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Abstract

This paper considers stochastic stability analysis in evolutionary models

with time-dependent mutations. It takes a class of time-homogeneous Markov

models where the transition probabilities are approximately polynomial func-

tions of the mutation parameter and allows the mutation parameter to decline

to zero over time. The main result shows that as long as the mutation param-

eter converges to zero slowly enough and its variation is finite, the resulting

time-inhomogeneous model has a limiting distribution regardless of the details

of the mutation process. Moreover, a bound on the required rate of decline is

explicitly expressed as a function of the minimum coradius of the limit sets and

the transition probabilities within the minimum coradius set.
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1 Introduction

Stochastic stability analysis has by now become a familiar tool in economics for

studying dynamical systems that are modeled as a finite state space Markov chain.

To get an overview of this technique, suppose a Markov transition matrix P̄ describ-

ing some dynamical system is specified. If P̄ is ergodic, the system would have a

limiting distribution that uniquely describes its long-run behavior independently of

any initial conditions.1 Typically, however, the specified matrix P̄ is not ergodic;

therefore, the long-run behavior of the system depends critically on its starting con-

dition. For example, if the system starts with any of its invariant distributions as the

initial distribution, then it would always be governed by that distribution. More-

over, if the system starts with some other arbitrary distribution, then the long-run

behavior may not even converge.

In such cases, stochastic stability analysis is often used to select a particular

invariant distribution as the “likely long-run distribution.” This usually involves

adding a noise term, parameterized by a mutation parameter ε, to each transition

probability to derive a perturbed transition matrix P (ε) that is ergodic. Since P (ε)

is ergodic, it has a corresponding limiting distribution π(ε). While π(ε) need not

be an invariant distribution for the original system P̄ , the distribution π∗, which is

obtained as the limit of π(ε) as ε goes to zero, is necessarily an invariant distribution

for P̄ . In this regard, π∗ can be interpreted as the invariant distribution of P̄

that is robust to small perturbations in the transition probabilities, and any state

which is in the support of π∗ is called a “stochastically stable state” or a “long-run

equilibrium” in the literature. The distribution π∗ will be called the stochastically

stable distribution in this paper.

Stochastic stability has proven useful as a robustness criteria. However, care
1A transition matrix P on countable set S is said to be ergodic if there exists a limiting distri-

bution π on S such that π = limt→∞ µ0 (P )t for all initial distribution µ0 on S. A well-known
result for Markov chains states that if P is aperiodic, irreducible, and non-null recurrent, then it is
ergodic.
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must be exercised in its use since the invariant distribution that is selected depends

crucially on mutation rates. Bergin and Lipman [1] show that it is possible to

select any invariant distribution as the stochastically stable distribution simply by

allowing mutation rates to depend on the state of the system.

Given the sensitivity of the stochastic stability analysis to the specification of

mutation rates across states, it is natural to ask how the analysis is affected when

mutation rates are allowed to vary across time. Moreover, if mutations are inter-

preted as experimentation, then it may be descriptively unrealistic to assume that

mutations are constant across time. Consequently, this assumption is abandoned

and instead the following more natural model is considered here. As usual, assume

that agents mostly follow some optimizing behavior specified by a transition matrix

P̄ . However, assume now that while agents also experiment, they experiment less as

they gain experience so that the mutation parameter goes to zero over time. Since

transition probabilities now vary over time, the fact that P (ε) is ergodic for each ε

does not guarantee that the resulting time-inhomogeneous system has a convergent

long-run behavior. Therefore, this paper studies the conditions on the mutation

rates that guarantee that the resulting inhomogeneous system has a limiting distri-

bution.

This question has been first studied in Robles [9], which considers Kandori,

Mailath, and Rob [8] and Young [12] (KMR/Y) models where transition probabilities

are polynomial functions of the mutation parameter. Robles allows the mutation

parameter to decrease to zero monotonically and derives sufficient conditions for

ergodicity. These conditions, which are based on the minimum coradius of the limit

sets, have intuitive appeal. However, as the example in this paper shows, they

do not guarantee ergodicity when the base dynamics P̄ has periodic cycles. More

recently, Chen and Chow [2] consider 2 × 2 games with both uniform and local

matching rules and provide conditions for ergodicity that are similar to Robles’s

but without requiring monotonicity. In a related work, Sandholm and Pauzner [10]

consider the effect of population growth in the KMR model. They show that if the
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mutation rate remains constant but the population grows at a sub-logarithmic rate,

then the resulting dynamics is ergodic.2 However, if the population growth is at

least logarithmic and, in addition, the mutation parameter is taken to zero, then

the long-run dynamics is completely determined by the initial conditions.

This paper extends the earlier results of Robles and Chen and Chow to any finite

state space Markov models, including those with periodic cycles, whose transition

probabilities are approximately polynomial functions of the mutation parameter.

In particular, we take a class of time-homogeneous models that is slightly more

restrictive than that given in Ellison [4] and allow the mutation parameter to decline

to zero over time. The main result shows that if the mutation parameter declines

slowly enough and its variation is finite, then the resulting time-inhomogeneous

system has a limiting distribution that is independent of the initial conditions. This

limiting distribution is necessarily π∗, the stochastically stable distribution of the

underlying time-homogeneous system.

The remainder of the paper is organized as follows. The inhomogeneous model of

evolution that incorporates time-dependent mutation is defined in Section 2. Section

3 presents the results. The main result of the paper, Theorem 3.9, provides the rate

of decline that guarantees the existence of a limiting distribution. This rate is closely

related to the minimum coradius of the limit sets and the transition probabilities

within the limit set with the minimum coradius (hereafter, the minimum coradius

set). The paper concludes in section 4.

2 The Model

The class of underlying evolutionary models that is considered here is given in

Definition 2.1 below, which is adapted from Ellison [4]. As in Ellison’s formulation,
2As Sandholm and Pauzner show, keeping the mutation parameter constant and increasing the

population size in the KMR model is equivalent to decreasing the mutation parameter and keeping
the population constant.
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the definition restricts attention to transition probabilities that are approximately

polynomial functions of the mutation parameter.3

Below and elsewhere, notation Pzz′ denotes the transition probability from z

to z′ under P , and πz denotes the probability π places on z. Also, the following

asymptotic notations are used throughout. The ‘little-oh’ notation f(x) = o(g(x))

as x → c means f(x)/g(x) → 0 as x → c. The ‘big-oh’ notation f(x) = O(g(x))

as x → c means there exists a constant k > 0 such that |f(x)| ≤ k|g(x)| for all

x sufficiently close to c. Similarly, f(x) = Ω(g(x)) as x → c means there exists a

constant k > 0 such that |f(x)| ≥ k|g(x)| for all x sufficiently close to c. Lastly,

f(x) = Θ(g(x)) denotes f(x) = O(g(x)) and f(x) = Ω(g(x)).

Definition 2.1. A homogeneous model of evolution is a transition matrix P̄ and a

family of transition matrices {P (ε) : ε ∈ (0, ε̄]} on a finite set S such that

1. P (ε) is ergodic for all ε ∈ (0, ε̄],

2. limε→0 P (ε) = P̄ , and

3. there exists a cost function c : S × S → Z+ ∪ {+∞} and a family of Lipschitz

functions {fzz′} on [0, ε̄] such that

Pzz′(ε) = kzz′ε
c(z,z′) (1 + fzz′(ε)) ,

where kzz′ > 0 and fzz′(ε) is o(1) as ε → 0.

Remark 2.2. This definition differs from Ellison [4] in two regards. First, Ellison

allows the leading exponent c(z, z′) to be extended non-negative reals, c : S × S →

R+ ∪ {+∞}, rather than just extended non-negative integers. Second, Ellison re-

quires fzz′(ε) to be merely continuous and not Lipschitz continuous. The additional

restrictions are needed only because mutation rates are not assumed to decrease

monotonically. As seen in the proof of Theorem 3.9, these assumptions place lim-
3Since any continuous function on a compact interval can be uniformly approximated by a

polynomial, these include most transition probabilities of practical interest.
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its on how much the invariant distributions for the underlying homogeneous model

fluctuate when the mutation parameter changes.

In a typical application, the transition matrix P̄ governs the evolution of some

base dynamical system while, for each ε, P (ε) governs the evolution of the system

when the transition probabilities are perturbed according to mutation parameter ε.

Let P (t)(ε) denote the t-step transition matrix for P (ε). For any initial distribution

µ0 on S, the distribution of the states at time t is given by µ0P
(t)(ε). Since P (ε) is

assumed to be ergodic, there exists a limiting distribution π(ε) such that for every

µ0,

lim
t→∞

µ0P
(t)(ε) = lim

t→∞
µ0 (P (ε))t = π(ε).

While π(ε) need not be the limiting distribution or even an invariant distribution for

the base system P̄ , the following well-known result states that π(ε) does converge

to an invariant distribution of P̄ as ε → 0.

Theorem 2.3.4 For any homogeneous model of evolution, the limit

π∗ ≡ lim
ε→0

π(ε) = lim
ε→0

(
lim
t→∞

µ0P
(t)(ε)

)
(1)

exists and does not depend on µ0. Moreover, the limit π∗ is an invariant distribution

for P̄ .

If P̄ is ergodic, then the base dynamics already has a limiting distribution and,

hence, a unique invariant distribution. By the above theorem, it must be π∗. So,

adding mutation to the base model and letting it go to zero adds nothing to the

analysis. Therefore, P̄ is assumed to be non-ergodic for the remainder of the paper.

Consider now a model of evolution in which the mutation parameter ε is allowed

to vary over time. In particular, let ε̂ : Z+ → (0, ε̄] be a sequence converging to zero

and let the transition from time t to time t+1 be governed by P (ε̂(t)). Then the se-
4See, for example, Kandori, Mailath, and Rob [8], Young [12], Bergin and Lipman [1], or Elli-

son [4].
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quence of transition matrices {P (ε̂(t)) : t ∈ Z+} defines a single time-inhomogeneous

Markov chain on S. For all t ∈ Z+ and t′ > t, let P (t,t′) ≡
∏t′−1

k=t P (ε̂(k)) denote

the matrix of transition probabilities from time t to time t′.

Definition 2.4. An inhomogeneous model of evolution derived from a homogeneous

model of evolution (P̄ , {P (ε) : ε ∈ (0, ε̄]}) is a sequence of transition matrices

{P (ε̂(t)) : t ∈ Z+} ⊂ {P (ε) : ε ∈ (0, ε̄]} such that ε̂(t) → 0.

For any initial distribution µ0, the distribution of the states at time t′ under the

inhomogeneous dynamics is given by µ0P
(0,t′) as in the homogeneous model. Unlike

the homogeneous model, however, the fact that P (ε̂(t)) is ergodic for all t does not

guarantee that µ0P
(0,t′) converges to a limiting distribution as t′ → ∞. In fact,

without further restrictions on ε̂(t),

lim
t′→∞

µ0P
(0,t′) = lim

t′→∞
µ0

t′−1∏
t=0

P (ε̂(t)) = µ0

(
lim

t′→∞

t′−1∏
t=0

P (ε̂(t))

)

may not even exist, let alone be the same for all µ0.

If the above limit is to exist and be the same for every µ0, then
∏t′−1

t=0 P (ε̂(t))

must converge to a transition matrix whose rows are all identical. Our main result,

Theorem 3.9, shows that this occurs if (i) ε̂(t) goes to zero at an asymptotic rate of

t
− 1

γ or slower, where γ is a constant that depends on the details of the underlying

homogeneous model, and (ii) the variation of ε̂(t) is finite.

Intuitively, the rate at which ε̂(t) approaches zero matters because the one-step

transition matrix at time t, P (ε̂(t)), converges to a non-ergodic transition matrix

P̄ as ε̂(t) → 0. If P (ε̂(t)) approaches P̄ too quickly, or equivalently if ε̂ approaches

zero too quickly, then the inhomogeneous dynamics will not have the chance to settle

down to a limiting behavior. In contrast, suppose ε1 ∈ (0, ε̄] is fixed and the system

is allowed to evolve according to P (ε1) for t1 periods. Since P (ε1) has a limiting

distribution π(ε1), the behavior of the system will be close to π(ε1) at time t1 if t1 is

sufficiently large. Now, suppose at time t1 the mutation parameter drops to ε2 < ε1
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and the system evolves for another t2 periods. Again, if t2 is sufficiently large, then

the system’s behavior will be close to π(ε2) at time t1 + t2. It is not difficult to

imagine that if the mutation parameter continues to drop in this manner, then the

behavior of the system will eventually converge to π∗.

In fact, decreasing the mutation parameter in this manner provides a straight-

forward method for deriving a time-inhomogeneous model of evolution that has a

convergent limiting behavior. However, the artificial nature of the stepwise decline

would make the model unsatisfactory. Our result shows that the mutation parameter

decreasing to zero in this stepwise or even monotonic fashion is not necessary.

3 Results

For a Markov chain to have a limiting distribution that is independent of its initial

distribution, it must necessarily have a “loss of memory” property. That is, as

the chain runs, the probability of the chain visiting a given state should become

increasingly less dependent on where the chain started from, and, in the limit, the

chain should forget its initial state. The following definition captures this idea

precisely.5

Definition 3.1. An inhomogeneous Markov chain on finite state space S is weakly

ergodic if for all t ∈ Z+ and z, z′, z′′ ∈ S,

lim
t′→∞

∣∣∣P (t,t′)
zz′′ − P

(t,t′)
z′z′′

∣∣∣ = 0.

Although this definition requires the chain to eventually forget its initial condi-

tion, it does not require the chain’s long-run behavior to actually converge. When

a chain has this convergence property in addition to the loss of memory property, it

is said to be strongly ergodic.
5The two definitions of ergodicity are adopted from Seneta [11].
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Definition 3.2. An inhomogeneous Markov chain on finite state space S is strongly

ergodic if there exists a probability distribution π on S such that for all t ∈ Z+ and

z, z′ ∈ S,

lim
t′→∞

P
(t,t′)
zz′ = πz′ ,

or, equivalently, for all t ∈ Z+ and for any initial distribution µ0 on S,

lim
t′→∞

µ0P
(t,t′) = π.

While we are ultimately interested in the strong ergodicity of an inhomogeneous

model of evolution, we explore the weak ergodicity first since it is a necessary condi-

tion for strong ergodicity. Doeblin’s theorem below gives the necessary and sufficient

condition for an inhomogeneous chain to be weakly ergodic. Define a scalar function

τ1, called an ergodic coefficient, from the space of transition matrices on S to [0, 1]

by

τ1(Q) = 1− min
z,z′∈S

∑
z′′∈S

min {Qzz′′ , Qz′z′′} .6

Theorem 3.3 (Doeblin).7 An inhomogeneous Markov chain is weakly ergodic if and

only if there is a strictly increasing sequence of positive integers {tk : k = 0, 1, 2, ...},

with t0 = 0, such that
∞∑

k=0

(
1− τ1

(
P (tk,tk+1)

))
= ∞.

To get an intuition for this result, note that if τ1(Q) = 0, then all the rows of Q

must be identical. Thus, transition probabilities do not depend at all on the initial

state in this extreme case. Therefore, it is not too difficult to see that a chain can

lose its memory if and only if its long-run ergodic coefficient goes to zero; that is,

for all t, τ1(P (t,t′)) → 0 as t′ → 0. Theorem 3.3 states that this happens as long as

the chain’s medium-run ergodic coefficient does not approach one too quickly.
6Formally, τ1 is only one example of a proper coefficient of ergodicity; however, an ergodic

coefficient will always mean τ1 in this paper. For other examples, see Seneta [11].
7See, for example, Seneta [11] Theorem 4.8 or Isaacson and Madsen [7] Theorem V3.2.
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To apply Doeblin’s theorem, a method for bounding τ1 is needed. Fix any

homogeneous model of evolution and consider the Markov chain defined by the

unperturbed transition matrix P̄ . By the well-known decomposition theorem, the

state space S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ · · · ∪ CM ,

where T is transient under P̄ and for all m = 1, ...,M , Cm is irreducible, closed,

and non-null recurrent under P̄ .8 Since T is transient and finite, the unperturbed

chain must almost surely visit one of the Cm’s in finite time. Once that happens,

the chain will stay forever in Cm, visiting every element of Cm infinitely often with

probability one. For this reason, each set Cm is commonly referred to as a minimal

absorbing set, or a limit set, and C =
⋃M

m=1 Cm is the set of all the limit points of

the unperturbed dynamics.9 If M = 1 and C1 is aperiodic, then P̄ has a limiting

distribution.10 So, in this case, adding mutation to P̄ and letting it go to zero adds

nothing to the analysis. Therefore, it is assumed that M > 1 or C1 is periodic for

the remainder of the paper.

A path h from z to z′ is a collection of ordered pairs {(z1, z2), (z2, z3), ..., (znh−1, znh
)}

such that z1 = z and znh
= z′. Let c̃(h) =

∑nh−1
n=1 c(zn, zn+1) denote the cost of

transitioning along path h, and let d̃(h) = nh − 1 denote the length of path h. For

any z, z′ ∈ S, the resistance from z to z′, r(z, z′), is defined as the minimum cost of

transitioning from z to z′. That is, r(z, z′) = min {c̃(h) : h is a path from z to z′}.

For any z′ ∈ S, the coradius of a point set {z′} is defined as CR({z′}) =

maxz 6=z′ r(z, z′), and represents the maximum resistance incurred in transitioning

8See, for example, Grimmett and Stirzaker [6]. The fact that 1 ≤ M < ∞ and Cm’s are non-null
recurrent follows from the finiteness of S.

9A state z is called a limit point of P if there exists an initial distribution µ0 on S such that
if the chain starts with µ0 and runs according to P , then the chain visits z infinitely often almost
surely.

10To see this, note that since T is transient and C1 is closed, the chain governed by P̄ will almost
surely enter C1 in finite time and never leave. Since C1 is irreducible, non-null recurrent, and
aperiodic, the chain will thereafter behave like an ergodic chain with the state space limited to C1.
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to z′ from another state. The definition is extended to an arbitrary A ⊂ S by

CR(A) = max
z 6∈A

min
z′∈A

r(z, z′).

The coradius essentially measures how difficult it is, or how much resistance must

be overcome, to transition into a set. In particular, if CR(A) < CR(S \ A), then

it is easier to transition into A than out of A. To keep the definition of coradius

consistent with its intended meaning, set CR(S) = 0 and CR(∅) = ∞.

3.1 Coradius and Weak Ergodicity

The connection between the coradii of the homogeneous model of evolution and the

ergodicity of the inhomogeneous model is most direct when the minimum coradius

set is a singleton. To see this, suppose the minimum coradius set is {z̄} and β is its

coradius. For each z 6= z̄, let d(z, z̄) be the length of a minimum cost path from z to z̄.

Let ẑ be the state that achieves the minimum coradius so that r(ẑ, z̄) = β ≥ r(z, z̄)

for all z ∈ S. The choice of ẑ implies that the probability of transitioning from z to

z̄ in exactly d(z, z̄) steps is asymptotically greater than or equal to the probability

of transitioning from ẑ to z̄ in d(ẑ, z̄) steps. Moreover, once the chain reaches z̄, it

can continue to stay at z̄ with zero cost because c(z̄, z̄) must be zero if {z̄} is a limit

set. So, for any n large enough,

P
(n)
zz̄ (ε) = Θ

(
P

(d(z,z̄))
zz̄ (ε)

)
= Ω

(
P

(d(ẑ,z̄))
ẑz̄ (ε)

)
= Ω

(
εβ
)

for every z ∈ S. Therefore, εβ provides a lower bound on P
(n)
zz̄ (ε) that is independent

of z.

This estimate can in turn be used to bound the ergodic coefficient. By taking

tk+1 − tk large enough, we have

∑
z′′∈S

min
{

P
(tk,tk+1)
zz′′ , P

(tk,tk+1)
z′z′′

}
≥ min

{
P

(tk,tk+1)
zz̄ , P

(tk,tk+1)
z′z̄

}
= Ω

(
ε̂(tk)β

)
.
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Therefore,

1− τ1

(
P (tk,tk+1)

)
= Ω

(
ε̂(tk)β

)
.

Doeblin’s theorem can now be readily applied to obtain a sequence {ε̂(t)} that yields

weak ergodicity.

This observation lies at the heart of Robles’s earlier result which states that in

KMR/Y models any monotonically decreasing sequence of mutation rates ε̂(t) satis-

fying
∑∞

t=0 ε̂(t)β = ∞ yields a strongly ergodic inhomogeneous model.11 However,

this direct relationship between the coradius of the limit sets and the ergodicity

breaks down when the minimum coradius set has periodic cycles. A key argument

used above in deriving a bound on P
(n)
zz̄ (ε) that is independent of z had been the fact

that once z̄ is reached, the chain can continue to stay there at zero cost. This need

not hold if the limit set is periodic. In such cases, whether P
(n)
zz̄ (ε) is asymptotically

greater than or equal to εβ may depend on z no matter how large n is. Therefore,

the bound identified by Robles may not be sufficient, as illustrated in the following

example.

Example 3.4. Consider a model in which two players repeatedly play the following

stage game.

player 1

player 2

A B

A 2, 1 0, 0

B 0, 0 2, 1

Assume that the players are myopic so that in each period they simply best

respond to the opponent’s strategy in the previous period. Restricting attention to

pure strategies, the evolution of the play can be described by a Markov chain on

the state space S = {AA,AB, BA, BB}, where, for example, AB denotes player 1
11See, Robles [9] Propositions 4.1 and 5.2.
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playing A and player 2 playing B. The transition matrix is

P̄ =



AA AB BA BB

AA 1 0 0 0

AB 0 0 1 0

BA 0 1 0 0

BB 0 0 0 1


.

Since this chain is not ergodic, it has no limiting distribution.

Now, suppose that the players mostly best respond but sometimes they also

experiment by not playing the best response. Suppose further that each player

experiments more when she receives lower payoff than her opponent.12 In particular,

letting si
t denote player i’s strategy in period t and πi

t denote player i’s payoff, assume

that

si
t+1 =



• If πi
t ≥ πj

t :

with probability 1− ε2, play the best response to sj
t ,

with probability ε2, play the strategy that is not the best response.

• If πi
t < πj

t :

with probability 1− ε, play the best response to sj
t ,

with probability ε, play the strategy that is not the best response.

The transition matrix corresponding to this perturbed dynamics has the follow-
12While this example uses state-dependent mutations, their use is not necessary. An example

using state-independent mutations can be readily constructed, albeit at the cost of requiring a
larger transition matrix.
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ing asymptotic behavior.

P (ε) = Θ





AA AB BA BB

AA 1 ε ε2 ε3

AB ε2 ε4 1 ε2

BA ε2 1 ε4 ε2

BB ε3 ε2 ε 1




as ε → 0.

The limit sets of P̄ are {AA}, {AB,BA}, and {BB}. Their coradii under P (ε) are

CR({AA}) = CR({BB}) = 3 > 1 = CR({AB,BA}),

and the minimum coradius, β, is 1.

Let ε̂(t) = 1
t+2 for all t ∈ Z+. Then ε̂(t) ↓ 0 and

∞∑
t=0

ε̂(t)β =
∞∑

t=0

1
t + 2

= ∞.

Therefore, ε̂(t) satisfies the conditions of Robles’s [9] Propositions 4.1 and 5.2. How-

ever, as we show below, the corresponding inhomogeneous chain is not weakly er-

godic.

Let n > 1 be odd. A least cost path from AA to z ∈ {AA,AB, BB} in n-steps

is the path

((AA,AA), (AA,AA), ..., (AA,AA), (AA, z)) ,

and from AA to BA is

((AA,AA), (AA,AA), ..., (AA,AA), (AA,AB), (AB,BA)) .

A least cost path from AB to z ∈ {AA,BB} is the path

((AB, z), (z, z), ..., (z, z), (z, z)) ,
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from AB to AB is

((AB,AA), (AA,AA), ..., (AA,AA), (AA,AB)) ,

and from AB to BA is

((AB,BA), (BA,AB), (AB,BA), ..., (BA,AB), (AB,BA)) .

Similar analysis for the least cost paths from BA to z ∈ S and BB to z ∈ S yields

the following asymptotics for the n-step transition matrix when n > 1 is odd.

P (n)(ε) = Θ





1 ε ε ε3

ε2 ε3 1 ε2

ε2 1 ε3 ε2

ε3 ε ε 1




as ε → 0.

When n is even, similar analysis yields the following.

P (n)(ε) = Θ





1 ε ε ε3

ε2 1 ε3 ε2

ε2 ε3 1 ε2

ε3 ε ε 1




as ε → 0.

Finally, when n = 1,

P (n)(ε) = P (ε) = Θ





1 ε ε2 ε3

ε2 ε4 1 ε2

ε2 1 ε4 ε2

ε3 ε2 ε 1




as ε → 0.
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So, for any strictly increasing subsequence {tk : k ∈ Z+},

min
z,z′∈S

∑
z′′∈S

min
{

P
(tk,tk+1)
zz′′ , P

(tk,tk+1)
z′z′′

}
= Θ

(∑
z′′∈S

min
{

P
(tk,tk+1)
AB,z′′ , P

(tk,tk+1)
BA,z′′

})
= Θ

(
ε̂(tk)2

)
= Θ

(
1

(tk)2

)
= O

(
1
k2

)
as k →∞.

Therefore,
∞∑

k=0

(
1− τ1

(
P (tk,tk+1)

))
< ∞,

and the chain is not weakly ergodic by Doeblin’s theorem.13

3.2 Weak Ergodicity

As seen in the above example, the essence of the problem in the periodic case is as

follows. Suppose a periodic limit set Cm is reached at time t. Since Cm is a limit

set of P̄ , the chain can continue to stay in Cm at zero cost. However, because Cm

is periodic under P̄ , whether the chain can visit a particular z′ ∈ Cm in n steps

without incurring further cost depends on the chain’s location at time t, no matter

how large n is. Therefore, deriving a bound on P
(n)
zz̄ (ε) that is independent of z

requires introducing an adjustment factor that accounts for the cost of transitioning

within the limit set.

Abusing notation slightly, let r(z, z′, n) be the minimum cost of transitioning
13Although the argument given in this example uses the formalism of ergodic coefficient, the

insufficiency of Robles’s conditions here can also be understood in terms of Borel-Cantelli lemma.
Given a sequence of events {At : t = 0, 1, 2, ...}, Borel-Cantelli lemma states that the probability
of events At’s occurring infinitely often is zero if

P∞
t=0 Prob (At) < ∞. For a chain to have a

limiting distribution that is independent of its initial condition, it must not have any cycles that
occur with probability one. In the example, this necessarily means that the chain must transition
from state AB to non-BA states infinitely often. At time t, the probability of this event is of order
ε̂(t)2 = 1

(t+2)2
. Since

P∞
t=0

1
(t+2)2

< ∞, the probability of transitioning from AB to non-BA states

infinitely often is zero by Borel-Cantelli lemma. Therefore, the chain cannot be weakly ergodic.
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from z to z′ in exactly n steps under P (ε). For each z′ ∈ Cm, let

α({z′}) = min
n≥1

max
z∈Cm

r(z, z′, n).14

Extend the definition to the entire Cm by letting

α(Cm) = min
z′∈Cm

α({z′}).

Next, let

γ = min
z′∈C

CR({z′}) + α({z′}).

For a homogeneous model of evolution, r(z, z′) = 0 for all z, z′ ∈ Cm so that

CR({z′}) = CR(Cm) for all z′ ∈ Cm.15 Therefore, γ can also be found by minimizing

over the limit sets rather than individual limit points, which may be more convenient

in some applications.

γ = min
z′∈C

CR({z′}) + α({z′})

= min
Cm∈{C1,...,CM}

(
CR(Cm) + min

z′∈Cm

α({z′})
)

= min
Cm∈{C1,...,CM}

CR(Cm) + α(Cm).

The following lemma shows that if the mutation parameter decreases at a rate

equal to or slower than t
− 1

γ , the corresponding inhomogeneous model is weakly

ergodic.

Lemma 3.5. Suppose ε̂ : Z+ → (0, ε̄] is such that ε̂(t) → 0 and ε̂(t) = Ω
(
t
− 1

γ

)
as

t → ∞. Then the Markov chain induced by the inhomogeneous model of evolution

is weakly ergodic.

14Since Cm is aperiodic under P (ε), there exists N such that P
(n)

zz′ (ε) > 0 for all z, z′ ∈ Cm and
n ≥ N . Therefore, α({z′}) < ∞ for all z′ ∈ Cm.

15If P̄zz′ > 0, then Pzz′(ε) = kzz′εc(z,z′) (1 + fzz′(ε)) → P̄zz′ > 0 requires c(z, z′) = 0. Since Cm

is irreducible under P̄ , for any z, z′ ∈ Cm, there exist z1, ..., zn such that P̄zz1 P̄z1z2 · · · P̄znz′ > 0.
So, there exists a zero cost path from z to z′.
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Proof. Let

z̄ ∈ arg min
z′∈C

CR({z′}) + α({z′})

be a limit point that achieves γ. Let ᾱ = α({z̄}), and let C̄ ∈ {C1, ..., CM} be such

that z̄ ∈ C̄. For all z ∈ S, let Hzz̄ = {h : h is a path from z to z̄ and c̃(h) = r(z, z̄)}

be the set of minimum cost paths from z to z̄. For each z ∈ S, fix hzz̄ ∈ Hzz̄ and

let d(z, z̄) = d̃(hzz̄) be the length of path hzz̄. Then, as ε → 0,

P
(d(z,z̄))
zz̄ (ε) = probability of transitioning from z to z̄ in d(z, z̄) steps under P (ε)

= Θ (probability of transitioning from z to z̄ along hzz̄ under P (ε))

= Θ
(
εr(z,z̄)

)
by construction.

Let ẑ ∈ S be such that r(ẑ, z̄) = CR({z̄}). Then r(ẑ, z̄) ≥ r(z, z̄) for all z ∈ S.

Since

P
(d(z,z̄))
zz̄ (ε) = Θ

(
εr(z,z̄)

)
and P

(d(ẑ,z̄))
ẑz̄ (ε) = Θ

(
εr(ẑ,z̄)

)
,

we have

P
(d(z,z̄))
zz̄ (ε) = Ω

(
P

(d(ẑ,z̄))
ẑz̄ (ε)

)
= Ω

(
εCR({z̄})

)
.

Let N ∈ arg minn≥1 {maxz∈C̄ r(z, z̄, n)}. Then, for all n ≥ N ,

P
(n)
z̄z̄ (ε) ≥

∑
z∈C̄

P
(n−N)
z̄z (ε)P (N)

zz̄ (ε) = Ω
(
εᾱ
)
.

Let L = N + maxz∈S d(z, z̄). For each k ∈ Z+, let nk ∈ {kL, ..., kL + (L − 1)} be

such that ε̂(nk) = min {ε̂(t) : kL ≤ t ≤ kL + (L − 1)}. Since ε̂(t) = Ω
(
t
− 1

γ

)
as

t →∞, there exists constant K > 0 such that for all sufficiently large k,

ε̂(nk) ≥ min
{

K(kL)−
1
γ , ...,K(kL + (L− 1))−

1
γ

}
.

So, ε̂(nk) = Ω
(
k
− 1

γ

)
as k →∞.

Suppressing the possible dependence of the minimizers on k in the notation, let
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x and x′ be the minimizers of

min
z,z′∈S

∑
z′′∈S

min
{

P
(kL,kL+L)
zz′′ , P

(kL,kL+L)
z′z′′

}
.

As k →∞,

1− τ1

(
P (kL,kL+L)

)
= min

z,z′∈S

∑
z′′∈S

min
{

P
(kL,kL+L)
zz′′ , P

(kL,kL+L)
z′z′′

}
=

∑
z′′∈S

min
{

P
(kL,kL+L)
xz′′ , P

(kL,kL+L)
x′z′′

}
≥ min

{
P

(kL,kL+L)
xz̄ , P

(kL,kL+L)
x′z̄

}
≥ min

{
P

(kL,kL+d(x,z̄))
xz̄ P

(kL+d(x,z̄),kL+L)
z̄z̄ , P

(kL,kL+d(x′,z̄))
x′z̄ P

(kL+d(x′,z̄),kL+L)
z̄z̄

}
= min

{
Ω
(
P

(d(ẑ,z̄))
ẑz̄ (ε̂(nk))

)
Ω
(
ε̂(nk)ᾱ

)
,Ω
(
P

(d(ẑ,z̄))
ẑz̄ (ε̂(nk))

)
Ω
(
ε̂(nk)ᾱ

)}
= Ω

(
ε̂(nk)CR({z̄})+ᾱ

)
= Ω (ε̂(nk)γ) = Ω

(
1
k

)
.

Let tk = kL for each k ∈ Z+. Then

∞∑
k=0

(
1− τ1

(
P (tk,tk+1)

))
=

∞∑
k=0

(
1− τ1

(
P (kL,kL+L)

))
= ∞.

Therefore, the inhomogeneous chain defined by {P (ε̂(t)) : t ∈ Z+} is weakly ergodic

by Doeblin’s theorem.

Next, we verify that Lemma 3.5 provides a correct bound in Example 3.4.

Example 3.6. Continuing example 3.4, we have

γ = min
z∈C

CR({z}) + α({z}) = CR({AA}) + α({AA}) = 3.
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Let ε̂(t) = (t + 2)−
1
3 so that ε̂(t) = Ω

(
t
− 1

γ

)
, and let tk = k. Then

min
z,z′∈S

∑
z′′∈S

min
{

P
(k,k+1)
zz′′ , P

(k,k+1)
z′z′′

}
= Θ

(
ε̂(k)2

)
= Θ

(
1

k
2
3

)
.

Therefore,
∞∑

k=0

(
1− τ1

(
P (tk,tk+1)

))
= ∞,

and the chain is weakly ergodic by Doeblin’s theorem.

As expected, when the minimum coradius set is aperiodic, then its coradius gives

the correct bound on the required rate of decline.

Corollary 3.7. Let C̄ ∈ arg minCm∈{C1,...,CM} CR(Cm), and let β = CR(C̄).

Suppose C̄ is aperiodic under P̄ , and ε̂ : Z+ → (0, ε̄] is such that ε̂(t) → 0 and

ε̂(t) = Ω
(
t
− 1

β

)
as t → ∞. Then the Markov chain induced by the inhomogeneous

model of evolution is weakly ergodic.

Proof. Since C̄ is aperiodic and irreducible under P̄ , there exists N such P̄
(n)
zz′ > 0

for all z, z′ ∈ C̄ and n ≥ N . Therefore, for all z′ ∈ C̄,

α({z′}) = min
n≥1

max
z∈C̄

r(z, z′, n) = 0.

3.3 Strong Ergodicity

Having established the conditions guaranteeing weak ergodicity, we now turn to

strong ergodicity. Sufficient conditions for strong ergodicity are derived by appealing

to the following finite state space version of Isaacson and Madsen’s theorem.

Theorem 3.8 (Isaacson and Madsen).16 A weakly ergodic inhomogeneous Markov
16See, Isaacson and Madsen [7] Theorem V4.3.
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chain on finite state space S is strongly ergodic if for all t there exists an invariant

distribution π(t) of P (t,t+1) such that

∞∑
t=0

∑
z∈S

|π(t)
z − π(t+1)

z | < ∞.

Moreover, if π = limt→∞ π(t), then for all t ∈ Z+ and z, z′ ∈ S,

lim
t′→∞

P
(t,t′)
zz′ = πz′ .

The following theorem shows that if an additional restriction on the variation

of the mutation parameter is added to the conditions guaranteeing weak ergodic-

ity, then strong ergodicity is obtained. Moreover, the limiting distribution of the

inhomogeneous model is precisely the stochastically stable distribution of the ho-

mogeneous model.

Theorem 3.9. 17 Suppose ε̂ : Z+ → (0, ε̄] satisfies the conditions of Lemma 3.5.

Suppose further that
∑∞

t=1 (ε̂(t + 1)− ε̂(t))+ < ∞. Then the Markov chain induced

by the inhomogeneous model of evolution is strongly ergodic. Moreover, for all t ∈ Z+

and z, z′ ∈ S,

lim
t′→∞

P
(t,t′)
zz′ = π∗z′ ,

where π∗ is the limiting distribution given in (1).

Proof. The weak ergodicity of the inhomogeneous chain {P (ε̂(t)) : t ∈ Z+} follows

from Lemma 3.5. Let π(t) be the unique invariant distribution for the homogeneous

chain P (ε̂(t)). We will show that
∑∞

t=0

∑
z∈S |π(t)

z − π
(t+1)
z | < ∞. The strong

ergodicity then follows from Isaacson and Madsen’s theorem.

For all z ∈ S, let Hz = {h : h is a z-tree}.18 For each ε ∈ (0, ε̄], let π(ε) denote
17The earlier version of the theorem required

P∞
t=1 |ε̂(t + 1)− ε̂(t)| < ∞. I would like to thank

a referee for suggesting that this condition can be weakened to
P∞

t=1 (ε̂(t + 1)− ε̂(t))+ < ∞.
18A z-tree is a directed graph on S such that every z′ ∈ S \ {z} has exactly one successor and

there are no closed loops.
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the unique invariant distribution for the homogeneous chain defined by P (ε). By

the familiar tree-surgery theorem,19

πz(ε) =
qz(ε)∑

z′∈S qz′(ε)
,

where

qz(ε) =
∑

h∈Hz

∏
(z′,z′′)∈h

Pz′z′′(ε).

For any z-tree h, let c̃(h) =
∑

(z′,z′′)∈h c(z′, z′′). Then

∏
(z′,z′′)∈h

Pz′z′′(ε) =
∏

(z′,z′′)∈h

(
kz′z′′ε

c(z′,z′′) (1 + fz′z′′(ε))
)

= khεc̃(h) (1 + fh(ε))

for some constant kh > 0 and some fh(ε) that is o(1) as ε → 0. Moreover, since

c(z′, z′′) ∈ Z+∪{+∞} and fz′z′′(ε) is Lipschitz continuous on [0, ε̄] for all z′, z′′ ∈ S,

fh(ε) is Lipschitz continuous on [0, ε̄] as well. Let δz = minh∈Hz c̃(h). Since P (ε) is

irreducible, δz < ∞ for all z ∈ S. Let δ̂ = minz∈S δz. Then

qz(ε) =
∑

h∈Hz

khεc̃(h) (1 + fh(ε)) = Kzε
δz (1 + fz(ε)) ,

where Kz > 0 and fz(ε) is Lipschitz continuous on [0, ε̄] and o(1). This in turn

implies ∑
z′∈S

qz′(ε) = Kεδ̂ (1 + f(ε))

where K > 0 and f(ε) is Lipschitz continuous on [0, ε̄] and o(1). Therefore,

πz(ε) =
qz(ε)∑

z′∈S qz′(ε)
=
(

Kzε
δz

Kεδ̂

)(
1 + fz(ε)
1 + f(ε)

)
.

Since δz − δ̂ ∈ Z+ and f(ε) is o(1), πz(ε) is Lipschitz continuous on [0, ε̄]. So, there

exists Mz < ∞ such that |πz(ε′)− πz(ε)| < Mz |ε′ − ε| for all ε, ε′ ∈ [0, ε̄].
19See, for example, Freidlin and Wentzel [5].
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Next, for all n ≥ 1,

ε̂(n)− ε̂(0) =
n−1∑
t=0

(ε̂(t + 1)− ε̂(t))+ −
n−1∑
t=0

(ε̂(t + 1)− ε̂(t))− .

Since ε̂(n) > 0 for all n,

n−1∑
t=0

(ε̂(t + 1)− ε̂(t))− < ε̂(0) +
n−1∑
t=0

(ε̂(t + 1)− ε̂(t))+ .

So,
∞∑

t=0

(ε̂(t + 1)− ε̂(t))− < ∞,

and

∞∑
t=0

|ε̂(t + 1)− ε̂(t)| =
∞∑

t=0

(ε̂(t + 1)− ε̂(t))+ +
∞∑

t=0

(ε̂(t + 1)− ε̂(t))− < ∞.

Therefore,

∞∑
t=0

∑
z∈S

|π(t)
z − π(t+1)

z | =
∑
z∈S

∞∑
t=0

|πz(ε̂(t + 1))− πz(ε̂(t))|

<
∑
z∈S

∞∑
t=0

Mz |ε̂(t + 1)− ε̂(t)|

< ∞

as desired.

An immediate consequence of this theorem is that for any mutation parameter

that goes to zero monotonically at the rate of t
− 1

γ or slower, the resulting inhomo-

geneous model of evolution is strongly ergodic.
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4 Concluding Remarks

This paper considered time-dependent mutations in a class of Markov models that

includes those with periodic cycles. It has shown that as long as the mutation

parameter converges to zero slowly enough and its variation is finite, the resulting

time-inhomogeneous model has a limiting distribution regardless of the details of

the mutation process. However, since the bound on the required rate is found to be

t
− 1

γ , the result suggests that the mutation may need to decrease very slowly if γ is

large.
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