
dγ − fydψ

dq

]
. (A.42)

It follows from (A.42) that

∂y

∂βi
= −fRRfy

∆

∂ψ

∂βi
> 0, i = 1, . . . , N. (A.43)

Because ∆ > 0, the inequality in (A.43) follows from the strict concavity of f and
Proposition 3. Also from (A.42),

∂R

∂βi
=
fyRfy

∆

∂ψ

∂βi
> 0, i = 1, . . . , N. (A.44)

The inequality in (A.44) follows from the positivity of ∆, the strict concavity of f , the
complementarity of y and R in production, and Proposition 3. Equations (A.43) and
(A.44) establish Part (i) of Proposition 5.

Employing (A.42) once more yields

∂y

∂γ
=
fRR
∆
− fRRfy

∆

∂ψ

∂γ
. (A.45)

Substituting (A.35) into (A.45) and rearranging gives

∂y

∂γ
=
fRR
∆

[
1−

θf 2
y fRR

∆

]
. (A.46)
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Now, by an argument analogous to the one used to justify (A.39),

1

θ
<
f 2
y fRR

∆
, (A.47)

and, because θ < 0,

1 >
θf 2

y fRR

∆
. (A.48)

Hence, the term in square brackets on the right hand side of (A.46) is positive. Thus,

∆ > 0 and the strict concavity of f imply that
∂y

∂γ
< 0.

Using (A.42) yet again yields

∂R

∂γ
= −fyR

∆
+
fyRfy

∆

∂ψ

∂γ
. (A.49)

Substituting (A.35) into (A.49) and rearranging gives

∂R

∂γ
= −fyR

∆

[
1−

θf 2
y fRR

∆

]
. (A.50)

We have already established that the term in square brackets on the right hand side of
(A.50) is positive. Because fyR > 0 and ∆ > 0, the entire right hand side is negative,
thereby establishing Part (ii) of Proposition 5.
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