
Economics 250 — Regression notes (from 19–26 November 2013 classes)

Regressions

Often the questions we care about in economics isn’t the mean of variables, but rather the
relationship between variables. For example: “How much does an extra year of education
affect wages?” and “Do countries with less pollution have higher life expectancy?” are both
economics questions about relationships rather than means.

In the language of algebra, what we’re saying is that we care not just about the level of
the variable, but the slope of the line describing the relationship between variables. In the
language of calculus, we care about not just the value but also the derivative. The first
example question above is asking “What is the slope of the relationship?” while the second
is a hypothesis test of the slope: “Is there evidence that the slope is negative?”

A regression lets us estimate of how one variable is affected by another variable (or several
other variables). It lets us predict the level of the relationship between variables (“What is
the average wage of someone with a Bachelor’s degree?”) and the slope of that relationship
(“What is the average increase in wage of an increase of 1 year of education?”). Just like
the sample means we have talked about so much in Economics 250, we create it from the
information in a population sample.
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Recall the equation for a line:

y = mx+ b

where m is the slope of the line and b is the
vertical intercept (where it intersects the y-
axis). For example:

y = 2x− 3

is the straight line depicted to the right.

What we’re trying to accomplish with a re-
gression is to get a line such as y = 2x − 3
but using our data to determine the values
2 and −3.

Because we will soon want to allow for the
possibility of multiple x values, we adopt a
slightly different notation: we’ll write a re-
gression line as:

y = β1 + β2x
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This is just the same as the straight line equation with β1 replacing b and β2 replacing m.

Because statistics deals with the real world where we accept that relationships and variables
are never perfect matches, we are also going to add another term, u, called an “error term”:

y = β1 + β2x+ u

The idea behind u is that we think that there is a linear relationship between y and x,
but that there’s also some randomness, perhaps due to other factors, measurement error, or
some other random component in how x affects y. Essentially what we’re saying is that y is
determined by x but also some “noise.” In future Econometrics courses you’ll spend a lot of
time discussing the assumptions and requirements that we need u to satisfy: for now, we’ll
just accept it as a technical detail and move on.

Finding a regression line

There are may different ways to find such a line, but the easiest and most common is
to use Ordinary Least Squares (OLS). Consider a simple data set of just 4 (x, y) pairs:
(1, 4), (3, 2), (7, 4), (8, 5). Graphically, those points look like this:
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What we want to do, using our sample, is to find the best straight line through the graph,
such as in the following:
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There are, of course, many such lines. What OLS does is pick the line that minimizes the
“sum of squared residuals” (SSR). So what’s a residual?

If we take any line (it doesn’t have to be the best one), we can figure out the predicted values
of y along that line by just plugging in the values of x from our data and seeing what value
of y the line gives us. We denote these predicted values of y as ŷ. The following graph adds
the ŷ values:
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ŷ4

Notice that they are all on the regression line: this isn’t coincidence: a regression line can
only make predictions of points along that line.

We can then see how much the actual y values in the data differ from the predicted ŷ values.
This distance, denoted û, is called a residual:

û = y − ŷ

Graphically, the residuals are the vertical lines shown below:
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The line picked by OLS is simply the line with values of β1 and β2 that make the following
expression as small as possible:

n∑
t=1

û2
t =

n∑
t=1

(yt − ŷt)
2

where the t subscript denotes the value of y, ŷ, and û for the tth observation in the data.

The essential idea behind using squares is to “penalize” choices of the line that make signifi-
cant errors in prediction. Squaring also has the benefit of removing negatives, since negative
errors are just as bad as positive errors.

Once we have these estimates, we put a hat over these values to indicate that they are
estimates from the data: β̂1, β̂2.

In the straight line case (one constant plus one variable), it is possible to calculate the values
of β̂1 and β̂2; you can see the details in the textbook: I won’t ask it. In the more general
case, where we have more than one variable on the right-hand side, the calculations involve
matrix algebra and/or calculus, which is far beyond this course.
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In practice, we simply use a regression package such as Gretl (free software) or STATA
(commercial) to calculate our β̂ estimates. Excel (with the Data Analysis toolpak) can do
some basic regressions as well, but is quite limited.

Using regression results

Suppose we have obtained a set of data to help us analyse an interesting question. I’ll
continue with the wage example we covered in class (this data is also linked from the course
website so that you can run the regressions yourself).

Suppose the model we want to estimate is the following:

wage = β1 + β2educ+ u

That is, wage is a linear function of years of education (plus some random noise). We can
load this into our regression program, ask it to run a regression (in Gretl: Model -> Ordinary
Least Squares, then select “wage” as the dependent variable and add “educ” as the regressors
(in addition to the “const” variable, which is there by default).

Gretl produces the following (the output from STATA is similar):

Model 1: OLS, using observations 1-526
Dependent variable: wage

coefficient std. error t-ratio p-value
--------------------------------------------------------
const −0.904852 0.684968 −1.321 0.1871
educ 0.541359 0.0532480 10.17 2.78e-22 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 5980.682 S.E. of regression 3.378390
R-squared 0.164758 Adjusted R-squared 0.163164
F(1, 524) 103.3627 P-value(F) 2.78e-22
Log-likelihood −1385.712 Akaike criterion 2775.423
Schwarz criterion 2783.954 Hannan-Quinn 2778.764

There are tons of numbers here, most of which we aren’t going to discuss in this course. The
important ones for us are the following:

• “const” and “educ” coefficients: these are the estimates β̂1 and β̂2

• Next to those are the standard errors, which are important for hypothesis testing (and
confidence intervals) for our β values.

• The t-ratio and p-value are simply the t statistic and associated p-value for testing the
null hypothesis βi = 0 against the alternative βi ̸= 0.
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• Finally we want to take note of the “R-squared” value (0.164758).

The first thing to discuss is the coefficients. β̂1 = −0.904852 is the estimate of the vertical
intercept of our line. Its interpretation is that it is the expected wage of someone who has
0 years of education. Constant coefficients only sometimes have a useful interpretation in
regression results: if we aren’t likely to see someone with educ = 0, the interpretation isn’t
particularly useful, as in this case.

β̂2 = 0.541359 is much more important to us: it is the slope of the regression line: it tells
us how much we would expect to see wage increase, on average, for someone with one extra
year of education.

Hypothesis testing and confidence intervals

Testing a hypothesis about one of the values of β is not much different than testing the
hypothesis about a sample mean such as x. For a sample mean, we would build a t statistic
by calculating:

t =
x− µ

s/
√
n

Sometimes we called the (s/
√
n) term the “standard error”. In our regression, the standard

error is given to us by the regression software, so we can just plug it in: no dividing by
√
n

needed. So our t statistic for testing values of β2 is just:

t =
β̂2 − β20

SE(β̂2)

where β20 is our null hypothesis value (the equivalent of µ for a mean test), and SE(β̂2) is
just the standard error value given by the regression program.

For example, to test the following:

H0 : β2 = 0.5

Ha : β2 > 0.5

we would calculate:

t =
β̂2 − 0.5

SE(β̂2)
=

0.541359− 0.5

0.053248
= 0.77

then we would look for p values in the t statistic table. There is one difference here from
calculating means, however: with calculating means we used df = n− 1 to figure out which
table row to look at. Here, we’re going to subtract the number of β coefficients being
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estimated at once: 2. So in this case, with 526 observations, we would have 524 degrees of
freedom.

The regression results above (and those of most regression programs) automatically perform
a t test for us, to test the hypotheses:

H0 :βi = 0

Ha :βi ̸= 0

for each β̂i (2 in this case). Thus at a glance we can tell whether our included variables have
coefficients that are statistically different from 0.1 You can also calculate these t statistics
yourself: they are simply β̂/SE(β̂) for each coefficient.

To calculate a confidence interval for the value of any of the β values, we simply calculate:[
β̂i − t∗SE(β̂i), β̂i + t∗SE(β̂i)

]
which, other than using SE(β̂i) instead of s/

√
n, is just like the confidence intervals we’ve

seen all along.

For example, a 95% confidence interval for β2 from the results above is

[0.541359− 1.962(0.0532480), 0.541359 + 1.962(0.0532480)] = [0.4369, 0.6458]

where 1.962 is the critical value for df = 1000, which is the closest value in our textbook’s
Table D to the actual df = 524. You could, using a computer, calculate the more precise
t∗ = 1.964502, but as you can see, the values are very close and will only slightly change the
resulting interval.

Fitted values, and goodness of fit

Another thing we might do in a regression is to make predictions: given x, what does the
model predict for the value of y? For example, in the model above, what is the prediction
for an individual with 16 years of school? This is just a matter of plugging our educ = 16
value into the equation using our β̂ estimates:

ŷ = −0.904852 + 0.541359(educ)

= −0.904852 + 0.541359(16) = 7.756892

So our model predicts a wage of $7.76 for someone with 16 years of school.
1Most regression programs go a step further by including asterisks (*): * indicates weak evidence (p

between 0.1 and 0.05), ** indicates stronger evidence (p between 0.05 and 0.01), and *** indicates very
strong evidence (p smaller than 0.01). You can see the results above have no asterisks for the constant (we
cannot reject that it equals 0, even at the weak α = 0.1 level), but has three for educ, for which the test
very strongly rejects the hypothesis that the coefficient on educ equals 0.
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Once we have a fitted value, we can very easily calculate a residual, as well. For example,
the first data point in the sample is: wage = 3.10, educ = 11. The fitted value ŷ is 5.05. The
residual, then, is:

û = y − ŷ

= 3.10− 5.05

= −1.95

which either means our model overpredicted the wage for this data point, or, if we believe
that the model accurately represents reality, this individual was underpaid.

One other interesting output of any regression package is the R2 value. This has a nice
interpretation: it tells us the proportion of the variation in y that can be explained by the
variation x. In the example above, R2 = 0.165 so about 16.5% of the variation in wage can
be explained by variation in educ.

Multiple linear regression

We can expand our model to have multiple x variables: for example, including both educ
and exper (years of experience). This is easy enough to do in Gretl or STATA: we just
include another variable and run the regression. For the wage data set, the (Gretl) output
is the following:

Model 2: OLS, using observations 1-526
Dependent variable: wage

coefficient std. error t-ratio p-value
--------------------------------------------------------
const −3.39054 0.766566 −4.423 1.18e-05 ***
educ 0.644272 0.0538061 11.97 2.28e-29 ***
exper 0.0700954 0.0109776 6.385 3.78e-10 ***

Mean dependent var 5.896103 S.D. dependent var 3.693086
Sum squared resid 5548.160 S.E. of regression 3.257044
R-squared 0.225162 Adjusted R-squared 0.222199
F(2, 523) 75.98998 P-value(F) 1.07e-29
Log-likelihood −1365.969 Akaike criterion 2737.937
Schwarz criterion 2750.733 Hannan-Quinn 2742.948

The first thing to note is that the R2 value has increased significantly: including both
variables lets us explain 22.5% of the variation in wage.

The only real difference in this regression is that we can’t depict it as a straight line anymore.
Our results are actually a plane in the three-dimensional space of wage, educ, and exper.
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The interpretation of the coefficients is now slightly different than the regression line case:
they are now the slopes (or the effect of a change of 1 in one of the right-hand side variables)
holding all other values constant. Thus the coefficient of β̂2 = 0.644272 tells us that someone
with the same years of experience but one extra year of education will have a wage that is,
on average, 64 cents higher.

For the purposes of hypothesis testing on any of the βi values, and finding confidence intervals
for the βi values, very little has changed: the calculations are exactly the same as in one
variable case described above. There is one minor difference, however: since we are now
estimating three coefficients, the degrees of freedom has changed from n− 2 to n− 3. Since
n = 526 here, that is a very small difference indeed.

Finding fitted values works just like before as well, just with one more term. For example,
the expected wage for someone who has 12 years of education and 5 years of experience is:

ŷ = −3.39054 + 0.644272(educ) + 0.0700954(exper)

= −3.39054 + 0.644272(12) + 0.0700954(5)

= 4.69

Calculating the residual is no different than in the one-variable case.

Summary

The important things to know (i.e. for studying for the exam) for dealing with regressions
are:

• Interpreting coefficients

• Interpreting R2

• Conduct a t-test for a hypothesis involving one of the βi values, given β̂i and SE(β̂i)

• Knowing the degrees of freedom for that t test

• Construct a confidence interval for one of the β values, given β̂i and SE(β̂i)

• Calculating a fitted value given the β̂i estimates

• Calculating a residual

We also discussed in class a few tricks we can use such as adding squared terms and adding
“dummy” values for categorical values. While these are helpful tricks for practically using
regressions to explain data, they aren’t things I’ll expect you to deal with on the Economics
250 exam. They await you in Economics 351.
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