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Choice Under Uncertainty

6.A Introduction

In previous chapters, we studied choices that result in perfectly certain outcomes. In
reality, however, many important economic decisions involve an element of risk.
Although it is formally possible to analyze these situations using the general theory
of choice developed in Chapter 1, there is good reason to develop a more specialized
theory: Uncertain alternatives have a structure that we can use to restrict the
preflerences that “rational” individuals may hold. Taking advantage of this structure
allows us to derive stronger implications than those based solely on the framework
of Chapter 1.

In Section 6.B, we begin our study of choice under uncertainty by considering a
setting in which alternatives with uncertain outcomes are describable by means of
objectively known probabilities defined on an abstract set of possible outcomes. These
representations of risky alternatives are called lotteries. In the spirit of Chapter 1, we
assume that the decision maker has a rational preference relation over these lotteries.
We then proceed to derive the expected utility theorem, a result of central importance.
This theorem says that under certain conditions, we can represent preferences by an
extremely convenient type ol utility [unction, one that possesses whal is called the
expected utility form. The key assumption leading to this result is the independence
axiom, which we discuss extensively.

In the remaining scctions, we focus on the special case in which the outcome of
a risky choice is an amount of money (or any other one-dimensional measure of
consumption). This case underlies much of finance and portfolio theary, as well as
substantial areas of applied economics.

In Section 6.C, we present the concept of risk aversion and discuss its measure-
ment. We then study the comparison of risk aversions both across different
individuals and across different levels of an individual’s wealth.

Section 6.D is concerned with the comparison of alternative distributions of
monetary returns. We ask when one distribution of monetary returns can un-
ambiguously be said to be “better” than another, and also when one distribution
can be said to be “more risky than” another. These comparisons lead, respectively,

septs of first-order and second-order stochastic dominance.
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6.B

In Section 6.E, we extend the basic theory by allowing utility to depend on states
of nature underlying the uncertainty as well as on the monetary payoffs. In the
process, we develop a framework for modeling uncertainty in terms of these
underlying states. This framework is often of great analytical convenience, and we
use it extensively later in this book.

In Section 6.F, we consider briefly the theory of subjective probability. The
assumption that uncertain prospects are offered to us with known objective prob-
abilities, which we use in Section 6.B to derive the expected utility theorem, is rarely
descriptive of reality. The subjective probability framework offers a way of modeling
choice under uncertainty in which the probabilities of different risky alternatives are
not given to the decision maker in any objective fashion. Yet, as we shall see, the
theory of subjective probability offers something of a rescue for our earlier objective
probability approach.

For further reading on these topics, see Kreps (1988) and Machina (1987).
Diamond and Rothschild (1978) is an excellent sourcebook for original articles.

Expected Utility Theory

We begin this section by developing a formal apparatus for modeling risk. We then
apply this framework to the study of preferences over risky alternatives and to
establish the important expected utility theorem

Description of Risky Alternatives

Let us imagine that a decision maker faces a choice among a number of risky
alternatives. Each risky alternative may result in one of a number of possible
outcomes, but which outcome will actually occur is uncertain at the time that he must
make his choice.

Formally, we denote the set of all possible outcomes by C.! These outcomes
could take many forms. They could, for example, be consumption bundles. In this
case, C = X, the decision maker’s consumption set. Alternatively, the outcomes might
take the simpler form of monetary payoffs. This case will, in fact, be our leading
example later in this chapter. Here, however, we treat C as an abstract set and
therefore allow for very general outcomes.

To avoid some technicalities, we assume in this section that the number of possible
outcomes in C is finite, and we index these outcomes by n = 1,... N,

Throughout this and the next several sections, we assume that the probabilities
of the various outcomes arising from any chosen alternative are objectively known.
For example, the risky alternatives might be monetary gambles on the spin of an
unbiased roulette wheel.

The basic building block of the theory is the concept of a lottery, a formal device
that is used to represent risky alternatives.

Definition 6.B.1: A simple /ottery L is alist L = (p,, ..., py) with p, =0 for all n and

2., P, =1, where p, is interpreted as the probability of outcome n occurring.

I. It is also common, following Savage (1954), to refer to the elements of C as consequences.
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A simple lottery can be represented geometrically as a point in the (N — 1)
dimensional simplex, A ={peRY:p, +---+ py = 1}. Figure 6.B.1(a) depicts this
simplex for the case in which N = 3. Each vertex of the simplex stands for the
degenerate lottery where one outcome is certain and the other two outcomes have
probability zero. Each point in the simplex represents a lottery over the three
outcomes. When N = 3, it is convenient to depict the simplex in two dimensions, as
in Figure 6.B.1(b), where it takes the form of an equilateral triangle.?

In a simple lottery, the outcomes that may result are certain. A more general
variant of a lottery, known as a compound lottery, allows the outcomes of a lottery
themselves to be simple lotteries.?

Definition 6.B.2: Given K simple lotteries L, = (p%, ..., pk), k=1,...,K, and prob-

abilities a, > Owith 3, a, = 1, the compound lottery (L., ... L oy, ..., o) is the
risky alternative that yields the simple lottery L, with probability a, fork =1,.. ., K.

For any compound lottery (L,,..., Ly;ay,...,ag), we can calculate a corre-
sponding reduced lottery as the simple lottery L = (p,,..., py) that generates the
same ultimate distribution over outcomes. The value of each p, is obtained by
multiplying the probability that each lottery L, arises, a,, by the probability p* that
outcome n arises in lottery L,, and then adding over k. That is, the probability of
outcome 1 in the reduced lottery is

Pn:alp,:+"'+axpf

2. Recall that equilateral triangles have the property that the sum of the perpendiculars from
any point to the three sides is equal to the altitude of the triangle. It is therefore common to depict
the simplex when N = 3 as an equilateral triangle with altitude equal (o 1 because by doing so, we
have the convenient geometric property that the probability p, ol outcome n in the lottery associated
with some point in this simplex is equal to the length of the perpendicular from this point to the
side opposite the vertex labeled n.

3. We could also define compound lotteries with more than two stages. We do not do so
because we will not need them in this chapter. The principles involved, however, are the same.

Figure 6.B.1

Representations of the
simplex when N = 3.
(a) Three-dimensional
representation.

(b) Two-dimensional
representation.
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for n=1,...,N.* Therefore, the reduced lottery L of any compound lottery
(Ly,-.., Lg;ay, ..., ax) can be obtained by vector addition:

L=o,L+- -+ ayLyeA.

In Figure 6.B.2, two simple lotteries L; and L, are depicted in the simplex A.
Also depicted is the reduced lottery 1L, + 1L, for the compound lottery (L,, L,; 4, 1)
that yields either L, or L, with a probability of } each. This reduced lottery lies at
the midpoint of the line segment connecting L, and L,. The linear structure of the
space of lotteries is central to the theory of choice under uncertainty, and we exploit
it extensively in what follows.

Preferences over Lotteries

Having developed a way to model risky alternatives, we now study the decision
maker’s preferences over them. The theoretical analysis to follow rest on a basic
consequentialist premise: We assume that for any risky alternative, only the reduced
lottery over final outcomes is of relevance to the decision maker. Whether the
probabilities of various outcomes arise as a result of a simple lottery or of a more
complex compound lottery has no significance. Figure 6.B.3 exhibits two different
compound lotteries that yield the same reduced lottery. Our consequentialist
hypothesis requires that the decision maker view these two lotteries as equivalent.

4. Note that Zaba=3, (X, ph) = 2o =1

Figure 6.B.2

The reduced lottery of
a compound lottery,

Figure 6.B.3

Two compound
lotteries with the same
reduced lottery.
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We now pose the decision maker’s choice problem in the general framework :_
developed in Chapter 1 (see Section 1.B). In accordance with our consequentialist I
premise, we take the set of alternatives, denoted here by 2, to be the set of all simple f
lotteries over the set of outcomes C. We next assume that the decision maker has a !'

! rational preference relation Zon %, a complete and transitive relation allowing ’fl

| comparison of any pair of simple lotteries, It should be emphasized that, if anything, i!

the rationality assumption is stronger here than in the theory of choice under certainty i

discussed in Chapter 1. The more complex the alternatives, the heavier the burden il

carried by the rationality postulates. In fact, their realism in an uncertainty context

.2d lott : has been much debated. However, because we want to concentrate on the properties
zed lo :4

1nd lott that are specific to uncertainty, we do not question the rationality assumption further | _
here. [

We next introduce two additional assumptions about the decision maker’s I(.
preferences over lotteries. The most important and controversial is the independence i

. . . . . v II
axiom. The first, however, is a continuity axiom similar to the one discussed in Section -
3.C

|
Definition 6.B.3: The preference relation > on the space of simple lotteries & is i
Y continuous if for any L, L', " € &, the sets !

s | {x e [0, 1lial + (1 — )L’ Z L") <o, 1] |[

|

pound  4pq .'I

;ltttt;rtyr.m {ee01:L" > al + (1 —a)l'} =[0,1] ||
are closed. |

In words, continuity means that small changes in probabilities do not change J
the nature of the ordering between two lotteries. For example, if a “beautiful and bl
uneventful trip by car” is preferred to “staying home,” then a mixture of the i
outcome “beautiful and uneventful trip by car” with a sufficiently small but iR
positive probability of “death by car accident™ is still preferred to “staying home.” !"
Continuity therefore rules out the case where the decision maker has lexicographic '
(“salety first”) preferences for alternatives with a zero probability of some outcome |
(in this case, “death by car accident”). i

As in Chapter 3, the continuity axiom implies the existence of a utility function b {j'
fepresenting =, a function U: % — R such that L > L' if and only if U(L) > U(L). ; B |
Our second assumption, the independence axiom, will allow us to impose considerably b |
more structure on U(-).5

|
Jefinition 6.B.4: The preference relation > on the space of simple lotteries &% |
satisfies the independence axiomifforall L, L', L" € % and o € (0, 1) we have

Lzl ifand onlyif of + (M=ol Zal + (1 —a)L".

In other words, if we mix each of two lotteries with a third one, then the preference

ordering of the two resulting mixtures does not depend on (is independent of) the
particular third lottery used.

5. The independence axiom was first proposed by von Neumann and Morgenstern (1944) as
an incidental result in the theory of games.
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L L
Heads Heads
b
Tails Tails
L "
if and only if
L > L

Suppose, for example, that L > L’ and « = 4. Then 4L + 1L" can be thought of
as the compound lottery arising from a coin toss in which the decision maker gets
L if heads comes up and L” if tails does. Similarly, }L' + $L” would be the coin toss
where heads results in L' and tails results in L” (see Figure 6.B.4). Note that
conditional on heads, lottery 1L + 11" is at least as good as lottery 3L’ + 4L"; but
conditional on tails, the two compound lotteries give identical results. The indepen-
dence axiom requires the sensible conclusion that 3L + 1L" be at least as good as
L+ 4L,

The independence axiom is at the heart of the theory of choice under uncertainty.
It is unlike anything encountered in the formal theory of prefercnce-based choice
discussed in Chapter 1 or its applications in Chapters 3 to 5. This is so precisely
because it exploits, in a fundamental manner, the structure of uncertainty present in
the model. In the theory of consumer demand, for example, there is no reason to
believe that a consumer’s preferences over various bundles of goods 1 and 2 should
be independent of the quantities of the other goods that he will consume. In the
present context, however, it is natural to think that a decision maker’s preference
between two lotteries, say L and L', should determine which of the two he prefers
to have as part of a compound lottery regardless of the other possible outcome of
this compound lottery, say L". This other outcome L” should be irrelevant to his
choice because, in contrast with the consumer context, he does not consume L or L’
together with L” but, rather, only instead of it (if L or L' is the realized outcome).
Exercise 6.B.1: Show that if the preferences = over % satisfy the independence

~

axiom, then for all a € O, and L, L', L" € & we have
L> L ifand onlyif oL + (1 —)L" > al’ + —-ar”
and
L~L ifandonlyif aL + (I —o)L" ~aL + (1 — a)L".
Show also that if L > L' and L” >~ L", then aL + (1 — a)L" > al’ + (1 —a)yL™,
As we will see shortly, the independence axiom is intimately linked to the

representability of preferences over lotteries by a utility function that has an expected

utility form. Before obtaining that result, we define this property and study some of
its features,

Figure 6.B.4
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>’ Deflnition 6.B.5: The utility function U: ¥ — R has an expected utility form it there is
an assignment of numbers (4y, ..., uy) to the N outcomes such that for every
simple lottery L = (p,, ... ' Ppy) € L we have

U(L) = U1p1 + . + uNpN‘

A utility function U: ¥ - R with the expected utility form is called a
von Neumann-Morgenstern (v.N-M) expected utility function.

Observe that if we let L" denote the lottery that yields outcome n with probability
one, then U(L") = u,. Thus, the term expected utility is appropriate because with the
v.N-M expected utility form, the utility of a lottery can be thought of as the expected
value of the utilities u, of the N outcomes.

The expression U(L) = 2 lU,p, is a general form for a linear Sunction in the
probabilities (p,, ..., py). This linearity property suggests a useful way to think about
the expected utility form.

Proposition 6.B.1: A utility function U: % — R has an expected utility form if and only
if it is /inear, that is, if and only if it satisfies the property that

L X
U( y aKL,() = Y aqU(L,) (6.8.1)
1

k=1

for any K lotteries L, e #, k =1, . .. , K, and probabilities (a,, . . . Vo) 20,3 0, = 1.

Proof: Suppose that U(-) satisfies property (6.B.1). We can write any L = P,y pN)
as a convex combination of the degenerate lotteries (L',..., L"), thatis, L = PN 5
We have then U(L) = UZ,p L") =3, p, UL") = 2n Dutt,. Thus, U(-) has the
expected utility form,

In the other direction, suppose that U(*) has the expected utility form, and
consider any compound lottery (L, ..., Lg;ay,... ), where L, = (p%, ... pk).
Its reduced lottery is L' = 2 L,. Hence,

U(% akLk> =3 u"<; a,(p,’f> = ;ak<; u,,p,’,‘) . ;akU(Lk)'

n

Thus, property (6.B.1) is satisfied. m

The expected utility property is a cardinal property of utility functions defined on
the space of lotteries. In particular, the result in Proposition 6.B.2 shows that the
expected utility form is preserved only by increasing linear transformations.

Proposition 6.B.2; Suppose that U Z — R is a v.N-M expected utility function for the
preference relation > on .%. Then J: ¥ - R is another v.N-M utility function for
Z if and only if there are scalars B >0 and y such that J(L) == PUL) + v tor
every L e #.

Proof: Begin by choosing two lotteries . and L with the property that L > L > L
for all Le 2.5 11 L ~ L, then every utility function is a constant and the result
follows immediately. Therefore, we assume from now on that L > L.

6. These best and worst lotteries can be shown to exist. We could, for example, choose a
maximizer and a minimizer of the linear, hence continuous, function U(*) on the simplex of
probabilities, a compact set,
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;»

Note first that if U(-) is a v.N-M expected utility function and 0y = BU(L) + y,
then

-/ K K
U( Z akL,,> = ﬂU( y a,L.) +y
= ﬂ[ 2 o U(Lu] +y

k=1
K

= k; %[BU(L,) + 7]

K
= Y 0 0(L).
k=1

Since (7(-) satisfies property (6.B.1), it has the expected utility form.

For the reverse direction, we want to show that if both U(+) and U(-) have the
expected utility form, then constants B> 0 and y exist such that (L) = BU(L) +y
for all Le 2. To do so, consider any lottery L € %, and define A, €[0,1] by

ULy = 2, U(L) + (1 — a)u(L).
Thus
3, = 20 - UW (6.8.2)
Uy - u)

Since A, U(L) + (I = 2)UL) = Ui L+ (1 - Ap)L) and U(+) represents the prefer-
ences -, it must be that 7, ~ AL+ (1 - Ag)L. But if so, then since U(-) is also linear
and represents these same preferences, we have

O(L) = O L + (1 - a,)L)
=4, U0) + (1 - 2,)T(r)
= L (O(D) - (L)) + Oqr).

Substituting for A, from (6.B.2) and rearranging terms yields the conclusion that
U(L) = BU(L) + y, where

_ U - ow)
S U(D) - U

and
y=U(L) - UL) 0D =0

This completes the proof m

A consequence of Proposition 6.B.2 is that for a utility function with the expected
utility form, differences of utilities have meaning. For example, if there are four
outcomes, the statement “the difference in utility between outcomes 1 and 2 is greater
than the difference between outcomes 3 and 4,” u, — Uy > u3 — u,, is equivalent to

g+ duy > Uy + Sus.
Therefore, the statement means that the lottery L = (4, 0,0, 1) is preferred to the

lottery L' = (0, 4,4 0). This ranking of utility differences is preserved by all linear
transformations of the v.N~M expected utility function.

Figure g,
utility fe
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Note that if a preference relation 2 on % is representable by a utility function
U(-) that has the expected utility form, then since a linear utility function is
continuous, it follows that = is continuous on .#. More importantly, the preference
relation 2 must also satisfy the independence axiom. You are asked to show this in
Exercise 6.B.2.

Exercise 6.B.2: Show that if the preference relation = on ¥ is represented by a

utility function U(-) that has the expected utility form, then > satisfies the
independence axiom,

The expected utility theorem, the central result of this section, tells us that the
converse is also true.

The Expected Utility Theorem

The expected utility theorem says that if the decision maker's preferences over lotteries
satisfy the continuity and independence axioms, then his preferences are representable
by a utility function with the expected utility form. It is the most important result in
the theory of choice under uncertainty, and the rest of the book bears witness to its
usefulness.

Before stating and proving the result formally, however, it may be helpful to
attempt an intuitive understanding of why it is true.

Consider the case where there are only three outcomes. As we have already
observed, the continuity axiom insures that preferences on lotteries can be represented L
by some utility function. Suppose that we represent the indifference map in the i
simplex, as in Figure 6.B.5. Assume, for simplicity, that we have a conventional |
map with one-dimensional indifference curves. Because the expected utility form is 4’
linear in the probabilities, representability by the expected utility form is equivalent t
to these indifference curves being straight, parallel lines (you should check this). B

Figure 6.B.5(a) exhibits an indifference map satisfying these properties. We now argue l

that these properties are, in fact, consequences of the independence axiom. ‘ A
Indifference curves are straight lines if, for every pair of lotteries L, L', we have

that L ~ L' implies aL + (1 — «)L' ~ L for all a e [0,1]. Figure 6.B.5(b) depicts a

situation where the indifference curve is not a straight line; we have L' ~ L but i

3.5 Geometric explanation of the expected utility theorem. (a) Z is representable by a utility function with the expected ! 5e3
rm. (b) Contradiction of the independence axiom. (c) Contradiction of the independence axiom. k

H ].I J
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$L' + {L > L. This is equivalent to saying that
A+ 3L 4L + AL, (6.B.3)

But since L ~ L', the independence axiom implies that we must have L' + L~
1L + 4L (see Exercise 6.B.1). This contradicts (6.B.3), and so we must conclude that
indifference curves are straight lines.

Figure 6.B.5(c) depicts two straight but nonparallel indifference lines. A violation
of the independence axiom can be constructed in this case, as indicated in the figure.
There we have L > L' (in fact, L ~ L'), but 1L + $L" 2 L' + 2L" does not hold for
the lottery L” shown in the figure. Thus, indifference curves must be parallel, straight
lines if preferences satisfy the independence axiom.

In Proposition 6.B.3, we formally state and prove the expected utility theorem.

Proposition 6.B.3: (Expected Utility Theorem) Suppose that the rational preference

relation = on the space of lotteries . satisfies the continuity and independence
axioms. Then > admits a utility representation of the expected utility form. That

is, we can assign a number U, to each outcome n = 1,..., N in such a manner
that for any two lotteries L = (B i s Py) and L' = (py, ..., pj), we have
N N
LzL itandonlyit 3 uw,p,> Y u,p,. (6.B.4)
n=1 n=1

Proof: We organize the proof in a succession of steps. For simplicity, we assume that
there are best and worst lotteries in %, I and L(so,LxzLx>Lforany Le L) If
L ~ L, then all lotteries in & are indifferent and the conclusion of the proposition
holds trivially. Hence, from now on, we assume that [ > L.

Step 1. If L> L and o (0,1), then L > oL, + (1 —aL > L.

This claim makes sense. A nondegenerate mixture of two lotteries will hold a
preference position strictly intermediate between the positions of the two lotteries.
Formally, the claim follows [rom the independence axiom. In particular, since L > L',
the independence axiom implies that (recall Exercise 6.B.1)

L=al+(1—oL>al+ (1 —a)L' >al + (1 — )L’ = L',

Step 2. Let a,f€[0,1]. Then L+ (1 — B)L > af + (L =o)L if and only if
f>a.

Suppose that f > a. Note first that we can write
BL+ (1~ BL=yL + (1 — p[aL + (1 — a)L],

where y = [(f — a)/(1 — a)] € (0, 1]. By Step 1, we know that L>ol + (1 —a)L.
Applying Step 1 again, this implies that yZ + (1 — ML + (1 — )Ly > oL + (1 — a)L,
and so we conclude that L + ({ — f)L > af + (1 — a)L.

For the converse, suppose that B <o If B=a we must have BL + (1 — BL ~
oL + (1 —a)L. So suppose that f < o. By the argument proved in the previous

7. In fact, with our assumption of a finite set of outcomes, this can be established as a
consequence of the independence axiom (see Exercise 6.B.3).
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paragraph (reversing the roles of a and f), we must then have ol + (1 —a)L >
B+ (1 - L

Step 3. For any Le %2, there is a unique o such that [a, L + (1 — o, )L}~ L.

‘ :_ Existence of such an « is implied by the continuity of = and the fact that L and L
are, respectively, the best and the worst lottery. Uniqueness follows from the result

of Step 2.

The existence of ¢, is established in a manner similar to that used in the proof of Proposition
3.C.1. Specifically, define the sets

{ee[0,1]:al + (1 —a)L = L} and {ae[0,1]: L= al + (1 — L)

By the continuity and completeness of >, both sets are closed, and any o € [0, L] belongs to

at least one of the two sets. Since both sets are nonempty and [0, 1] is connected, it follows

that there is some « belonging to both. This establishes the existence of an o, such that

aLZ+(l—aL)L~L. 4

Step 4. The function U: & — R that assigns U(L) = a, for all Le & represents
the preference relation .

Observe that, by Step 3, for any two lotteries L, L' € £, we have
Lz L ifandonlyif o L + (1 —a)L>a,. L+ (1 — o L.
Thus, by Step 2, L = L' if and only if ¢, > a..

Step 5. The utility function U(-) that assigns U(L) = a; for all Le & is linear
and therefore has the expected utility form.

We want to show that forany L, L' € %, and Be[0,1], we have U(BL + (1 — p)L) = |
BU(L) + (1 — B)U(L"). By definition, we have

L ~ ULVL+ (1 -UWL)L
and

L' ~ UL + (1 — UL)L.
Therefore, by the independence axiom (applied twice),
BL+ (1 - BL ~ BLUL)L + (1 — U(L)L] + (1 ~ B)L’
~ PLULIL + (1 = U(L)L] + (1 = HLUL)L + (1 — U(L)L].

Rearranging terms, we see that the last lottery is algebraically identical to the
lottery

T T

[BUL) + (1 = HULYIL + [1 - BU(L) — (1 ~ BU(L)IL.

In other words, the compound lottery that gives lottery [U(L)L + (1 — U(L))L] with
probability # and lottery [U(L')L + (1 — U(L"))L] with probability (1 — ) has the
same reduced lottery as the compound lottery that gives lottery L with probability
[BU(L) + (1 — BU(L)] and lottery L with probability [1 — pU(L) — (I — B)U(L)].
Thus

BL+(1=BL ~ [BUL) + (1 — HULHIL + [ - PU(L) — (1 — HU(LYIL.
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By the construction of U(-) in Step 4, we therefore have
U(BL + (1 = p)L) = BU(L) + (1 - pU(L),

as we wanted.

Together, Steps 1 to 5 establish the existence of a utility function representing >
that has the expected utility form. m

Discussion of the Theory of Expected Utility

A first advantage of the expected utility theorem is technical: It is extremely
convenient analytically. This, more than anything else, probably accounts for its
pervasive use in economics. It is very easy to work with expected utility and very
difficult to do without it. As we have already noted, the rest of the book attests to
the importance of the result. Later in this chapter, we will explore some of the
analytical uses of expected utility.

A second advantage of the theorem is normative: Expected utility may provide
a valuable guide to action. People often find it hard to think systematically about
risky alternatives. But if an individual believes that his choices should satisfy the
axioms on which the theorem is based (notably, the independence axiom), then the
theorem can be used as a guide in his decision process. This point is illustrated in
Example 6.B.1.

Example 6.B.1: Expected Utility as a Guide to Introspection. A decision maker may
not be able to assess his preference ordering between the lotteries £ and L’ depicted
in Figure 6.B.6. The lotteries are too close together, and the differences in the
probabilities involved are too small to be understood. Yet, if the decision maker
believes that his preferences should satisly the assumptions of the expected utility
theorem, then he may consider L” instead, which is on the straight line spanned by
L and L’ but at a significant distance from L. The lottery L” may not be a feasible
choice, but if he determines that L” > L, then he can conclude that L' > L. Indeed,
if L” > L, then there is an indifference curve separating these two lotteries, as shown
in the figure, and it follows from the fact that indifference curves are a family of
parallel straight lines that there is also an indifference curve separating L' and L, so
that L' > L. Note that this type of inference is not possible using only the general

L">L
implies L' > L

Increasing
Preference

Figure 6.B.6

Expected utility as a
guide to introspection.
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‘w-_ (2500000 dollars)

Ly= L, + (10, —.11,.01)
Ly =L, + (10, -.11,.01)
a = 7 (length of base)
+b=a

1

10

Parallel

o o -

(0 dollars) (500000 dollars)

map, we could perfectly well have L" > L and L > L).

Exercise 6.B4. =

6.B.2 and 6.B.3 are designed to test its plausibility.

number of outcomes is N = 3):

First Prize Second Prize Third Prize
2500000 dollars 500000 dollars 0 dollars

between the lotteries L, and L}:
Ly=(0,1,00 L} ={(10,.89, 01).

The second consists of a choice between the lotteries L, and L}:
L, =(0,.11,.89) L, = (.10, 0, .90).

8. In our classroom experience, roughly half the students choose this way.

choice theory of Chapter 1 because, without the hypotheses of the expected utility
theorem, the indifference curves need not be straight lines (with a general indifference

A concrete example of this use of the expected utility theorem is developed in

As a descriptive theory, however, the expected utility theorem (and, by implication,
its central assumption, the independence axiom), is not without difficulties. Examples

Example 6.B.2: The Allais Puradox. This example, known as the Allais paradox [from
Allais (1953)], constitutes the oldest and most famous challenge to the expected utility
theorem. It is a thought experiment. There are three possible monetary prizes (so the

The decision maker is subjected to two choice tests. The first consists of a choice

The four lotteries involved are represented in the simplex diagram of Figure 6.B.7.
It is common for individuals to express the preferences Ly>Lyand Ly > L,®

Figure 6.B.7

Depiction of the Allais
paradox in the simplex.
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The first choice means that one prefers the certainty of receiving 500 000 dollars over
a lottery offering a 1/10 probability of getting five times more but bringing with it
a tiny risk of getting nothing. The second choice means that, all things considered, a
1/10 probability of getting 2 500 000 dollars is preferred to getting only 500000
dollars with the slightly better odds of 11/100.

However, these choices are not consistent with expected utility. This can be seen
in Figure 6.B.7: The straight lines connecting L, to L} and L, to L} are parallel.
Therefore, if an individual has a linear indifference curve that lies in such a way that
L, is preferred to L}, then a parallel linear indifference curve must make L, preferred
to Lj, and vice versa. Hence, choosing L, and Lj is inconsistent with preferences
satisfying the assumptions of the expected utility theorem,

More formally, suppose that there was a v.N- M expected utility function. Denote
by uss, ugs, and ug the utility values of the three outcomes. Then the choice L, > L
implies

tos > (10)uzs + (:89)ugs + (01)u,.

Adding (.89)u, — (:89)ugs to both sides, we get
(1Duos + (89)ug > (10)u,5 + (.90)uq,
and therefore any individual with a v.N-M utility function must have L,>L, m

There are four common reactions to the Allais paradox. The first, propounded
by J. Marshack and L. Savage, goes back to the normative interpretation of the
theory. It argues that choosing under uncertainty is a reflective activity in which one
should be ready to correct mistakes if they are proven inconsistent with the basic
principles of choice embodied in the independence axiom (much as one corrects
arithmetic mistakes).

The second reaction maintains that the Allais paradox is of limited significance
for economics as a whole because it involves payoffs that are out of the ordinary and
probabilities close to 0 and 1.

A third reaction seeks to accommodate the paradox with a theory that defines
preferences over somewhat larger and more complex objects than simply the ultimate
lottery over outcomes. For example, the decision maker may value not only what
he receives but also what he receives compared with what he might have received
by choosing differently. This leads to regret theory, In the example, we could have
L, > L because the expected regret caused by the possibility of getting zero in lottery
L}, when choosing L, would have assured 500 000 dollars, is too great. On the other
hand, with the choice between L, and L), no such clear-cut regret potential exists;
the decision maker was very likely to get nothing anyway,

The fourth reaction is to stick with the original choice domain of lotteries but to
give up the independence axiom in favor of something weaker. Exercise 6.B.5 develops
this point further.

Example 6.B.3: Machina’s paradox. Consider the following three outcomes: “a trip
to Venice,” “watching an excellent movie about Venice,” and “staying home.”
Suppose that you prefer the first to the second and the second to the third.

Now you are given the opportunity to choose between two lotteries. The first
lottery gives “a trip to Venice” with probability 99.9% and “watching an excellent
movie about Venice” with probability 0.1%. The second lottery gives “a trip to
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L
2 J Venice,” again with probability 99.9%; and “staying home” with probability 0.1%,. The
s independence axiom forces you to prefer the first lottery to the second. Yet, it would
“ be understandable if you did otherwise. Choosing the second lottery is the rational
*  thing to do if you anticipate that in the event of not getting the trip to Venice, your
tastes over the other two outcomes will change: You will be severely disappointed
and will feel miserable watching a movie about Venice.

The idea of disappointment has parallels with the idea of regret that we discussed
in connection with the Allais paradox, but it is not quite the same. Both ideas refer
to the influence of “what might have been” on the level of well-being experienced,
and it is because of this that they are in conflict with the independence axiom. But
disappointment is more directly concerned with what might have been if another
! outcome of a given lottery had come up, whereas regret should be thought of as
' regret over a choice not made. m

A Because of the phenomena illustrated in the previous two examples, the search
for a useful theory of choice under uncertainty that does not rely on the independence
axiom has been an active area of research [see Machina (1987) and also Hey and
Orme (1994)]. Nevertheless, the use of the expected utility theorem is pervasive in
economics.

An argument sometimes made against the practical significance of violations of the
independence axiom is that individuals with such preferences would be weeded out of the
marketplace because they would be open to the acceptance of so-called “Dutch books,” that
is, deals leading to a sure loss of money. Suppose, for example, that there are three lotteries
such that L > L"and L > L" but, in violation of the independence axiom, aL’ + (1 — L > L
for some « € (0, 1). Then, when the decision maker is in the initial position of owning the right
to lottery L, he would be willing to pay a small fee to trade L for a compound lottery yielding
lottery L' with probability « and lottery L” with probability (1 — «). But as soon as the first
stage of this lottery is over, giving him either L' or L” we could get him to pay a fee to trade
this lottery for L. Hence, at that point, he would have paid the two fees but would
otherwise be back to his original position.

This may well be a good argument for convexity of the not-better-than sets of Z, that is,
for it to be the case that L > al’ + (1 — «)L" whenever Lz L' and Lz L". This property is
implied by the independence axiom but is weaker than it. Dutch book arguments for the full
independence axiom are possible, but they are more contrived [see Green (1987)].

Finally, one must use some caution in applying the expected utility theorem
because in many practical situations the final outcomes of uncertainty are influenced
by actions taken by individuals. Often, these actions should be explicitly modeled
but are not. Example 6.B.4 illustrates the difficulty involved.

Example 6.B.4: Induced preferences. You are invited to a dinner where you may be
offered fish (F) or meat (M). You would like to do the proper thing by showing up
with white wine if F is served and red wine if M is served. The action of buying the
wine must be taken before the uncertainty is resolved.

Suppose now that the cost of the bottle of red or white wine is the same and that
you are also indifferent between F and M. If you think of the possible outcomes as
F and M, then you are apparently indifferent between the lottery that gives F with
certainty and the lottery that gives M with certainty. The independence axiom would
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then seem to require that you also be indifferent to a lottery that gives F or M with
probability § each. But you would clearly not be indifferent, since knowing that either
F or M will be served with certainty allows you to buy the right wine, whereas, if
you are not certain, you will either have to buy both wines or else bring the wrong
wine with probability 1.

Yet this example does not contradict the independence axiom. To appeal to the
axiom, the decision framework must be set up so that the satisfaction derived from
an outcome does not depend on any action taken by the decision maker before the
uncertainty is resolved. Thus, preferences should not be induced or derived from ex
ante actions.” Here, the action “acquisition of a bottle of wine” is taken before the
uncertainty about the meal is resolved.

To put this situation into the framework required, we must include the ex ante
action as part of the description of outcomes. For example, here there would be four
outcomes: “bringing red wine when served M,” “bringing white wine when served
M,” “bringing red wine when served F,” and “bringing white wine when served F.”
For any underlying uncertainty about what will be served, you induce a lottery over
these outcomes by your choice of action. In this setup, it is quite plausible to be
indifferent among “having meat and bringing red wine,” “having fish and bringing
white wine,” or any lottery between these two eutcomes, as the independence axiom
requires. ®m

Although it is not a contradiction to the postulates of expected utility theory, and
therefore it is not a serious conceptual difficulty, the induced preferences example
nonetheless raises a practical difficulty in the use of the theory. The example illustrates
the fact that, in applications, many economic situations do not fit the pure framework
of expected utility theory. Preferences are almost always, to some extent, induced.!®

The expected utility theorem does impose some structure on induced preferences. For
example, suppose the complete set of outcomes is B x A, wherz B = {by,..., by} is the set of
possible realizations of an exogenous randomness and A4 is the decision maker's set of possible
(ex ante) actions. Under the conditions of the expected utility theorem, for every ae A and
b, e B, we can assign some utility value u,(a) to the outcome (b,, a). Then, for every exogenous
lottery L = (p, ..., py) on B, we can define a derived utility function by maximizing expected
utility:

U(L) = Max }_ p,u,(a).

aeA n

In Excrcise 6.B.6, you are asked to show that while U(L), a function on &, need not be linear,

9. Actions taken ex post do not create problems. For example, suppose that u,{(a,) is the utility
derived from outcome n when action a, is taken after the realization of uncertainty. The decision
maker therefore chooses a, to solve Max, ., u,(a,), where 4, is the set of possible actions when
outcome n occurs. We can then let u, = Max,_ ,, u,(a,) and evaluate lotteries over the N outcomes
as in expected utility theory.

10. Consider, [or example, preferences for lotteries over amounts of money available tomorrow.
Unless the individual’s preferences over consumption today and tomorrow are additively separable,
his decision of how much to consume today—a decision that must be made before the resolution
of the uncertainty concerning tomorrow's wealth—affects his preferences over these lotteries in a
manner that conflicts with the [ulfillment of the independence axiom.
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Definition 6.C.5: Given a Bernoulli utility function u(-), the coefficient of relative risk

aversion at x is rg(x, u) = —xu"(x)/u'(x).

Consider now how this measure varies with wealth. The property of nonincreasing
relative risk aversion says that the individual becomes less risk averse with regard to
gambles that are proportional to his wealth as his wealth increases. This is a stronger
assumption than decreasing absolute risk aversion: Since rg(x, u) = xr,(x, u), a
risk-averse individual with decreasing relative risk aversion will exhibit decreasing
absolute risk aversion, but the converse is not necessarily the case.

As before, we can examine various implications of this concept. Proposition 6.C.4
is an abbreviated parallel to Proposition 6.C.3.

Proposition 6.C.4: The following conditions for a Bernoulli utility function u(-) on

6.D

amounts of money are equivalent:
(i} rg(x, u) is decreasing in x.
(i) Whenever x, < x;, Uy(f) = u(tx,) is a concave transformation of d,(t) =
u(tx,).
(iii) Given any risk F(t) on t> 0, the certainty equivalent ¢, defined by
u(c,) = _[ u(tx) dF(t) is such that x/c, is decreasing in x.

Proof: Here we show only that (i) implies (iii). To this effect, fix a distribution
F(t) on t >0, and, for any x, define u (t) = u(tx). Let c(x) be the usual certainty
equivalent (from Definition 6.C.2): u,(c(x)) = j u,(t) dF(t). Note that —uj(t)/u.(t) =
— (/D) ex[u"(¢x)/u'(tx)] for any x. Hence if (i) holds, then u,.(-) is less risk averse
than u,(+) whenever x' > x. Therefore, by Proposition 6.C.2, ¢c(x') > ¢(x) and we
conclude that c(-) is increasing. Now, by the definition of u,(+), u,(c(x)) = u(xc(x)).
Also

u (c(x)) = Jux(t) dF(1) = Ju(tX) dF(1) = u(c,).
Hence, ¢,/x = ¢(x), and so x/c, is decreasing. This concludes the proof. m

Example 6.C.2 continued: In Exercise 6.C.11, you are asked to show that if rr(x, u)
1s decreasing in x, then the proportion of wealth invested in the risky asset y =a/w
is increasing with the individual’s wealth level w. The opposite conclusion holds if
rr(x, ) is increasing in x. If rg(x, u) is a constant independent of x, then the fraction
of wealth invested in the risky asset is independent of w [see Exercise 6.C.12 for the
specific analytical form that u(-) must have]. Models with constant relative risk
aversion are encountered often in finance theory, where they lead to considerable
analytical simplicity. Under this assumption, no matter how the wealth of the
economy and its distribution across individuals evolves over time, the portfolio
decisions of individuals in terms of budget shares do not vary (as long as the safe
return and the distribution of random returns remain unchanged). m

Comparison of Payoff Distributions in Terms of
Return and Risk

In this section, we continue our study of lotteries with monetary payoffs. In contrast
with Section 6.C, where we compared utility functions, our aim here is to compare
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payofl distributions. There are two natural ways that random outcomes can be
compared: according to the level of returns and according to the dispersion of
returns. We will therefore attempt to give meaning to two ideas: that of a distribution
F(-) yielding unambiguously higher returns than G(*) and that of F(-) being
unambiguously less risky than G(-). These ideas are known, respectively, by the
technical terms of first-order stochastic dominance and second-order stochastic
dominance.*®

In all subsequent developments, we restrict ourselves to distributions F(-) such
that F(0) = 0 and F(x) = 1 for some x.

F First-Order Stochastic Dominance

We want to attach meaning to the expression: “The distribution F(-) yields
unambiguously higher returns than the distribution G(-).” At least two sensible
criteria suggest themselves. First, we could test whether every expected utility
maximizer who values more over less prefers F(*) to G(-). Alternatively, we could
verify whether, for every amount of money x, the probability of getting at least x is
higher under F(-) than under G(-). Fortunately, these two criteria lead to the same
concept.

Definition 6.D.1: The distribution F(-) first-order stochastically dominates G(-) if, for
every nondecreasing function v: R - R, we have

Ju(x) dF(x) > J.u(x) dG(x).

Proposition 6.D.1: The distribution of monetary payoffs £(-) first-order stochastically
dominates the distribution G(-) if and only if F(x) < G(x) for every x.

~ Proof: Given F(-) and G(-) denote H(x) = F(x) — G(x). Suppose that H(x) > 0 for
some x. Then we can define a nondecreasing function u(-) by u(x) = 1 for x > x and

. u(x) =0 for x < %. This function has the property that j' u(x) dH(x) = —H(x) < 0,

- and so the “only if” part of the proposition follows.

For the “if” part of the proposition we first put on record, without proof, that

it suffices to establish the equivalence for differentiable utility functions u(-). Given

£(-) and G(), denote H(x) = F(x) — G(x). Integrating by parts, we have

J w(x) dH(x) = [u(x)H(x)]® — j u'(x)H(x) dx.

66 H(0) = 0 and H(x) = 0 for large x, the first term of this expression is zero. It

OWs that | u(x) dH(x) > 0 [or, equivalently, { u(x) dF(x) — [ u(x) dG(x) > 0] if and

1 [ w(x)H(x) dx < 0. Thus, if H(x) <0 for all x and u(-) is increasing, then
)H(x) dx < 0 and the “if” part of the proposition follows. m

xercise 6.D.1 you are asked to verify Proposition 6.D.1 for the case of lotteries
I¢e possible outcomes. In Figure 6.D.1, we represent two distributions F )
). Distribution F(-) first-order stochastically dominates G(-) because the
fF()is uniformly below the graph of G(-). Note two important points: First,
1T stochastic dominance does not imply that every possible return of the

HEY were introdyced into economics in Rothschild and Stiglitz (1970).

2
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superior distribution is larger than every possible return of the inferior one. In the
figure, the set of possible outcomes is the same for the two distributions. Second,
although F(-) first-order stochastically dominating G(-) implies that the mean of x
under F(-), [ x dF(x), is greater than its mean under G(-), a ranking of the means
of two distributions does not imply that one first-order stochastically dominates the
other; rather, the entire distribution matters (see Exercise 6.D.3).

Example 6.D.1: Consider a compound lottery that has as its first stage a realization
of x distributed according to G(*) and in its second stage applies to the outcome x
of the first stage an “upward probabilistic shift.” That is, il outcome x is realized in
the first stage, then the second stage pays a final amount of money x + z, where z
is distributed according to a distribution H,(z) with H,(0) = 0. Thus, H,(*) generates
a final return of at least x with probability one. (Note that the distributions applied
to different x’s may differ.)

Denote the resulting reduced distribution by F(-). Then for any nondecreasing
function u: R — R, we have

fu(x) dF(x) = f,:f u(x + z) de(z)] dG(x) > fu(x) dG(x).

So F(-) first-order stochastically dominates G(-).
A specific example is illustrated in Figure 6.D.2. As Figure 6.D.2(a) shows, G(-)
is an even randomization between 1 and 4 dollars. The outcome “1 dollar” is then

Dollars JL G0 FC)
. A
S+ 0 3
/ | - = -
4 7 0 —1
- 6(-) |
1 —_—
I 0 i i \ i
I
2 0 : R F()
o 1 B L
. r
1 1 0 = ! | S
0 1 2 3 4 X

(a) (b)

Figure 6.D.1

F(-) first-order
stochastically
dominates G(-).

Figure 6.D.2

F(-) first-order
stochastically
dominates G(-).
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g
shifted up to an even probability between 2 and 3 dollars, and the outcome “4 dollars™
is shifted up to 5 dollars with probability one. Figure 6.D.2(b) shows that F(x) < G(x)
at all x.

It can be shown that the reverse direction also holds. Whenever F(-) first-order
stochastically dominates G(-), it is possible to generate F(-) from G(-) in the manner
suggested in this example. Thus, this provides yet another approach to the character-
ization of the first-order stochastic dominance reclation. m

T Second-Order Stochastic Dominance

), First-order stochastic dominance involves the idea of “higher/better” vs. “lower/
worse.” We want next to introduce a comparison based on relative riskiness or
dispersion. To avoid confusing this issue with the trade-off between returns and risk,
we will restrict ourselves for the rest of this section to comparing distributions with the
same mean.

Once again, a definition suggests itsell: Given two distributions F(-) and G(-)
with the same mean [that is, with [ x dF(x) = j x dG(x)], we say that G(*) is riskier
than F(-) il every risk averter prefers F(-) and G(*). This is stated formally in
Definition 6.D.2.

Definition 6.D.2: For any two distributions F(x) and G(-) with the same mean, F(-)
second-order stochastically tlominates (or is less risky than) G(-) if for every
nondecreasing concave function u: R, — R, we have

ju(x) dF(x) = fu(x) dG(x).

Example 6.D.2 introduces an alternative way to characterize the second-order
stochastic dominance relation.

Example 6.D.2: Mean-Preserving Spreads. Consider the following compound lottery:
In the first stage, we have a lottery over x distributed according to F(-). In the second
stage, we randomize each possible outcome X further so that the final payoff is x + z,
where z has a distribution function H,(z) with a mean of zero [ie., ]z dH,(z) = 0].
Thus, the mean of x + z is x. Let the resulting reduced lottery be denoted by G(-).
When lottery G(-) can be obtained from lottery F(-) in this manner for some
distribution H, (-), we say that G(*) is a mean-preserving spread of F(*).

For example, F(-) may be an even probability distribution between 2 and 3
dollars. In the second step we may spread the 2 dollars outcome to an even probability
between 1 and 3 dollars, and the 3 dollars outcome to an even probability between
)- 2 and 4 dollars. Then G(+) is the distribution that assigns probability % to the four
outcomes: 1, 2, 3, 4 dollars. These two distributions F(-) and G(-) are depicted in
Figure 6.D.3.

The type of two-stage operation just described keeps the mean of G(-) equal to
that of F(+). In addition, if u(-) is concave, we can conclude that

ju(x) dG(x) = j <j‘ u(x + 2) de(z)> dF(x) < j u <j (x +2) de(z)> dF(x)

= j u(x) dF(x),
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and so F(-) second-order stochastically dominates G(). It turns out that the converse
is also true: If F(-) second-order stochastically dominates G(*), then G(-) is a
mean-preserving spread of F(-). Hence, saying that G(+) is a mean-preserving spread of
F(-) is equivalent to sa ying that F(-) second-order stochastically dominates G(*) =

Example 6.D.3 provides another illustration of a mean-preserving spread.

Example 6.D.3: A4n Elementary Increase in Risk. We say that G(-) constitutes an
elementary increase in risk from F (+) if G(-) is generated from F(-) by taking all the
mass that F(-) assigns to an interval [x', x"] and transferring it to the endpoints x’
and x” in such a manner that the mean is preserved. This is illustrated in Figure
6.D.4. An elementary increase in risk is a mean-preserving spread. [In Exercise 6.D.3,
you are asked to verify directly that if G(-) is an elementary increase in risk from
F(-), then F(-) second-order stochastically dominates G(')]lm

We can develop still another way to capture the second-order stochastic
dominance idea. Suppose that we have two distributions F(-) and G(-) with the same
mean. Recall that, for simplicity, we assume that F(x) = G(%) =1 for some x.
Integrating by parts (and recalling the equality of the means) yields

J‘f(F(x) — G(x))dx = —fix d(F(x) — G(x)) + (F(X) — G(xPx=0. (6.D.1)
0 0

That is, the areas below the two distribution functions are the same over the interval
[0, X]. Because of this fact, the regions marked 4 and B in Figure 6.D.4 must have
the same area. Note that for the two distributions in the figure, this implies that

f G(t) dt > f F(t)dt for all x. (6.D.2)
0 ]

It turns out that property (6.D.2) is equivalent to F(-) second-order stochastically
dominating G(-).2' As an application, suppose that F(-) and G(*) have the same
mean and that the graph of G(-) is initially above the graph of F(-) and then moves

21. We will not prove this. The claim can be established along the same lines used to prove

Proposition 6.D.1 except that we must integrate by parts twice and take into account expression
(6.D.1).

Figure 6.D.3 (left)
G(-)isa
mean-preserving
spread of F(-).

Figure 6.D.4 (right)

G(-) is an elementary
increase in risk from
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permanently below it (as in Figures 6.D.3 and 6.D.4). Then because of (6.D.1),
condition (6.D.2) must be satisfied, and we can conclude that G(-) is niskier than
F(-). As a more elaborate example, consider Figure 6.D.5, which shows two
distributions having the same mean and satisfying (6.D.2). To verify that (6.D.2) 18
satisfied, note that area A has been drawn to be at least as large as area B and that
the equality of the means [i.., (6.D.1)] implies that the areas B + D and A + C must
be equal.
We state Proposition 6.D.2 without proof.

Proposition 6.D.2: Consider two distributions F(-) and G(-) with the same mean. Then

the following statements are equivalent:
(i) F(-) second-order stochastically dominates G(").
(ii) G(-) is a mean-preserving spread of F{-).
(iii) Property (6.D.2) holds.

In Exercise 6.D.4, you are asked to verify the equivalence of these three properties
in the probability simplex diagram.

State-dependent Ultility

In this section, we consider an extension of the analysis presented in the preceding
two sections. In Sections 6.C and 6.D, we assumed that the decision maker cares
solely about the distribution of monetary payoffs he receives. This says, in essence,
that the underlying cause of the payoff is of no importance. If the cause is one’s state
of health, however, this assumption is unlikely to be fulfilled.>* The distribution
function of monetary payoffs is then not the appropriate object of individual choice.
Here we consider the possibility that the decision maker may care not only about
his monetary returns but also about the underlying events, or states of nature, that
cause them.

We begin by discussing a convenient framework for modeling uncertain alternatives
that, in contrast to the lottery apparatus, recognizes underlying states of nature. (We
will encounter it repeatedly throughout the book, especially in Chapter 19.)

22. On the other hand, if it is an event such as the price of some security in a portfolio, the
assumption is more likely to be a good representation of reality.

Flgure 6.D.5

F(+) second-order
stochastically
dominates G(-).



