Economics 250

Functions of Random Variables

The expressions we need for functions of RVs are in the formula sheet. But this note shows where those expressions come from.

1. Suppose x is a discrete RV with mean μ_{x} and standard deviation σ_{x}. Then a second RV is related to x like this: $y=a+b x$.

The expectation of y :

$$
\begin{aligned}
E(y)=E(a+b x) & =\sum(a+b x) P(x) \\
& =\sum a P(x)+\sum b x P(x) \\
& =a+b \sum x P(x)=a+b \mu_{x}
\end{aligned}
$$

simply using our summation rules and the fact that probabilities sum to 1 . This way we can find the mean of y without having to create a long column of all the y values.

Now the variance:

$$
\begin{aligned}
\sigma_{y}^{2}=\sum\left(y-\mu_{y}\right)^{2} P(y) & =\sum\left(a+b x-a-b \mu_{x}\right)^{2} P(x) \\
& =\sum\left(b x-b \mu_{x}\right)^{2} P(x) \\
& =b^{2} \sum\left(x-\mu_{x}\right)^{2} P(x) \\
& =b^{2} \sigma_{x}^{2} .
\end{aligned}
$$

Thus $\sigma_{y}=b \sigma_{x}$. (We found this same relationship for sample statistics at the start of the course.)
2. Now suppose x and y are RVs and c and d are numbers. A third RV is given by

$$
w=c x+d y
$$

so that it is a combination of the original two RVs.
Notice that when we see the E symbol that is simply a shorthand for 'weight observations by probabilities and then add them up.' Thus the mean:

$$
\mu_{w} \equiv E(w)=E(c x+d y)=E(c x)+E(d y)=c E(x)+d E(y) \equiv c \mu_{x}+d \mu_{y} .
$$

This simply uses the properties of the summation operator to split up the sum and factor out the constants.
The variance:

$$
\begin{aligned}
\sigma_{w}^{2} & =E\left(c x+d y-c \mu_{x}-d \mu_{y}\right)^{2} \\
& =E\left[c\left(x-\mu_{x}\right)+d\left(y-\mu_{y}\right)\right]^{2} \\
& =E\left[c^{2}\left(x-\mu_{x}\right)^{2}+d^{2}\left(y-\mu_{y}\right)^{2}+2 c d\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right] \\
& =c^{2} \sigma_{x}^{2}+d^{2} \sigma_{y}^{2}+2 c d \sigma_{x y} .
\end{aligned}
$$

