
Economics 250
Introductory Statistics

Exercise 2
Due Wednesday 3 March 2021 by noon via onQ

Instructions: No late submissions are possible. Show intermediate steps (such as formulas)
in your work both for ease of review and part marks in case of error. Do the exercise on
your own and submit only your own work. Plots and graphs must be drawn with software
(such as Excel) not by hand. Note: Please submit text in a single .pdf file and not a .doc
or multiple photo files. Marks will be deducted otherwise.

1. Suppose at a track-and-field competition 10% of athletes are cheating (C) by taking
banned substances. Everyone is tested, and 8% of the athletes test positive (Pos) for those
substances. The test sometimes yields ‘false positive’ results though: Given that someone
is not cheating, the test gives a positive result 5% of the time.

(a) What is P (Not C ∩ Pos)?

(b) What is P (Pos|C)?

(c) What is P (C|Pos)?

(d) Are the events testing positive (Pos) and cheating (C) independent?

2. Suppose that we describe the return on the stock market as a discrete random vari-
able, labelled rs. Suppose that the possible outcomes are {−3, 6, 12} with probabilities
{0.2, 0.5, 0.3}.

(a) Find the expected value of rs.

(b) Find the standard deviation of rs.

(c) An investor considers combining this investment with a bond return labelled rb that
has mean 2 and variance 0. The new portfolio has equal amounts in each investment so
its return is:

rp = 0.5rs + 0.5rb.

Find the mean and standard deviation of rp.

3. Statistics are central to managing an investment portfolio. Imagine that an investor is
choosing how to divide each dollar between two investments, labelled A and B. Investment
A has a return with mean 4 and standard deviation 1. Investment B has a return with
mean 6 and standard deviation 1. The correlation between the two returns is 0.4. The
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portfolio invests a fraction ω in investment A and a fraction 1−ω in investment B so that
the portfolio’s return is:

rp = ωrA + (1− ω)rB .

Suppose that ω lies in the range [0, 1].

(a) Find formulas for the mean of the portfolio return, labelled µp, and the variance of
the portfolio return, labelled σ2

p, as functions of ω. What value of ω maximizes the mean
return on the portfolio?

(b) In finance, risk somestimes is measured using the variance. Find the value of ω that
minimizes the variance of rp. (Hint: Use your mathematics skills to minimize the function
you derived.)

4. Suppose that a financial asset pays a dividend of $2 sometimes and $4 at other times.
Let us study the dividends in two successive years, denoted d1 and d2. These two discrete
random variables are jointly distributed like this:

d1
2 4

2 0.4 0.1
d2

4 0.1 0.4

(a) Find the marginal distribution for d2. Then find the mean and standard deviation
using that distribution. (Sometimes these are called the unconditional mean and standard
deviation.)

(b) Suppose that you observe that d1 = 4. Find the conditional distribution for d2. Then
find the conditional mean and standard deviation.

(c) Are the two random variables independent? Find the covariance and the correlation.

5. Suppose that medical researchers know that a treatment has a 40 percent chance of
being successful for any patient.

(a) If they treat 8 patients what is the probability that the sample success rate is 50%?
What is the probability that the sample success rate is 50% or more?

(b) If they treat 100 patients what is the probability that the sample success rate is 50%
or more?
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6. Suppose that an after-school tutoring program succeeds in raising any student’s math-
ematics test score with a probability of 0.7.

(a) If 10 students participate in the program then what is the probability that at least 6
of them (i.e. 6 or more) experience a test score increase?

(b) What is the probability that only 1, 2 or 3 of them experience a test score increase?

(c) If 100 students participate then what is the probability that at least 60 of them expe-
rience a test score increase? (Hint: Think of this sample size as large and do not use the
binomial formula.)

(d) For large n what is the distribution of the success rate or proportion, defined as
p̂ = x/n?

7. Use the data set Fisher2021 from the Projects web page for this course. For years from
1962 to 2020 it shows Canadian 10-year bond interest rates and CPI inflation rates, both
in percentage points for each month.

(a) Use Excel to produce and properly label a scatter plot of the 10-year interest rate (on
the vertical axis) plotted against the inflation rate (on the horizontal axis). Also add a
linear trendline to your graph.

(b) Run a linear regression like this:

y = a+ bx,

In Excel, go to the ‘data’ tab then to ‘data analysis” and ‘regression’. Report the coefficient
on the x-variable (i.e. the inflation rate) and its standard error. Also report the R-square
(R2) statistic.

(c) Sections 2.3–2.4 of the textbook tell us how to interpret these statistics. Based on these
statistics is there much evidence of a relationship between this interest rate rate and the
inflation rate, in these time series data?

(d) If the inflation rate is 0.5% then what will the predicted interest rate rate be, given
this historical relationship?
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Economics 250 Exercise 2 Answer Guide
March 2021

1. (a: 2 marks) Clearly P (NotC) = 0.90. The multiplication rule gives:

P (NotC ∩ Pos) = P (Pos|NotC)P (NotC) = 0.05× 0.9 = 0.045

(b: 2 marks) Completing the two-way table using the multiplication rule:

P (Pos|C) =
P (Pos ∩ C)

P (C)
= 0.035/0.10 = 0.35.

(c: 2 marks) From the table or from Bayes rule:

P (C|Pos) =
P (Pos|C)P (C)

P (Pos)
=

0.35× 0.10

0.08
= 0.4375.

(d: 2 marks) No they are not independent. P (C|Pos) = 0.4375 > P (C) = 0.10.

2. (a: 2 marks)

E(s) = 0.2× (−3) + 0.5× 6 + 0.3× 12 = −0.6 + 3.0 + 3.6 = 6.

(b: 2 marks) The variance is:

σ2
s = 0.2(−9)2 + 0.5(0)2 + 0.3(6)2 = 16.2 + 0 + 10.8 = 27

so the standard deviation is:
σs = 5.196

(c: 2 marks) Here rb is just a constant, so

rp = 1 + 0.5rb.

Thus the mean is 1 + 0.5(6) = 4. The standard deviation is 0.5(5.196) = 2.598.
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3. (a: 3 marks) The mean is:

µp = ω(4) + (1− ω)6 = 4ω + 6− 6ω = 6− 2ω.

The variance is:

σ2
p = ω2(12) + (1− ω)2(12) + 2ω(1− ω)(0.4)(1)(1) = 1.2ω2 + 1− 1.2ω.

You can see that setting ω = 0—investing only in asset B—maximizes the mean return on
the portfolio.

(b: 3 marks) Now
σ2
p = 1.2ω2 + 1− 1.2ω

Differentiate with respect to ω and set the derivative to zero:

dσ2
p

dω
= 1.2(2ω − 1) = 0,

which gives
ω = 0.5.

Even though the two investments have the same variance, the portfolio variance can be
reduced by exactly diversifying as long as the correlation is not 1. (Incidentally, the second
derivative is positive, so this is indeed a minimum.)

4. (a: 2 marks) The marginal distribution for d2 has probability 0.5 on the value 2 and
0.5 on the value 4. Thus the mean is 3. The variance is 1. The standard deviation is 1.

(b: 3 marks) The conditional distribution of d2, given d1 = 4, has weight 0.2 on the value
2 and 0.8 on the value 4. Thus the conditional mean is 3.6. The conditional variance uses
the conditional mean and the conditional probabilities, which gives 0.64 so the standard
deviation is 0.8. (Notice, by the way, that the new information leads the researcher to
revise up the mean and revise down the standard deviation.)

(c: 4 marks) The two random variables are not independent. Our work in parts (a) and
(b) shows that the conditional probabilities differ from the marginal ones. Another way
to show they are not independent is to find the correlation. The covariance is 0.6 so the
correlation is also 0.6.

5. (a: 2 marks) Here n = 8, p = 0.4 and so from Table C or the binomial formula for
k = 4 the probability is 0.2322 or 23.22%. The probability that it succeeds for 4 or more
is found by adding up the values for k = 4, ..., 8 which gives 0.406 or 40.6%.

(b: 2 marks) With n = 100 we use the normal approximation that X ∼ N(np,
√
np(1− p))

so X ∼ N(40, 4.8989). Thus p̂ ∼ N(p,
√
p(1− p)/n) so p̂ ∼ N(0.40, 0.0489). Standardizing

gives z = (0.50−0.40)/0.0489 = 2.044 so from table A the probability is 1-0.9793 = 0.0207
or 2.07%. (In table A I used the value 2.04 but you also could use your calculator to find
the exact value or you could the average of the values for 2.04 and 2.05.)
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6. (a: 3 marks) This is a binomial problem with n = 10 and p = 0.7. (We can use Table
C remembering that the probability of failure is thus 0.3 and we want to count 4 or fewer
failures.) From Table C the answer is 0.8497.

(b: 3 marks) Reading up the column in Table C gives 0.0105. (The wording might be
ambiguous, so some people might write the individual values but not sum them.)

(c: 3 marks) We use the normal approximation, so that

x ∼ N(70, 4.58).

That means that:

z =
60− 70

4.58
= −2.18.

So from Table A the probability above this value is 1-0.0146=0.9854 or 98.54%.

(d: 3 marks) The distribution for large n is:

p̂ ∼ N(0.70,
0.458√
n

).

7. (a: 5 marks) Please see the attached figure.

(b: 5 marks) The slope is 0.738 with a standard error of 0.028. The R2 statistic is 0.493.

(c: 3 marks) Yes, there is a moderately strong, positive relationship, as seen from the value
of R2.

(c: 4 marks) The estimated intercept is 3.932 so the predicted value of the interest rate is
3.932 + 0.738 (0.5) = 4.301%.
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