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Abstract

Much recent research studies US inflation history with a trend-cycle model with unobserved
components (UC) in which the trend coincides with long-horizon inflation expectations.
We show that this trend can be isolated using forecasts from the Survey of Professional
Forecasters even though these forecasts are (a) at short horizons and (b) biased, as de-
scribed by the sticky information (SI) model. We develop and apply tests of the joint
UC-SI model, applicable at any horizon, allowing for stochastic volatility, and without re-
stricting the trend-cycle covariance. The tests find considerable evidence of implicit sticky
information. But they show we cannot reconcile these two widely used perspectives on US
inflation and professional forecasts.

JEL classification: E31, E37.

Keywords: US inflation, professional forecasts, sticky information, Beveridge-Nelson

†Nason: Department of Economics, North Carolina State University; jmnason@ncsu.edu.
Smith: Department of Economics, Queen’s University, Canada; smithgw@econ.queensu.ca.
We thank the Social Sciences and Humanities Research Council of Canada, the Bank of
Canada research fellowship programme, and the Jenkins Family Economics Fund of North
Carolina State University for support of this research. For helpful comments we thank
Drew Creal, Elmar Mertens, Morten Nielsen, Jonathan Wright, and numerous seminar
and conference participants. The views expressed herein are not necessarily those of the
Bank of Canada and are the authors’ alone.



1. Introduction

For the past thirty years, the unobserved-components (UC) model has been an infor-

mative lens through which economists have viewed US inflation dynamics. That statistical

model decomposes inflation into permanent and transitory components. The permanent

component or trend often (and in this paper) is identified with the Beveridge-Nelson (1981)

decomposition, meaning that it is a random walk. This decomposition has been widely

adopted in forecasting inflation. Faust and Wright (2013), in their review of inflation fore-

casting, list the many studies that feature a slowly evolving trend. This decomposition also

sheds light on inflation history. Stock and Watson (2007) estimate a UC model to isolate

changes in the variances of the trend and transitory components and hence in the overall

persistence and forecastability of inflation since the early 1950s. Given its use in forecast-

ing, the UC model is a natural way to measure inflation expectations at long horizons.

Those expectations—and how well-anchored they are—are of great interest to monetary

policymakers, because expected inflation serves as an indicator of the Fed’s credibility as

well as a constraint on the effect of policy.

The UC model also restricts forecasts at shorter horizons. In principle, then, one

can use use short-horizon forecasts from the Survey of Professional Forecasters (SPF)

to help measure the two components of inflation. However, considerable recent research

on panels of professional forecasts suggests that they are not full-information, rational

expectations but rather exhibit bias. How can professional forecasts be useful if they are

biased? Precisely because the pattern of forecast errors is systematic, these surveys provide

evidence about rational expectations. One way to describe the evidence is that forecasts

are sticky and can be modeled using the sticky-information (SI) framework of Mankiw and

Reis (2002). This description of forecasts also is of interest because it has been widely

used to close macroeconomic models, for example in studies of the New Keynesian Phillips

curve. Coibion and Gorodnichenko (2015) use the SI model to link reported forecasts to

the actual conditional expectations of professional forecasters. We employ this model to

characterize mean forecasts.

It seems promising to combine these insights from the study of professional forecasts

with the successful track record of the UC model and so measure long-horizon expectations
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of inflation. But there is a catch. The UC model of inflation and the SI model of reported,

SPF forecasts restrict unobservable, rational expectations of in inflation. Combining these

models yields restrictions on the properties of inflation and reported forecasts. We provide

tests of these restrictions, which are tests of the joint hypothesis that the UC and SI

models hold. If we find that they do, we have a simple and informative way to filter US

inflation, by outsourcing much of the work to the participants in the Survey of Professional

Forecasters. Our tests are applicable at any horizon, do not restrict the covariance between

the trend and cycle components of inflation, and apply under stochastic volatility of those

components.

The tests clearly reject the joint model. Extracting the trend using forecast data

leads to a trend-cycle decomposition with a trend shock that is predictable or persistent,

a finding that is inconsistent with the underlying assumptions of the UC model. The

combined model cannot reproduce unpredictable innovations in the two components of

the UC model along with the predictable pattern in forecast errors. So far, then, we

cannot reconcile these two widely adopted perspectives on US inflation—the unobserved-

components model and the sticky-information model—and fit the time-series properties

of historical inflation and SPF forecasts. Thus our paper outlines test criteria and, given

their results, a design challenge in this area of research.

2. The Trend-Cycle Model

The first element in our study is an unobserved-components (UC) model. Suppose that

inflation, πt, evolves as a sum of two components: a stochastic trend τt and a stationary

component or ‘inflation gap’ εt. In this environment the stochastic trend component follows

a driftless random walk, with innovation ηt. Thus:

πt = τt + εt

τt = τt−1 + ηt.
(1)

The stationary component εt and the trend-innovation ηt are martingale-difference series.

They may be correlated and may have time-varying volatilities.

The h-step-ahead, rational-expectations forecast of inflation is

Etπt+h = τt, (2)
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for h ≥ 1. This formula yields the Beveridge-Nelson (1981) result that

Etπt+∞ = τt, (3)

so that the trend estimate also is the estimate of expected inflation at the infinite horizon.

Watson (1986) and Morley, Nelson, and Zivot (2003) explain how the zero conditional

mean property in the shocks is necessary for the trend property (2).

This decomposition has been fruitful in studies of several aspects of inflation dynamics.

For example, Ireland (2007) estimates the Federal Reserve’s implicit, time-varying inflation

target using the BN trend within a dynamic stochastic general equilibrium (DSGE) model.

Cogley and Sbordone (2008) use a similar, stochastic trend around which to estimate a

New Keynesian Phillips curve while Ascari and Sbordone (2014) survey this approach and

outline its implications for monetary policy.

The UC model combined with rational expectations makes the prediction (2) that

forecasts are the same at all horizons, a feature that does not hold in the SPF. To avoid

that implication, we generalize the basic model (which assumes that gap inflation has

no persistence) by allowing the stationary component of inflation, εt, to follow an AR(1)

process:

εt = ρεt−1 + υt, (4)

where υt is a martingale-difference series and the persistence parameter ρ ∈ (−1, 1) is

constant. The infinite-horizon inflation forecast remains τt, but in general

Etπt+h = τt + ρhεt, (5)

so that there now is a term structure of rational-expectations inflation forecasts. Faust and

Wright (2013) note that subjective forecasts often prove superior to econometric forecasts

of inflation because they do not simply extrapolate the current value but allow for a gradual

return to some medium-term pattern. Similarly, Kozicki and Tinsley (2012) note that a

successful inflation-forecasting model needs to have a role for current inflation at short

horizons but not at long ones. The forecasts (5) allow for these patterns. Clark and Doh

(2014) examine the forecast performance of various models of trend inflation, including
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the UC model with or without a persistent inflation gap, finding that is is difficult to

distinguish between them.

Estimation and forecasting with the UC model usually require one to use the Kalman

filter to extract the unobserved components. The filter is applied beginning with or-

thogonality assumptions (for example, a zero covariance between ηt and εt) and a set of

covariates in observation equations. Examples of studies that apply the Kalman filter to

this model include those of Stock and Watson (2007) and Mertens (2015). Mertens uses

SPF forecasts as one information source in the filter. Grassi and Proietti (2010) and Creal

(2012) estimate the UC model with stochastic volatility.

In principle, though, one can measure the components using only professional fore-

casts and actual inflation. It is possible to study inflation forecasting and trend-cycle

decomposition without any covariates because their assessment and selection implicitly

are outsourced to the forecasters. Kozicki and Tinsley (2012) estimate the parameters

of a UC model of CPI inflation using actual inflation and the long span of observations

from the Livingston survey, allowing for higher-order dynamics to fit seasonally unadjusted

data, and under the assumption that forecasts are conditional expectations. They provide

a detailed discussion of the interpretation and need for shifts in trend inflation, τt, for

reliable inflation forecasts. Henzel (2013) similarly combines SPF forecasts with the UC

model to estimate inflation expectations. He also contrasts the speed of adjustment (or

Kalman gain) in SPF forecasts with that estimated for the UC model alone. These two

studies also provide a test of the combined statistical model’s ability to fit observed survey

forecasts. Chan, Clark, and Koop (2015) use long-run forecasts from the SPF to help

isolate trend inflation in the UC model. They allow for a flexible, time-varying role for

those expectations. They conclude that the forecasts help isolate the trend but do not

simply coincide with it.

Our study can be thought of as a sequel to that of Kozicki and Tinsley (2012). We use

the SPF with a short horizon and consider the alternative, empirically supported assump-

tion that forecasts are sticky. This extension might potentially reconcile the approach with

the bias in mean SPF forecasts yet still allow one to use those forecasts to estimate the UC

model and measure long-horizon inflation expectations. In practice, though, we find this
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reconciliation is not consistent with the joint properties of inflation and SPF forecasts.

3. Sticky Information

It is natural to also draw on professional forecasts to measure inflation expectations.

Ang, Bekaert, and Wei (2007) describe an inflation-forecasting tournament in which the

median professional forecast is the best predictor of annual inflation. Gil-Alana, Moreno,

and Pérez de Gracia (2012) find similarly favorable results for survey-based expectations

of quarterly inflation and, specifically, the mean CPI inflation forecasts from the SPF.

Overall, as Faust and Wright (2013, p. 5) note, “Subjective forecasts of inflation seem to

outperform model-based forecasts in certain dimensions, often by a wide margin.” Win-

ning tournaments based on mean-squared error, of course, does not imply unbiasedness.

Nevertheless, to quote Faust and Wright again (p. 21), “A useful way of assessing models

[thus] is by their ability to match survey measures of inflation expectations.”

The second element in our study is a description of forecast data. We work with the

SI model because of its tractability in this application and also because it has been used

both to describe professional forecasts—by Mankiw, Reis, and Wolfers (2004) and Coibion

and Gorodnichenko (2012, 2015)—and to close and estimate macroeconomic models. For

example, Reis (2006), Khan and Zhu (2006), Kiley (2007), and Coibion (2010) test versions

of the SI model applied to price-setting and hence to aggregate inflation.

Following Coibion and Gorodnichenko (2015), suppose that forecasters update their

information with probability 1−λ, so that λ measures the degree of stickiness in informa-

tion. Let Ftπt+h denote the cross-forecaster mean forecast at time t for inflation h steps

ahead. Coibion and Gorodnichenko show that this average forecast is a weighted average

of the rational expectation and the previous period’s mean, reported forecast:

Ftπt+h = (1− λ)Etπt+h + λFt−1πt+h. (6)

The cross-forecaster mean coincides with the rational expectation of future inflation in the

special case when λ = 0.

Define the non-sticky-information forecast error:

ϑt+h = πt+h − Etπt+h. (7)
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Subtracting each side of the pattern in reported, mean forecasts (6) from realized inflation

gives
πt+h − Ftπt+h = λ(Etπt+h − Ft−1πt+h) + (πt+h − Etπt+h)

=
λ

1− λ
(Ftπt+h − Ft−1πt+h) + ϑt+h.

(8)

Because ϑt+h has the properties of an econometric error, this link (8) can be used to

estimate λ, by regressing the observed, mean forecast error on the mean forecast revision.

Coibion and Gorodnichenko note that this pattern of predictability applies to mean

forecasts, not individual ones. So finding stickiness in mean forecasts is consistent with

empirical evidence on the unbiasedness of individual, professional forecasts. A further

key feature of their regression (8) is that it allows them to test full-information rational

expectations (the null hypothesis that λ = 0) but also to parametrize stickiness with the

estimate of λ. They also find that additional regressors, in the form of past, realized

values of macroeconomic variables, are not significant in explaining forecast errors once

mean revisions are included. Finally, they show that a non-zero value of λ can be consistent

with information that is noisy rather than sticky. Under sticky information, but not noisy

information, though, the parameter λ is constant across horizons h. In our estimation we

do not restrict λ across horizons.

4. Tests of the UC-SI Model

Combining the forecast implication of the UC model with a persistent inflation gap

(5) with the description of forecast updating (6) gives

Ftπt+h − λFt−1πt+h
1− λ

= τt + ρhεt, (9)

or

Ftπt+h = λFt−1πt+h + (1− λ)τt + (1− λ)ρhεt. (10)

We use the fact that forecasts at time t for any horizon involve the random-walk component

τt and so we difference out that unobserved variable over horizons. Thus:

Ft∆πt+h = λFt−1∆πt+h + (1− λ)(ρh − ρh−1)εt. (11)

The inflation gap, εt, follows the AR(1) process (4) so that εt(1−ρL) = υt. Multiplying

the difference equations (11) by (1−ρL) gives links between the mean forecasts at different
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dates and horizons that are implied by the joint UC-SI model:

Ft∆πt+h = λFt−1∆πt+h + ρFt−1∆πt+h−1− ρλFt−2∆πt+h−1 + (1−λ)(ρh− ρh−1)υt. (12)

The forecasts on the right-hand side are dated t − 1 or earlier, so it is natural to assume

that the inflation-gap shock, υt, is uncorrelated with them. Thus the persistence in the

inflation gap, ρ, and the stickiness in inflation forecasts, λ, can be jointly estimated by

ordinary least squares in the estimating equation (12) for a given horizon h. The stickiness

and persistence parameters are separately identified, from distinct sources of dynamics in

forecasts. Persistence, ρ, is estimated from the role for lagged, constant-horizon forecasts,

while stickiness, λ, is identified from lagged, constant-target (i.e., longer horizon) forecasts.

Identification also should be aided by the ‘common factor’ restriction, for there are three

right-hand-side variables but only two parameters. However, we do not study restrictions

on ρ and λ implied by the conditional variance in the forecast-only regression (12) because

we do not assume that υt is homoskedastic or that its volatility follows a specific, parametric

process.

The estimating equations consist of equations (8) and (12), with intercepts included,

and estimated as a system for a given horizon, h:

Ft∆πt+h = α0 + λFt−1∆πt+h + ρFt−1∆πt+h−1 − ρλFt−2∆πt+h−1 + e1t

πt+h − Ftπt+h = β0 +
λ

1− λ
(Ftπt+h − Ft−1πt+h) + e2t+h,

(13)

where α0 and β0 are constant terms and e1t and e2t+h are error terms. Under the UC

model inflation and its forecasts have unit roots and the system (13) assumes that these

variables share the same stochastic trend. We estimate the system (13) by nonlinear least

squares, with the cross-equation restriction on λ̂. There are four slopes in this system

yet only two underlying parameters, λ and ρ. The two restrictions are (i) the ‘common-

factor’ restriction across the coefficients derived in equation (12) and (ii) the cross-equation

restriction on λ. We test the restrictions implied by the joint UC-SI model with a likelihood

ratio test.

We next extract the unobserved components given estimates {λ̂, ρ̂} at horizon h.

Inverting equation (12) gives υ̂t, while inverting equation (11) gives ε̂t. Then the estimated
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trend is τ̂t = πt − ε̂t. We then test two additional predictions. First, the estimated trend

should yield a first-difference, η̂t = τ̂t − τ̂t−1, that is not autocorrelated. Second, the

estimated innovation to the inflation gap, υ̂t, also should not be autocorrelated.

To test these implications we use the Ljung-Box portmanteau test, modified to allow

for time-varying volatility in the extracted components. West and Cho (1995) provide

an example of the use of this test. Harris and Kew (2014) give further modifications, a

history, and citations to studies on this statistic. For a time series {yt}, let γ̂j , j = 1, . . . , k

denote the sample autocorrelation at lag j. Define a heteroskedasticity-consistent variance

estimator:

ν̂2j =
T−1

∑T
t=1 y

2
t−jy

2
t

(T−1
∑T
t=1 y

2
t )2

. (14)

The test statistic at lag length k then is:

Q∗k(yt) = T (T + 2)
k∑
j=1

1

T − j
γ̂2j
ν̂2j
, (15)

which is ∼ χ2
k under the null hypothesis.

5. Data and Graphical Example

The forecast data come from the Survey of Professional Forecasters, organized by the

Federal Reserve Bank of Philadelphia. The survey was conducted by the ASA/NBER prior

to the summer of 1990. We use the mean forecast for the annualized rate of CPI inflation,

measured quarterly from 1981Q3 to 2016Q2, yielding 140 observations. The survey reports

forecasts from zero (the nowcast) to four quarters ahead. The corresponding series for

actual US inflation is given by the annualized quarter-to-quarter growth rate in the CPI

for all urban consumers and all items, series cpiaucsl from FRED at the Federal Reserve

Bank of St. Louis. (This series corresponds to the most recent realization in the SPF error

statistics files.)

The SPF also contains data on long-term inflation forecasts, specifically over the next

year and the next ten years. The one-year forecast is the average of the median forecasts

for h = 1 to h = 4. The ten-year forecast is the annual average inflation rate predicted for

this period. However, this survey information has been collected only since 1991.
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The upper panel of figure 1 shows actual inflation, πt, and the mean, three-quarter-

ahead forecast at the same date, Ftπt+3. In the special case with no information stickiness

(λ = 0) and no gap persistence (ρ = 0) this forecast is an estimate of the trend, τ̂t, as

equation (2) showed. Notice that the forecast data yield a smooth, stochastic trend (shown

in grey) through realized inflation. Its difference from inflation is an estimate of the gap,

ε̂t. Much of the variation in inflation is attributed to the inflation gap.

Forecasts for inflation are available for a longer time span, beginning in 1968:4, if we

study the inflation rate in the GDP deflator rather than the CPI. These forecasts are for

seasonally adjusted levels of the deflator, defined as (a) the GNP deflator prior to 1992, (b)

the GDP deflator from 1992 to 1995, and (c) the chain-weighted price index for GDP from

1996 to the present. Then implicit mean forecasts for the annualized growth rate in the

deflator are from mean PGDP Growth.xls. For the realized inflation rate we use the most

recent observation, realized5 from Data SPF Error Statistics PGDP 3 AIC.xls in the

SPF. The upper panel of figure 2 shows GDP deflator inflation quarterly, at annual rates.

It also shows the mean, three-quarter-ahead forecast Ftπt+3 (in grey), and the difference

between the two series. The span of years, of course, now includes the high-inflation years

of the 1970s.

These two panels illustrate the appeal of using mean forecasts as trend measures.

In each case the forecast looks plausible as a real-time estimate of the slowly evolving

trend in actual inflation. But these figures assume that there is no information stickiness,

an assumption at odds with the properties of mean forecast errors. To informally show

the effect on a measured trend of such stickiness, we next measure τt with equation (9),

still with ρ = 0, using h = 3 (so that the formula involves three-quarter-ahead and four-

quarter-ahead forecasts) and λ = 0.5. The lower panel of figure 1 shows the implied trend

and inflation gap for the CPI inflation rate. The lower panel of figure 2 does the same

for GDP deflator inflation. Notice that the measured trends now are much more volatile

and do not look as plausible as slowly evolving means. The estimated inflation gap also

has some added, high-frequency variation, reflecting a lack of correlation between τ̂t and

πt. This visual evidence suggests that there may be an inconsistency between the UC and

SI models. We next study this issue while estimating both λ and ρ, using each possible
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horizon, and with formal statistical tests.

6. Estimates and Tests

Table 1 contains the results of estimating the system (13) and calculating the three test

statistics proposed in section 4. The table includes results for each horizon and measure

of inflation. There is no row in the table for h = 4, the longest horizon in the survey,

because the estimating equations (13) use Ft−1∆πt+h, which would require 5-quarter-

ahead forecasts in that case.

The estimates of the stickiness parameter, λ̂, lie between 0.35 and 0.55 (depending on

the horizon and inflation measure) and each is statistically significant at the 1% level. The

evidence on inflation-gap persistence is more nuanced. For CPI inflation both the value ρ̂

and its precision are sensitive to the horizon. In contrast, for GDP deflator inflation there

is a small, positive persistence coefficient in the inflation gap at each horizon, though that

is not estimated very precisely. Clearly the most precise evidence is of a positive value for

λ, which is why we focused on the effects of that parameter on the measured trend in our

graphical examples in figures 1 and 2.

Table 1 also contains the likelihood ratio test statistics designed to jointly test the

over-identifying restrictions. The p-values show that these restrictions implied by the

joint UC-SI model are rejected at conventional significance levels, except that for the SPF

predictions for CPI inflation at h = 3 the p-value is 0.06.

The next columns of table 1 show the test statistics for the two components, Q∗k(η̂t)

and Q∗k(υ̂t), with their asymptotic p-values, at lag length k = 3 quarters. The innovations

to the inflation gap, υ̂t, indeed appear to be innovations, with no evidence of significant

persistence. But for the change in the trend, η̂t, and for any horizon or measure of inflation,

the test statistics reject the hypothesis of no persistence, at the 5% level of significance.

Thus, we can reject the combined UC-SI model with these additional consistency tests.

The extracted trend does not have the random-walk property.

Reverse-engineering the trend-cycle model to fit the SPF forecasts and so pass these

tests, for example by adding higher-order dynamics in the inflation gap, is not necessarily

an easy task. For example, modeling εt as an AR(4) process would add three parameters in

its law of motion, but the analogue of the system (12) would still involve more coefficients
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than underlying parameters. Furthermore, higher-order dynamics in the inflation gap

naturally also would imply higher-order dynamics in realized inflation. But Stock and

Watson (2007) do not reject the null hypothesis that the IMA(1,1) model (implied by the

UC model) holds against the alternative hypothesis of higher-order dynamics.

The statistical tests reject the joint UC-SI model at any horizon, so they also would

reject the model if the horizons were combined, for there would be even more over-

identification in that case. We do not estimate the model for all horizons jointly because

it has a singularity across horizons, tied to υt appearing in each equation. One approach

would be to add measurement errors and extract the unobserved components using all

horizons with the Kalman filter. Mertens and Nason (2015) and Nason and Smith (2016)

explore that possibility. Their approach requires assumptions about the properties of the

measurement errors, a restriction on the covariance between shocks, and a parameteric

model of the stochastic volatilities of the shocks. We do not require a zero covariance be-

tween the shocks. Morley, Nelson, and Zivot (2003) show that restricting this covariance

can have a large impact on trend-cycle decomposition. The tests also allow for time-varying

volatility in {ηt, υt}, but we do not need a parametric model of the variances.

7. Conclusion

Both the UC model of inflation and sticky forecasting restrict unobservable inflation

forecasts Etπt+h. It thus seems promising to use professional forecasts (alone, or with other

information) to help filter inflation, isolate its trend component, and thus measure long-

horizon inflation expectations, a measure of monetary policy’s credibility. This approach

does not require us to assume that mean forecasts coincide with conditional expectations.

This paper derives and applies tests of the consistency of the UC and SI models.

We study whether we can reconcile them jointly with the properties of professional fore-

casts and mean forecast errors. We find that we cannot. The over-identifying restrictions

generally are rejected and the implied forecast stickiness does not yield a trend-cycle de-

composition with unpredictable innovations to the trend component.

The UC model is widely used in forecasting and in reconstructing the history of

US inflation. The SI treatment of expectations is widely used in closing macroeconomic

models. We hope that showing that they cannot easily be reconciled prompts further
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research on these important statistical models.

One promising avenue may be to draw on research on alternatives to the SI model

for professional forecasters that seeks to fit additional features of forecasts. For example,

Capistrán and Timmermann (2009) show the effects of asymmetric loss functions. Patton

and Timmermann (2010) study the term structure of the dispersion in professional forecasts

and conclude that heterogeneity in models or priors is necessary to explain it. Andrade

and Le Bihan (2013) study individual forecasts from the European SPF and find that the

SI model is not sufficient to capture all their patterns.
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Table 1: Estimates and Tests

Ft∆πt+h = α0 + λFt−1∆πt+h + ρFt−1∆πt+h−1 − ρλFt−2∆πt+h−1 + e1t

πt+h − Ftπt+h = β0 +
λ

1− λ
(Ftπt+h − Ft−1πt+h) + e2t+h

CPI

Horizon λ̂ ρ̂ χ2(2) Q∗3(η̂t) Q∗3(υ̂t)
(se) (se) (p) (p) (p)

h = 3 0.55*** -0.20 5.7 14.5 1.3
(0.08) (0.16) (0.06) (0.00) (0.73)

h = 2 0.48*** -0.14* 22.1 11.2 2.4
(0.09) (0.07) (0.00) (0.01) (0.49)

h = 1 0.35*** 0.30*** 33.6 10.1 3.1
(0.09) (0.09) (0.00) (0.02) (0.38)

GDP Deflator

Horizon λ̂ ρ̂ χ2(2) Q∗3(η̂t) Q∗3(υ̂t)
(se) (se) (p) (p) (p)

h = 3 0.35*** 0.14* 12.9 10.5 0.4
(0.05) (0.08) (0.00) (0.01) (0.95)

h = 2 0.51*** 0.04 8.6 14.5 3.6
(0.10) (0.09) (0.01) (0.00) (0.31)

h = 1 0.40*** 0.13** 10.3 23.4 4.0
(0.11) (0.06) (0.00) (0.00) (0.26)

Notes: Estimation uses 138 observations on CPI inflation and its mean SPF
forecasts from 1981Q3 to 2016Q2 and 189 observations on GDP deflator inflation

and its mean SPF forecasts from 1968Q4 to 2016Q2. Brackets contain Newey-West

standard errors with 6 lags. The symbols *, **, and *** denote significance at the

10%, 5%, and 1% levels respectively. χ2 is the likelihood ratio test statistic of the

cross-equation and common-factor restrictions in the system (13). Q∗
3 is the modified

Ljung-Box portmanteau test statistic, distributed as χ2
3 where 3 is the lag length in

quarters.
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Figure 1: CPI Inflation and Components 
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Note: In the upper panel t is the annualized rate of CPI inflation, measured quarterly; Ftt+3 is the mean, 

three-quarter-ahead forecast from the SPF, and t is their difference. In the lower panel t is the trend 

measured from equation (9) ath=0 and =0.5 andt is the inflation gap.
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Figure 2: GDP Deflator Inflation and Components 
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Note: In the upper panel t is the annualized, quarterly growth rate in the GDP deflator, Ftt+3 is the 

mean, three-quarter-ahead forecast from the SPF, and t is their difference. In the lower panel t is the

trend measured with mean forecasts using equation (9) at h=3 with =0 and=0.5 and t is the 

inflation gap.
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