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THE BiINOMIAL PRrICING MODEL

5.0 INTRODUCTION

n this chapter, we describe the binomial pricing model. This model provides a
simple yet powerful approach for understanding the pricing and hedging of de-
rivative securities. To explain the basic idea, we will first consider a call option
written on a stock. For this application, the binomial model (of Chapter 4) assumes that
at the end of each interval the stock price can take only one of two possible values.
Therefore, in this model, the call option will also take only one of two possible values.

We will price the call option via a synthetic construction. That is, to price the
call option, we will construct a portfolio of the stock and a riskless investment to
mimic, or replicate, the value of the option. This portfolio is called a synthetic call
option, which must, by the absence of arbitrage, equal the price of a traded call op-
tion. Otherwise, profit opportunities will arise because there are two distinct ways to
obtain the same cash flows. The procedure of synthetic construction not only gives us
a way to price call options but also provides a way to hedge.

The binomial approach to the valuation of call options yields important insights
into the pricing and hedging of other derivative securities. Indeed, if you understand
the basic logic of this approach, you will also understand the underlying logic of the
majority of derivative security models in use today. As an illustration, this chapter
will also use the binomial pricing model to characterize futures prices for futures con-
tracts written on the stock. In some ways, futures contracts are the most fundamental
derivative securities studied in this text. Consequently, the analysis of futures con-
tracts is important in its own right. We will show how to determine futures prices and
how to use futures contracts for hedging.

In Chapter 4, we discussed the binomial representation for stock price changes.
This chapter uses that representation as the model for stock prices. As before, we ini-
tially assume for simplicity that the stock does not pay any dividends over the life of
the option or futures contract. Dividends will be introduced when we describe how to
price American options in Chapter 7. Of course, we will need the standard assump- _f,'
tions discussed in Chapter 2. To refresh your memory, they are as follows: 5
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Assumption Al. There are no market frictions.

Assumption A2, Market participants entail no counterparty risk.
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Assumption A3.  Markets are competitive,

Assumption A4. There are no arbitrage opportunities,

For a detailed elaboration of these assumptions, see the discussion in Chapter 2,
For this chapter we also add an additional assumption that is standard in this setting;

Assumption AS. There is no interest rate uncertainty.
This assumption is introduced to reduce the complexity of the pricing problem. For

short-dated options or futures contracts, say, less than a year, this may be a reasonabie
approximation. It is also reasonable if the underlying asset’s price is not very sensi-

3.1 SINGLE-PERIOD EXAMPLE

To understand the logic behind this maodel, we start with a single-period example and
then gradually generalize it. Suppose we want to price a European call option with

(4.10) is given in Section 5.5.

In ane vear the option matures, At maturity, conditional upon knowing the stock
price, we can determine the option’s value. If the stock price is 127.12, the option
must be worth 17.12. Why? The call option allows you to buy stock at the strike price
of 110. Given that the stock price is above the strike price, the option is in-the-money
and worth the difference (12712 - 110 = 17.12). If the stock price is 85.21, the cali
option expires out-of-the-money and is worthless. (If this is not clear, go back to

Ficure 5.1 Stock Price Dynamics
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Chapter | and check the definition of a call option.) The call option values are shown
in Figure 5.2.
We have determined the option values at maturity, but we still do not know the op-
» tion value today. To determine today’s value, we can use a simple arbitrage argument.
Consider forming a portfolio that mimics or replicates the payoff of the call option,
This portfolio, the synthetic call option, will consist of investments in the underlying
asset—the stock——and a riskless asset. We will assume that if we invest one dollar in
the riskless asset, in one year our investment will be worth 1.0618 dollars.

At this point in the analysis we need to ensure that the stock and riskless asset
are priced correctly with respect to one another—that is, the stock does not dominate
the riskless asset as an investment or vice versa. To do this, note that the dollar return
on the stock in the up state is 127.12/100 = 1.2712, which is greater than the dollar
return on the riskless asset, 1.0618, which is greater than the dollar return on the
stock in the down state, 85.21/100 = 0.8521. Thus the dollar return on the riskless
asset lies between the return on the stock in the up and down states. This condition
is, in fact, an arbitrage-free pricing relation necessarily satisfied by the stock and
riskless asset. If it is violated, an arbitrage opportunity can be constructed. We en-
courage the reader to try to prove this assertion, The justification for this assertion is
given later in this chapter.

Given that the economy is arbitrage-free, we can now continue with the con-
struction of the synthetic call. Suppose we buy m, shares of stock and invest B, dol-
lars in the riskless asset. The value of our portfolio today is

(5.1)

{0y = m,100 + B,.

But what must m, and B, be to mimic the payoffs of the option?
Suppose at the end of the year the stock price is 127.12; then the option value

is 17.12. By design, our portfolio must also be worth 17.12. This gives the first~

condition:

m 127.12 + B,1.0618 = 17.12. (5.2).

Ficure 5.2 Call Prices

Today At Maturity

¢V =Max{127.12 - 100, 0}
=17.12

CD

;= Max{85.21 - 110, 0}

=0.0




If the stock price is 85.21 at the end of the year, the call option is out-of-the-

money and expires worthless. Thus, in this case, we want our portfolio to have zero
value, which gives our second condition;

m85.21 + B,1.0618 = ¢, (3.3)

Note that at the end of the year the dollar value of our investment in the riskless asset
is still B,1.0618 because the payoff is not affected by the stock price.

Can we design a portfolio to satisfy these two conditions? In general, the answer

is yes. We have two linear equations in two unknowns, hence we simply need to solve
for m, and B,. The solution is

my = 17.12/(127.12 — 85.21) = 0.4085
and

By = —m8521/1.0618 = —33 73

The minys si
6.18 percent.

The value of our replicating portfol;
by substituting into Expression (5.1 ):

gn for B, implies that We must borrow 32.78 at the simple interest rate of

0 or synthetic cal] option today is determined

H(0) = 0.4085 x 100 — 32,78

= 8.07. (5.4)

free value of the traded cal] option. By design we
stock and riskless invest
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call option, if the stock price is 127,12 the traded call option is worth 17.12. Given
that we have written the traded call option, it is a liability. However, the value of the
synthetic call option is 17.12, so our net position is zero. If the stock price is 85.21 the
traded call option is worthless and our synthetic call option also has zero value.
Again, our net position is zero. Hence we have generated 1.93 today and all future
cash flows net to zero, so our position is completely riskless and is clearly a “free
lunch.” Eventually, prices should adjust until the option trades at 8.07.

Suppose that the traded call option is priced at 7, implying that it is underval-
ued. Can we design an investment strategy that is completely riskless and will pro-
vide us with a free lunch? For a start, we want to buy the undervalued traded call
options at 7. But it is a risky position. We can construct a synthetic call option by
selling short 0.4085 shares of the stock, which provides an immediate cash inflow of
40.85. We also must invest 32.78 in the one-year riskless asset. Hence the net posi-
tion today is an inflow of 40.85 and an outflow o 39.78 (7 + 32.78 = 39.78), yield-
ing a net cash inflow of 1.07. But what about our position at year end when the call
option matures? If the stock price is 127.12, the traded call option is in-the-money
and worth 17.12. Our portfolio also has a negative value of 17.12, so our net position
is zero. If the stock price is 85.21, the call option is worthless and our portfolio has
zero value, so again our net position is zero. We have made a profit today of 1.07 and
all future cash flows net to zero, so our position is completely riskless. Again, we
have a free lunch.

This numerical example illustrates three important points. First, the argument is
explicitly independent of the probabilities of the up or down movement in stock
prices. At no point did we specify the probability of an up or down state occurring.
There is an important implication. Consider two individuals, one an optimist and the
other a pessimist. The optimist believes that the probability' of the stock price going
up to [27.12 is 90 percent and the probability of the stock going down to 85.21 is 10
percent. On the other hand, the pessimist believes that the probability of the stock
price going up is 10 percent and the probability of the stock going down is 90 percent.
Provided that these two individuals agree that the stock price today is worth 100, that
the stock price in the up state is 127.12, and that the stock price in the down state is
85.21, then they both will agree that the traded option’s value today is 8.07. This ar- o
gument follows because our replication works independently of whether the stock e
price moves up or down. '

Second, we assume in the binomial model that the stock price can take only one
of two possible values at year end, implying that the traded option can have only one
of two possible values. To form a replicating portfolio to match the payoffs of the
traded option, we only need two assets: the underlying stock and a riskless asset:
These are the only other traded assets in our model. Thus the binomial model plays
important role. The model enables us to construct a replicating portfolio because the:
number of possible stock price outcomes is less than or equal to the number of asse

"The probability of each state occurring must be positive for both the pessimist and optimist; otherwise
treme positions would be tzken and the stock market would break down.
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traded in our model, If this condition does not hold, our argument will not follow and
our methodology wil] fai],

Third, we value the traded option by considering its possible values at Imaturity
and then work backward in reverse chronological time to price the traded option

Chapter 1). If r denotes the continuously compounded rate of interest per annum
then if we invest one dollar in the riskless asset for the period A we wil] earn a

Filesure 5.3  Stock Price Dynamics

Today 6 Months 12 Months

SUU = 138.10
SoU=117.52

SoUD = 104,08
8,0 = 88.57

SoDD = 78.44

The up factor (/= 1.1752
The down factor D = 0.8857
R =1,0304 for A = six months
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amount R, where R = exp(rA). If we invest one dollar in the riskless asset for a pe-
riod of six months (A = 1/2) and the continuously compounded rate of interest is 6
percent per annum, we earm

R = 00605

= 1.0304. (5.5)

Finally, we need to guarantee over each six-month period that, for each possible
stock price, the stock is not dominated by the riskless asset or, conversely, the riskless
asset by the stock. The guarantee is made by checking that the dollar return on the
stack, if it moves up, exceeds the dollar return on the riskless asset for that period, and
if the stock moves down, the dollar return is less than the dollar return on the riskless
asset for that period.

This calculation is verified by noting that in Figure 5.3, U = L1752 > R =
1.0304 > D = 0.8857, a no-arbitrage condition. Although this condition seems triv-
ial here, when we study interest rate options in Chapter 15 the analogous condition
becomes quite difficult to ensure.

How do we price the traded call option? To answer that question, we simply re-
peat the logic used before. We start at the maturity of the traded call option. From
Figure 5.3 we see that there are three possible stock prices. If the stock price is
138.10, the traded call option is worth 28.10. The traded call option is out-of-the-
money and worthless if the stock price is 104.08 or 78.44.

Now let us move backward in time so that we are standing six months before ma-
turity. The stock price can have only one of two possible values: 117.32 or 88.57. If
the stock price is 88.57, the traded call option must be worthless because six months
later, the stock price could be 104.08 or 78.44. In cither case, the traded call option is
worthless. If we are at the up state where the stock price is 117.52, to determine the
value of the traded option we use exactly the same logic as before.

We form a portfolio to construct a synthetic option by buying m, shares of stock
and investing B, dollars in the riskless asset. The cost of the investment is

¥ = m117.52 + B,. (5.6)
By design, the portfolio must be constructed to create the cash flows to the traded call V
option.
If the stock price at maturity is 138.10, the traded call option is worth 28.10and

our portfolio’s value must equal 28.10. Thus our first condition is

m,138.10 + B,1.0304 = 28.10. (5.?

If the stock price is 104.08, the traded call option is worthless and our portfolio
value must also equal 0, which gives our second condition:

m,104.08 + B,1.0304 = 0.
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Solving for the unknowns gives

m, = 0.8260 (5.9)
and

B, = -83.43.

The cost of constructing the synthetic option at date 1 can now be computed. It
is

mSyU + B) = 0.8260 X 117.52 — 83.43
= 13.64, (5.10)

To avoid arbitrage, the value of the traded option at date 1 must be
¢ = 13.64.
What is the traded option worth today? Repeating the same logic gives

my, = 0.4712
By = —40.50, (5.11)

The initial cost of constructing the synthetic call option is
oSy + By = 0.4712 X 100 — 40.50 = 6.62,

so the traded call option must be worth
€ = 6.62.

You should check these figures for yourself. The details are summarized in Figure 5.4.

Three important implications can be gleaned from Figure 5.4. First, today we set
up a replicating portfolio and six months later the portfolio has to be rebalanced; in
other words, we have to alter our positions in the stock and in the riskless asset. Asa
result, our portfolio is seen to be self-financing, having no additional cash inflow or
outflow,

To see this, suppose at the end of the first six months we are in the up state where
the stock price is 117.52. Our portfolio, which was formed at date 0, holds 0.4712

units of the stock and we have borrowed 40.50. The value of this portfolio at the end
of the first six months is 13.64. We rebalance our portfolio at date 1 in the up state to
hold 0.8260 units of the stock and borrow a total of 83.43, The rebalanced position is
worth 13,64, which is the same as the value of the portfolio before it was revised.
Thus it js self-financing.
" - If our portfolio was not self-financing, it would not replicate the cash flows of
the traded call option. The traded call option has no cash flows prior to maturity,
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Ficure 5.4 FEuropean Call Option Palues

Today 6 Months 12 Months
o = 13.64 ¢, = 28.10
m, =0.8260 S,UU = 138.10
B =-83.43
¢(0) = 6.62 5,U=117.52
m0=0.47I2 c2=0 s
B, =-40.50 S,DU = 104.08
Sy =100 c,=0
n, =0 ;
" 1
B | = 0 €y = 0 é
$,D =88.57 S,DD =178.44 ;
R = 1.0304 for A= six months
Exercise price of cali option = 110

If the stock price follows a binomial model such as that described in Figure 5.3,
it is always possible to form a seif-financing portfolio that replicates the cash flows
and payout to the traded call option. Given these conditions, to avoid arbitrage the
cost of constructing the synthetic call option must equal the value of the traded call

option.
Second, you will notice that in

Figure 5.4 the value of the synthetic call option is

6.62. When we had only one interval of length twelve months, the value of the syn-

thetic call option from Expression (5.4) was 8.07.

Why do these values differ?

Compare Figures 5.1 and 5.3; they differ because we are imposing different assump- '
tions about the distribution of the stock price at the maturity of the option. '

Third, in Figure 5.4 you will notice that when the traded option matures, thrq?g o
possible stock prices exist. Although we have only two assets in our replicating port- .
folio, by rebalancing our portfolio at date 1 we are still able to replicate the option’s -
value at date 2 in the three possible states. This is the )

discussion we had earlier.
By now, it should be clear that we can
number of time periods. If we have

divided the one year into » intervals (7 =

“flip side” of the self-financi_li

generalize this model to an arbitrar
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3,4, ...), then there would be 7 + I possible stock prices at the end of the year and
n + 1 possible option prices. By rebalancing our portfolio at the end of each inter-
val in a self-financing manner, we can replicate the value of the traded option in
each of these (n + 1) states. Thus with only two securities—the stock and the

bond—we are still able to replicate the traded option’s values across the (n+ 1)
states, '

We need two assets in our replicating portfolio, one for each possible value. We have

two assets trading, the stock and riskless asset, and are thus able to construct a syn-
thetic option,

5.3 THE BINOMIAL PRICING MODEL

Let us formalize the previous examples. For the most part, this will involve little more
than replacing numbers with symbols. Given that many people find symbols cold, ab-
stract, or “too mathematical,” why formalize? The answer is that by formalizing the

examples we can see that a general principle is involved in the pricing of derivative
securities.

The Binomial Model

Referring to Figure 5.3, let S, denote today’s stock price (= 100) and let the stock
price in six months’ time be represented by S, with S,/ = 117.42 and S0 = 88.57.

When the option matures in twelve months, let the stock price be represented by
Sy, with S, Ul = 138.10, S,UD = 104.08 and S, DD = 78.44.

8, can also be rewritten as (S\U=S,UUand $,0=8,UD)or(S,U = 8, DU and
§,D = §,DDy, depending on the starting position of S;. For simplicity of exposition
we will employ the latter representation. There should be no confusion because the
position on the lattice will uniquely identify the relevant stock price §,.

One plus the riskless return over each six-month period is represented by R,

where A denotes six months. If » denotes the continuously compounded rate of inter-
est, then

R.:er.’.'t

Furthermore, to avoid arbitrage between the stock and riskless asset, we must
7. have the condition

U=Rr>p. {5.13)
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This inequality states that the dollar return on the stock in the up state exceeds the
riskless return that exceeds the dollar return on the stock in the down state. Neither
investment dominates the other.?

Constructing the Synthetic Option

Now consider constructing the replicating portfolio in six months’ time, when the
stock price is §,. The cost of the replicating portfolio is

¥, =mS, + B, (5.14)

For this equation, m, is the number of shares of the stock held in the portfolio when
the stock price is Sl, and B, is the dollar investment in the riskless asset. Comparing
Expression (5.14) with Expressmn (5.6), you will observe that all we have done is re-
place numbers with symbols.

Now, after the next six-month period, the stock price will be either S, or §, D
and the traded option’s value will be either ¢¥or c2. If the stock price is S, U the value
of the replicating portfolio must be chosen such that

mS\U+ B,R=cY (5.15)

¢

If the stock price is S, D, the value of the replicating portfolio must be chosen such
that

m,§,D+ B R=ch (5.16)

Solving for m, and B, gives

I

my = {(c4— cHIS,U - 8,D) (517
and

B, = ~(5,Dc¥ — S,UcDR(S,U — 5, D). (5.18)

Figure 5.4

This example illustrates the use of the preceding formulas. Refer back to Figure (
54.To check that we have not made a mistake, substitute the values for §,U/and .

8D, ¢¥ and 3, and R and compare your computed values with Expressions -
(5 9) and (5.10).

*Suppose U > D > R. In this case, no ose would buy the riskless asset because you always earn more by}
investing in the stock. This implies an arbitrage situation, You would borrow at the riskless rate and in:
vest the proceeds in the stock. No matter what state occurred at the ead of the yeat, you can pay off the
loan. Suppose that R > U > Dy it would again imply arbitrage. Therefore, you must have U > R > D10
avoid arbitrage.
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At the up node at time 1, substituting into Expression (5.17) gives

my = (28.10 ~ 0)/(138.10 — 104.08)
= 0.8260.

Substituting into Expression (5.18) gives

i

By = —(104.08 X 28.10 ~ I38.10 X 0)/[1.0304(138.10 — 104.08)]
—83.43.

]

These numbers match the previous computations. w

Next, we need to determine
1. Substituting for my and B, int
(5.18), respectively, gives

the cost of constructing the synthetic option at date
0 Expression (5.14), using Expressions (5.17) and

v e 1 v_ ] 1
¥ [(cz €98, = = (5, D¢ S;Ucz)m. (5.19)

This represents the cost of constructin

g the synthetic option at date | when the stock
price is S,. To avoid arbitrage, the trad

ed option must have this value:

o =¥ (5.20)

pending on whether Sy is US, or DS,. To dete
day, we repeat the same logic. The cost of th

This example illustrates the use of the preceding formulas. Again, standing at

the up node at time 1, substitute the values from Fi gure 5.4 into Expressions
(5.19) and (5.20). Doing so gives

!

V= [(28.10 T O X 11752 — <o (104.08 X 28.10 ~ 138,10 X 0)]

I
b 4 —_—
(138.10 — 104.08)

=13.64 = ¢
This computation matches the previous value, m

After the first six months the value of ¢, is described by Expression (5.20), de-

rmine the value of the traded option to-
e replicating portfolio is
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By construction, the value of our replicating portfolio must equal the value of the
traded option at the end of the subsequent interval:

moS,U + ByR = c¥ (5.22)
and
myS,D + B,R = . (5.23)

Solving for m and B, gives

my = (c’f - c‘?)/(SDU — 5,0} (5.24)
and
B, = -—(S(,Ucl,’— SODC?)/[R(SOU— S, D1]. (5.25)

Note that these equations are identical to Expressions (5.14)—(5.18) with the ex-
ception that the time subscript changes from 1 to (. Substituting Expressions (5.24)
and (5.25) into Expression (5.21) gives the final result;

1

CT-55 (5.26)

o) = [(c‘{ —P)S, - %(sﬂpcaf - soua,v)]

To avoid arbitrage the cost of constructing the synthetic option must equal the value
of the traded call:

c(0) = ¥(0). (5.27)

EXAMPLE Figure 5.4

This example illustrates the use of Expression (5.26). Substituting numerical :
values from Figure 5.4 into {5.26) gives

1 _
c(0) = [(13.64 = 0) X 100 — ——==- (8857 X 13.64 — 11752 X 0)] ;
1

X
(117.52 — 88.57)
= 6.62.

This result agrees with Expression (5.12). =

Risk-Neutral Valuation

The previous analysis showed how to construct a synthetic option using the stock
riskless investment. To avoid arbitrage, the cost of constructing the synthetic opt!
must equal the value of the traded option. This logic leads to the valuation Expressio
{5.20) and (5.27), some algebraic manipulation of which leads in turn to an impor
insight in option pricing, called the risk-neutral valuation principle. '
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Returning to the valuation formula for the traded call, Expressions (5.19) and
(5.20), we see that

!

1
¢ = [(c‘g— C?)Sl - E (S] ch— SIUC?)] m R (528)

Now we can rewrite the above equation in a more compact form:

o = [med + (1 - w) PR, (5.29)
where
w =[RS, ~ §,D)/[S,U - $,D] = [R - DJ/[U ~ D]. (5.30)

EXAMPIE

Compuiation of 7

This example illustrates the computation of 7 in Expression (5.30). The nu-
merical value of 7 is

7 = (1.0304 — 0.8857)/(1.1752 ~ 0.8857)
= 0.5001.

Note that this value differs from /.

To avoid arbitrage, recall that U > R > D. This implies that 7 is between zero
and one, so we can interpret T as a probability. This observation is important and de-
serves attention. Furthermore, given the assumption that the up-and-down factors U/
and D do not depend on the level of the stock price, the value of 1 also does not de-
pend on the price level. This simplification facilitates computation.

Three observations need to be made about Expressions (5.29) and (5.30). First,
Expression (5.29) for the value of the option depends on the parameter 7. While there
may be optimists and pessimists with different beliefs about the probability of occur-
rence of each state, everyone agrees about the value of 1r. The probability 7 depends
upon I/, D, and R, and there is no disagreement about these quantities.

Second, using the probabilities « and (I ~r), the term inside the square bracket in
Expression (5.29) is simply the expected value of the option at the end of the period.
We use the risk-free rate of interest to discount the date-2 expected cash flows to date-
1 values. This equation is what is referred to as risk-neutral pricing. The probabilities
T and (1~r) are often referred to as risk-neutral probabilities. This terminology is
misleading, however, because we are not really assuming that people are risk-neutral?

For this reason we prefer the term equivalent martingale probabilities. This may
sound like jargon, but as will be explained in the next chapter, it is quite descriptive,
——— .

*The term risk-neutral refers to individuals who niake their decisions only on the basis of expected vaj-
. es. They do not consider the dispersion of a distribution. To determine the present value of a future cash

90‘-"3 a risk-neutral individual would first determine the expected value of the cash flow and then discount
+ Wusing a risk-free rate of interest.

g
dii
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Third, looking at Expression (5.29), we have used c5 and ¢ to represent the
traded option values in the up and down states. Although we were talking about call
options, we might have been talking about put options because the argument is the
same. This insight implies that the equivalent martingale probabilities  and (1)
do not depend on the identity of the derivative security we are pricing. This can be

. seen by examining the definition of 7 in Expression (5.30), which does not refer to
whether we are pricing a call or a put option.

B

SRR

Figure 5.4

This example illustrates the use of Expression (5.29) to compare our results
with the numerical values in Figure 5.4. Recall that «w = 0.5001. At the up state
at time 1, substituting into Expression (5.29) gives

1
© = 10304

= 13.64.

[w X 28.10 + (1 — w) X 0.0]

This agrees with Expression (5.10). At the down state at time 1, substituting
into Expression (5.29) gives

¢, =0 =

Finally, the value for the traded option at date 0 is given in Expression (5.27) as

(0) = [(e! = €98, ~ {50t = 5,0¢2)] (531)

S;U—S,D "

We can write the above expression in the form

c(0) = [wel + (1 — m)ei VR,
where
7 = [R — DU — D].

to Expression (5.30).

Figure 5.4

This example illustrates the use of Expressions (5.32) and (5.33). Substituti
the numerical values from Figure 5.4 into Expression (5.32) gives

1
1.0304

This equation agrees with Expression (5.12). =

e(B) =

[0.5001 X 13.64 + 0.4999 X 0] = 6.62.
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If we substitute Expression (5.28) for both the up and down states of time | into
Expression (5.32), we obtain an alternative expression for the option’s value;

) =[w%V+ 2 (l - el + (1 — TYcIP/RE, (5.34)

The term inside the square bracket on the right side is the expected value of the

traded option’s price at the end of the second period using the martingale probabili-
ties. The expectation is taken with respect to all three outcomes (¢42, ¢2V = c¥®,
¢2”) possible at date 2. The probability of getting ¢Y% is a2, the probability of get-
ting ¢V = ¢¥% is 2 (1 —), and the probability of getting ¢2% is (1—w)2 These
probabilities can be obtained by multiplying together the probabilities on the
branches on the lattice leading to these outcomes. The advantage of this formulation
is the ease of calculation.

mﬁgﬂre 5.4

This example illustrates the use of Expression (5.34). Given the va
44

¢y, and ¢3” from Figure 5.4 and the value of r,

lues of c§Y,

_ I
C(O) = "‘(L—O—B"OT)Z(’ITZ 28]0)

!
= 10613 (7.0178)

= 6.62.

This value agrees with those previously obtained, m

Expression (5.34) readil

Y extends to models with an arbitrary number of time in-
tervals. For the »

-step binomial model of Section 4.2 in Chapter 4, it can be shown that

M n . . . -l
c(0) = { D (j)-n (= 7" Max[S,U/D" - K, O}} — (5.35)

=0 R
where X is the strike price and (jrz) the binomial coefficient,

This expression represemts the expectation of the {n + 1) outcomes for the call
option at expiration, discounted to date 0, The expectation uses the martingale prob-
abilities. The (n + 1) outcomes for the call option at expiration are identified by the
term Max[S, U/p=-7 - K, 0], which corresponds to the value of the call at date T
given that the stock price is S,U/D" /. If exercised, the call is worth SUD i — K
Otherwise, it is worthless. This stock price was obtained starting at S, and having J
‘Up movements and {n ~ j) down movements occurring subsequent to date 0,

~ The Probability of obtaining the value Max[$U/D"~7 — K,0] is

h
R
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This probability is determined by multiplying together the probabilities on a path of
the lattice leading to this stock price outcome, and summing across all possible paths
that lead to this particular outcome,

This closed-form solution for the call option’s value is easily programmed on a
computer. Next to Black-Scholes, it is perhaps the most widely known expression for
a European call option’s value,

Given the assumption that interest rates are constant, the value today of a two-
period zero-coupon bond is

1
B(O,Z) = F

An abstract way of writing Expression (5.34) is
c(0) = B(0.2)E¥[e(2)}, (5.36)

where £7[c(2)] denotes the expected value of the terminal payoff to the traded option
at time 2, ¢(2).

We use the superscript  as a reminder that we are calculating the expected
value using the equivalent martingale probabilities. This abstract expression is the
one that is most easily generalized to other derivative securities and other sets of as-
sumptions concerning the random evolution of the underlying asset’s price and the
term structure of interest rates. We will encounter Expression (5.36) again later in
the text.

Put Options

We now value put options. The same logic used for calls can be used to price put op-
tions, hence our discussion will be brief.
Suppose that the put’s exercise price is 100, the put’s maturity is one year, and the

put option is European (can only be exercised at maturity). Divide the one-year lifeof
the put option into two six-month intervals. The stock price lattice is the same as that -

shown in Figure 5.3 and is reproduced in Figure 5.5.

If the stock price at maturity is 78.44, the traded put option is worth 21.56. If the _' '
stock price is 104.08 or 138.10, the put option is worthless, Why? Having established
the traded put option’s prices at maturity, let us move back six months.

If the stock price is 117.52, the value of the traded put option is zero:
pi=0

If the stock price is 88.57, the value of the traded put option is derived usi
Expression (5.29), appropriately modified:

RN
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Filaure 5.8 Put Prices at Maturity

—

Today 6 Months 12 Months T

50U = 138.10

vy
SoU=117.52 =0

5, =100 Sy,UD = 104.08

DU _ uD _ ;
5,D = 88.57 Py =py =0 ;

$,DD =78.44

PP =21.56

Exercise price of put option = 100

= 10.46,

where m = (0.5001.
Today the value of the traded option is given again by using Expression (5.32),

appropriately modified:

1 AN

= 5.08.

The initial position in the stock needed to construct the synthetic put option is given
by

my = (pY “P?)/(SUU = 5D)
(0 ~ 10.46)/(117.52 - 88.57)
—{0.3613.

- This position is a negative number, which means that we must seil shogt 0.3613
shares of the stock with full use of the proceeds invested in the riskless asset.
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Fieure 5.6 Summary of European Put Prices

124
=0
p?:() &
my =0
B, =0
p(0) = 5.06 !
m = -(.3613 p"z"'D=0
By =412l PP = 10.46
iy =-0.8409
B, =84.94 p20 =21 56

Intuitively, this makes sense. As the stock price increases, the value of the traded put
option declines. For the value of the replicating portfolio to decline, we must there-
fore short the stock.

A summary of the option prices and replicating portfolio positions are given in
Figure 5.6. If you are still unsure about using Expression (5.32), try constructing the
replicating portfolio and verifying the numbers given in Figure 5.6.

“For example, if the stock price is 88.75, the value of the replicating portfolio is

m88.75 + B,
where m is the number of shares and B is the investment in the riskless asset. if the stock price goes 0
104.08, the oplion is worthless, hence

m104.08 + B1.0304 = 0.

If the stock price goes to 78.44, the option is worth 21.56 and
m18.44 + B1.0304 = 21.56.

Solving gives

m = —21.56/25.64
= —(.8409

and
B = 84.9316.

Thus the value of the replicating portfolic is

p, = —0.8409 X 88.57 + 84.9316
= 10.45.

This number agrees with the value in Figure 5.6 if we ignore the small error due to round-off.

N A R e i e
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5.4 HEDGE RATIO (DELTA)

Let us examine the concept of an option’s delta. Deltas and delta hedging are the most
important concepts that the previous theory produces.

Consider replicating a European call option. The number of shares of the under-
lying stock to use in the replicating portfolio is given by Expression (5.17) and is of
the form '

m=(c{, — ¥, WESU - 8,D). (5.37)

This number is referred to as the hedge ratio. It is the difference in the price of the op-
tion at the end of the period divided by the difference in the price of the stock at the end
of the period. Referring to Figures 5.4 and 5.6, note that the hedge ratio changes at each
node in the lattice because the ending values of the call option change at these nodes.

An alternative interpretation can be given to the hedge ratio. Recall that the cost
of constructing the synthetic option today is given by

c(0) = m,S, + B,.

Now suppose that the stock price changes by an infinitesimal amount AS. What
would be the change in the option price if everything else is kept constant?
To answer this question, note that from the above equation we can write

Ae(0) = mA S,
The change in B, is zero because AS has no impact on it. Thus,
my = Ac(0)/AS,,

We can imply from this equation that the hedge ratio m, measures the change in the
option price for an infinitesimal change in the stock price, keeping everything else
fixed. For this reason, the hedge ratio is often referred to as the option’s delta. The
term deltq is borrowed from its use in calculus.

ATTICE PARAMETERS

Now we will see why the stock’s drift parameter (i) is not needed to price options.
This is an important characteristic of the model because the stock’s drift is a difficult

quantity to accurately estimate,

In Chapter 4, we showed how the binomial model can be used to approximate a
stock price with a lognormal distribution, This approximation is described by Expression
(4-18. This expression depends on the stock’s volatility, o, and the expected return of the
stock, p..
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Fortunately, our approach to pricing options avoids the need to estimate the
stock’s expected return, The trick is to determine the “expected return” on the stock
using the equivalent martingale probabilities. It is the only “expected return” required
for pricing derivatives, as the actual probabilities never enter the calculation.

To see why this is true, consider Expressions (5.34) or (5.36). They hold for an
option with an arbitrary exercise price, and in particular they hold for an option with
an exercise price of zero. But, from Chapter 1, recall that the value of a call option
with a zero exercise price is simply the value of the stock. Thus we can also calculate
the current stock price using risk-neutral valuation.

Let us now do just that. From Expression (4.7) in Chapter 4, we know that the ex-
pected value of the terminal stock price using the equivalent martingale probabilities
is given by

E"[S(T)| S(0)] = S(@)exp(LT + oT12), (5.38)
where [i is the expected return per unit time (under the martingale probabilities -r).

Risk-neutral valuation implies that if we discount this quantity at the continu-
ously compounded risk-free rate of interest #, it must equal the current stock price:

S(0) = e "TET[S(T) | S(0)]. (539
Substituting Expression (5.38) into the right side of Expression (5.39) gives

S0} = S(Q)exp[(p + o2 — NT]. (5.40)

The implication is that the drift of the stock in the risk-neutral setting must be equal to

o= - 2. (5.41)

This condition may appear to be quite mysterious, if not completely mystifying_f
On the left side we have the instantaneous expected rate of return on the stock using
the equivalent martingale probabilities, which we have set equal to the continuously , :?_

compounded risk-free rate minus half the stock return’s variance.
To understand why Expression (5.41) only involves r and o, remember that
we are using the equivalent martingale distribution to compute the value of the o]
tion with a zero exercise price. We have already argued in the derivation of (5.36)
that while pessimists and optimists may disagree about the probability of a parti
ular state occurring, there is no disagreement about the equivalent martingd
probabilities. This reasoning implies that the expected terminal value of the stock
under the equivalent martingale probabilities is known and computable from 7 an
o2 alone. _
Thus, to value an option under the lognormal approximation, we specify the

nomial stock price movements using Expressions (5.41) and (4.10} to be
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S =g [exp [(r = o)A + o\/A]  with probability =
r+E T Yy

exp{(r — ¢%2)A — oV/A] with probability 1 — ar. (3:42)

From the definition given in Expression (5.30) and using Expression (5.42), the prob-

ability 7 can be written (after some simplification)

™ = [exp(0’A/2) ~ exp(—oV/A)]/[exp(oV/A) — exp(—VA)L | &

It can be shown that, as A decreases to Zero,

 approaches Y.

7D
Vo

EXAMPLE

Compautation of Figures 5.1 and 5.3

Expression (5.42) is used to generate the numbers in Figure 5.1. Using discrete
compounding, the value of investing one dolar for one vear yields a total of

1.0618 dollars. This was based on a continuously compounded interest rate of
F=0.06and A = 1, that is,

exp(r X 1) = 1.0618.
The volatility is 20 percent (o = 0.2) and the interval is one year, hence

U= exp{[0.06 — (0.2)%2] + 0.2} = 1.27124
D = exp{[0.06 — (0.2)*/2] ~ 0.2} = 0.85214

and

w = 0.5003.

In Figure 5.3, the interval A is six months or 0.5 years, so that

U = exp{[0.06 ~ (0.2)*/2]0.5 + 0.20/0.3} = 1.175]8
D = exp{[0.06 — (0.2)/2]0.5 — 0.2\/0.3} = 0.88566

and

T™=0.5001. m

If we divide the horizon [0, T] into # intervals, and then increase the value of n
.hlle keeping 7 fixed (so A = Tin), we know from Chapter 4 that the terminal dis-
tribution converges to a lognormal distribution.
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Tasie 5.1 Convergence

NUMBER OF INTERVALS CaLL Oprion PRICE HEDGE RATIO
| 8.064 0.409
2 6.617 0.471L
3 6,784 0451
4 6.697 0.470
5 6.520 0.458
6 6.677 0.469
7 6.407 0.461
8 6.649 0.469
9 6.345 0.463
10 6.619 0.469
11 6.305 0.464
12 6.394 0.469
24 6.496 0.468
48 6.407 0.468
96 6.453 0.469
192 6.433 0.469
Black-Scholes 6.437 0.470
Maturity | year
Volatility 20 percent
Rate of Interest 6 percent
{Continuous Compounding)
Exercise Price 110
Asset Price 100

Table 5.1 examines the convergence of the option prices’ from the above exam-
ple as we increase the number of intervals, n, and thus decrease the length of each in-
terval A.

Two points should be noted. First, the option values do seem to converge, but -

there is oscillation. Second, the hedge ratio also seems to converge. But what do thiese
values converge to? One would think that the option’s value should converge to the
value of an option in an economy with a lognormal distribution for stock prices'- In
fact this is true, and it is the topic of the next section.

$The rate of interest expressed as z discount rate is 5.3235 percent, assuiming a 365-day year. The
Binorial/Pricing European Option/No Dividends is used to compute the binomial call option pr
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5.6 THE BLACK-SCHOLES OPTION
PRICING MODEL

The Black-Scholes option pricing model assumes that the terminal distribution of the
stock prices is described by a lognormal probability distribution, We now compute
the value of the cal] option in this setting. The value of call option at maturity is
given by its boundary condition: ‘

_[sm-kx it sm=x
C(T)‘{ 0 ¥ ST<k

Therefore, the expected value of the option using the equivalent martingale proba-
bilities for a lognormal distribution is®

ETe(D)] = E"[S(T) - K| S(T) = K]
= exp (r T)S(ON() — KN(d ~ o7,

where d = {In[S(0)/KB(0, T)] + o Ti2}oN/T, B(0,T) = e~ is the value today of
azero-coupon bond that pays one dollar for sure at date 7, and M(-} is the cumulative
normal distribution function.’

Discounting the expected value using the risk-free rate of interest gives the risk-
neutral pricing formula

e(0) = B(0, T)E~[c(T)]
= S(O)V(d) — KB(0, T)N(d - oV/T), (5.43)

which is the famous Black-Scholes formula.
The above result is directly analogous to Expression (5.1). Consider the first
term on the right side, We have today’s stock price and the ter

portfolio.

Thus we now have our answer. The binomial option pricing mede! using the pa-
Trameters from the lognormal approximation will approach the Black-Scholes option
model as given in Expression (5.43), and the hedge ratio will approach N(d). We will
return to the Black-Scholes formula again in Chapters 8 and 9.

_"_‘_—v_

:A proof of this result is given in Chapter §, Appendix B,
This value is the probability that a standardized normal random variable wilf be fess than or equal to d; it
Can quickly be calcutated using a computer. See Abramowitz and Stegun (1972).
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5.7 FORWARD AND FUTURES PRICES

We can use the same arbitrage arguments found in the previous sections to charac-
terize futures prices. Futures contracts are basic derivative securities that are used as
hedging instruments. Consequently, we need to understand how futures prices change
as the underlying asset price changes.

. We construct a replicating porifolic using the stock and riskless asset to match
the value and cash flow of a futures contract. This synthetic futures contract has a fu-
tures price the magnitude of which must equal the magnitude of the futures price of
the traded futures contract. Otherwise, an arbitrage opportunity would exist.

At the start of each trading period the futures price is set such that the value of a
contract is zero. At the end of the trading day, the contract is marked-to-market. This
characteristic leads to simplifications both in the construction of the synthetic futures
contract and in the identification of the futures price. These insights are emphasized
below. We illustrate the arguments with a two-period numerical example.

Consider a futures contract written on the stock. Let the futures contract mature
in one year. For simplicity, we will divide the one-year period into two six-month in-
tervals. The initial futures price is denoted by F(0,2). At t = 1, the contract is
marked-to-market and a new futures price F(1,2) is established. At t = 2, the con-
tract matures and the final settlement price is the spot price of the asset, S(2).

The stock price lattice is the same as shown in Figure 5.3 and is reproduced in
Figure 5.7. Using this lattice, we now want {0 construct a synthetic futures contract
using shares of the stock and the riskiess asset.

At ¢ = 2, when the futures confract matures, the futures price is the spot price of
the asset:

F(2,2) = S(2). (5.44)

See Figure 5.7. Thus the cash flow to the futures contract at date 2 from marking-to-
market will be §(2) — #(1,2).

fieure 5.7 Stock and Futures Price Dynamics

Today 6 Months 12 Months Futures Prices

SUU=138.10  #(2,2)%Y=138.10

SoU = 117.52
5= 100< SUD=104.08  F(2,2)°Y = F(2,2)VP=104.08
S,D = 88.57

SPD=78.44 (2, 20PP=78.44

ST e

S R s S
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We proceed as we did before. Consider
1. Suppose that we are at the up node where
cating portfolio’s cost at date 1 is

the cost of the replicating portfolioatt =
the stock price is §; = 117.52. The repli-

H=msS +B8,. ‘ (5.45)

In this equation, m, is the number of shares of the stock and B, is the dollars invested
in the riskless asset.

At = 2, if the stock price is $,U = 138.10 the cash flow to the traded futures
contract is (2,2)Y — F(1,2), where F(2,2)Y = 138.10 and F(1,2) denotes the fu-
tures price at ¢ = 1 when the stock price is 117.52.

The futures price (1,2} is also unknown and needs to be determined by this
procedure.

If the stock price moves up, the value of the synthetic futures contract portfolio
at date 2, by construction, must satisfy

m138.10 + B,1.0304 = 138,10 — &(1,2). (5.46)
If'the stock price at # = 2 moves down to S5,.D

= 104.08, then the value of the repli-
cating portfolio must be equal to

m104.08 + B,1.0304 = 104.08 — %(1,2) (5.47)

This gives us two equations in three unknowis.

We need another equation to solve this system. This equation is obtained from
ression (5.45) because the cost of the replicating portfolio at date 1 must be zero.
Why? When entering into a traded futures confract, the futures price is determined
such that the value of the contract is zero. To avoid arbitrage, the synthetic futures
contract and the traded fittures contract must have identical valyes. Therefore,

Exp

H=0=mS5, +B8,

50 that

0=m117.52 + B. (5.48)

This is our third equation. i
To solve this system, subtract Expression (5.47) from Expression (5.46) to yield

m;(138.10 ~ 104.08) = 138.10 —~ 104.08,
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Substituting m, = 1 into Expression (5.48) gives
B, = —117.52.

The futures price (1,2) now can be determined by substituting for m, and B,
in either Expression (5.46) or Expression (5.47). The solution is

i

117.52 x 1.0304

F(1,2)
121.09. (5.49)

We now repeat this procedure at ¢ = 1 if we are at the down node and the stock
price is S, = 88.57. Using the identical argument, we ask you to verify that m, = 1
and B, = —88.57. The futures price is given by

I

F(1,2) = ~B,1.0304

= 9].26. (5.50)

These results can be verified using our knowledge from Chapter 2, in which we
showed that under deterministic interest rates, forward prices are equal to futures
prices. We also derived a cash-and-carry argument to determine the forward price.
Combined, these two insights give us an alternative way to determine the futures price
for this example.

Consider a forward contract on the stock with delivery at date 2. From
Expression (2.2), based on cash-and-carry, the forward price is
F(1,2)B(1,2) = S(1}).

To use this equation, we need to determine B(1, 2). Given a flat term structure,

B(1,2) = UR
= 1/1.0304.

Using the forward price equation at time 1 in the up node with S, = 117.52 gives

F(1,2y=117.52 X 1.0304
121.09,

which agrees with (1,2). Similarly, at time 1 in the down node,

F(1,2) = 88.57 X 1.0304
=91.26,

which agrees with %(1,2).

Rt

RS
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To replicate the value and cash flow to the firtures contract over the first period,
we repeat the same argument, The date-0 cost of the replicating portfolio is

o =myS, + B, (5.51)

where S, = 100.

Atf =1, ifthe stock price is 117.52, the new futures price is 121.09. The date-1
cash flow to a futures contract Initiated at ¢ = s, by definition, the difference in fir-
tures prices; 121.09 — F(0,2). Therefore, we must set

myl17.52 + B,1.0304 = 121.00 - F(0,2). (5.52)
If the stock price at £ = 1 js 88.57, we set
My88.57 + B,1.0304 = 9] 26 — F(0,2). (5.53)

These are our first two equations,

To avoid arbitrage, the cost of the synthetic futures contract when initiated at
¢ = 0 must be the value of g traded futures contract, which is zero, Therefore, we get
our third equation;

%o=myl00 + B, = 0.
Subtracting the first two equations gives

my = (121.09 ~ 91.26)/(117.52 — 88.57)
= 1.0304.

Using the third equation gives

By = —1.0304 x 100
= —103.04.

The futures price %(0,2) is determined by substituting my and B into either {5.52)
or (5.53), giving the solution

F(0,2) = 106.17. (5.54)

We can also verify this futyres price using the previously mentioned insight from
Chapter 2,
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The forward price F(0,2), from the cash-and-carry strategy in Chapter 2, is given by
F(0,238(0,2) = S(0).

Now, from Expression (5.6) we get

l

800.2)= 15615
implying

F(0,2) = 1.0618 X 100
106.18.

Ignoring the small round-off error, this value is identical to the futures price %(0,2)
derived from the synthetic futures contract procedure. We emphasize again that this
alternative approach only works under deterministic interest rates.

The construction of the synthetic futures contract is now complete, Because this
construction was more complex than that for option contracts, we review the proce-
dure and point out some important, but subtle, observations.

Although we derived the replicating portfolio in a backward inductive fashion,
we now explain how to implement it moving forward in time, starting from date 0.
At date 0, our synthetic futures contract is formed by buying m, = 1.0304 shares of
the stock and borrowing B, = — 103.04 dollars to do so. The initial cost of this port-
folio is zero, matching the value of the traded futures contract. We hold this portfolio
until date 1.

At date 1, there are two possibilities. If the stock price moves up to S;U =
117.52, the value of our portfolio is

my(117.52) — 103.04(1.0304) = 121.09 — 106.18 = 14.91.

We liquidate this portfolio to get a cash flow that matches the cash flow received from
marking-to-market of the traded futures contract. After liquidation, the value of our
synthetic futures contract is again zero, matching the value of the traded futures con-
tract at date 1.

Next, we form a new portfolio to construct the synthetic futures contract over the =
next time interval by buying m, = 1 shares of the stock and borrowing B, = —1 17.52 .
dollars to do so. The cost of this portfolio is zero, matching the value of the traded fu-

tures contract. We hold this portfolio until date 2, at which time its value, when liqul
dated, again matches the cash flow to the traded futures contract at delivery. We leav!
the verification of this statement to you.

If, instead, at date 1 the stock price moves down to §,Dr = 88.57, a similar ana!x
sis shows that the synthetic futures contract, when liquidated, again matches the
flow to the traded futures contract. Liquidation resets the value of the portfolic
zero, matching the date-1 value of the traded futures contract. A new portfolio is th

ot 2 e RN 80 e i
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formed at date 1 to construct the synthetic futures contract over the next interval, at
which time the traded futures contract matures,

As evidenced by the above discussion, a synthetic futures contract matches both
the traded futures contract’s cash Slows and values across time and states, The cash
flow matching occurs by liquidation and then recomposition of the synthetic futures.
This liquidation differs from the argument used to construct synthetic options that
had no intermediate cash flows. It is this liquidation that makes the synthetic futures
contract distinct, and important to understand,

Formalization

Let us formalize the previous example. In essence, we simply need to replace num-
bers with symbols. However, this formalization will generate a Very important in-
sight: The futures price today equals its expected value tomorrow under the
martingale probabilities . Stated differently, futures prices are martingales under the
martingale probabilities 1.

We start our argument at date 0, At f = 0, the cost of the replicating portfolio is,
from Expression (5.51),

W= m,S, + B, = 0. (3.55)

The cost of the replicating portfolio must be zero because the value of the traded fu-
tures contract is zero. From Expression (5.55), we see that our investment in the stock
is financed by borrowing, that is,

By = —m,S,. (5.56)

At ¢ = 1, if the stock price is Sol/ the value of the replicating portfolio must be
set so that

myS,U + BR = (1,2)Y — 9H(0,2). (5.57)

Compare this equation with Expression (5.51). If, instead, the stock price is 5, D, the
value of the replicating portfolio must be set so that

mySyD + ByR = F(1,2)° — F(0,2). (5.58)

Compare this equation with Expression (5.53). Up to the present point, all we have
done is to replace numbers with symbols.

We now have our three equations, (5.56) through (5.58), in three unknowns, m,,
By, #(0,2). To solve these equations, first subtract Expression (5.58) from Expres-
sion (5.57) to give

mo(SyU — S,D) = F(1,2)V — F(1,2)°
or

my = [F(1,2) — F(1,2)°1/S,U - S,D).
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Next, rewrite Expression (5.57) in the form
F(0,2) = F(1,2)V — m,S,U — B,R.

Using Expressions (5.56) and (5.59) to eliminate m, and B, from the above equation
yields

F(0,2) = F(, DY — m,[S,U — RS,
= a2 (1,2)Y + (1 - mFQ1,2)2, (5.60)

where w = [R — D)/[U — D).

This result is key. We see here that today’s futures price equals the expected date-
1 futures price using the probabilities v and (1 — ) to make the calculation.

At t = 1 we can repeat the identical argument to show that

F(1,2) = mF 2,2 + (1 — MF2,2)°. (5.61)

We leave this derivation as an exercise for the reader. Again, Expression (5.61)
demonstrates that the futures price at date | is its date-2 expectation using the mar-
tingale probabilities v and (1 — ) to make the calculation. Let us illustrate this com-
putation with an example.

Futures Prices

This example illustrates the use of Expressions (5.00) and (3.61).
At the up state at time 1, given ot = 0.5001, (2,2)" = 138.10, and
F(2,2)” = 104.08, using Expression (5.60) yields

F(1,2) = w138.10 + (1 — w)104.08
= 121.09,

which agrees with Expression (5.49).
At the down state at time 1, given F(2,2) = 104.08 and F(2,2)°
78.44, Expression (5.61) yields

F(1,2) = wl104.08 + (1 ~ w)78.44
= 91.26,

which agrees with Expression (5.50).
Finally, the initial futures price, using Expression (5.60), is

F0,2) = w129.09 + (I — m)91.26
= 106.18.

et R

iy

SR T
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This result agrees with (5.54), ignoring a small round-off error, As illustrated,
the use of these formulas greatly simplifies the computations involved in deter-
mining futures prices. m

In order to calculate %(0,2) via Expression (5.60), the futyres price today, we
first calculated F(1,2)" and F#(1,2)?, the futures prices tomorrow. If we are only in-
terested in calculating the date-0 futures price, we can avoid these intermediate cal-
culations. This simplification can be obtained with some simple algebra.

Substituting Expression (5.61) into Expression (5.60) gives

#(0,2) = mFQ,2)™ + 2w (1 = MFQR,2)™ + (1 — wpF(2,2)%”. (5.62)

The right side of the above expression is simply the expected value of the futures
price at £ = 2 under the equivalent martingale probabilities {m}. Not only is the fu-
tures price today its expected value tomorrow, but it is also equal to its expected value
two periods from now!

We can rewrite Expression (5.62) in a more compact form:

F(0,2) = E7[F(2,2)]. (5.63)

This form of Expression (5.63) is the one most casily generalized to alternative as-
sumptions about the evolution of stock price movements or the term structure of in-
terest rates. In fact, Expression (5.63) can be shown to hold under random interest
rates, although the derivation is more complex; we will use it later in the text,

Expression (5.63) also has a probabilistic interpretation. A random variable that
satisfies an equation like (5.63) is said to be a martingale. Thus futures prices are
martingales under the equivalent martingale probabilities {w}. This definition is one
Jjustification for the name we have been using for the probabilities {w}

MFutures Prices Revisited

This example illustrates the use of Expression (5.62). Substituting the previous
example’s numbers into Expression (5.62) gives

#(0,2) = 7? 138.10 + 2 (1 — 7)104.08 + (1 — m)2 78.44
= 106.18.

This number matches the value of %(0,2) computed earlier. m

Expression (5.63) is a very important result; in fact, it can be given another in-
terpretation. Note that, at maturity, the futures price equals the spot price:

F(2,2) = S(2).
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Thus we can write Expression (5.63) as
F(0,2) = ET{S(2)]. (5.64)

Expression (5.64) shows that the futures price is the expected spot price at de-
livery, computing the expectation using the martingale probabilitics {w}. However,
care must be exercised in interpreting this equation. It does not say that the futures
price is an unbiased estimator of the future spot price. We are calculating the expec-
tation using the equivalent martingale probabilities; consequently, the right side of
(5.64) will in general be quite different from the expected stock price using the em-
pirical or actual probabilities. This is an important distinction. Expression (5.64) also
generalizes to other assumptions concerning the evolution of the stock price or the
term structure of interest rates.

5.8 REPLICATING AN OPTION ON SPOT WITH FUTURES

CULISE  Option Replication with Futures

We now show how to replicate options with other derivatives. In particular, instead
of using the stock in the replicating portfolio we can use futures contracts written on
the stock.

In practice, there are usually two advantages to using futures contracts for hedg-
ing, First, transaction costs associated with the use of futures contracts are usually
lower than those associated with the underlying stock. Second, futures contracts are
not subject to the market “up-tick rule,” as are stocks. For example, if you are repli-
cating a put option, it is necessary to short the stock. The up-tick rule is a stock mar-
ket restriction that allows one to short a stock only on an up-tick, meaning that the last
transaction in the stock must be a price increase. There is no such restriction for fu-
tures contracts. Of course, if futures contracts on the stock do not trade, then one can
use other options on the stock to hedge, and many of the same comments still apply.

To demonstrate the use of futures contracts, we use the option values derived
in Figure 5.4. The option is a European call, with an exercise price of 110 and
maturity of twelve months. The call option, stock, and futures prices ate shown
in Figure 5.8. _
Today, at date 0, consider constructing a replicating portfolio for the optio
using m fstures contracts and B dollars in the riskless asset. The initial cost of
this portfolio is

FlO)=mg X0+ B
zB’

given that the value of the futures contract is zero.
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Ficure 5.8 Call Option, Stock, and Futures Values

Today 6 Months 12 Months
PV=28.10
SeUU = 138.10
¢} =13.64 =72, 9%
§,U =117.52
@) =6.62 F1, Y= 12100 C?U _ C;}D -0
8y =100 = 104.08
(0,2) = 106.18 ® =0 SeUD = F(2,2)°P = 57(2.2)7Y |
$,D =88.57
F(1.2)P =91.26 ?P=0
SyDD =78.44
= F(2,2)7P

Exercise price of option = 110

R =1.0304 for A=0.5

At date 1, the stock can take on one of two possible values, If the stock
price is 117.52, the option value is 13.64, the new futures price is 121.09, and
the cash flow to the futures contract is (121.09 — 106.18). By construction, our
replicating portfolio must match the option value. This gives the first condition:

mg(121.09 — 106.18) + B1.0304 = 13.64,

where for each dollar we invest in the riskless asset we earn 1.0304 dollars
over the six-month perjod,

If the stock price is 88.57, the option is worthless and the cash flow to the

futures contracts is (92.26~106. 18). By construction, the value plus cash flow
of our replicating portfolio must be zero. This gives our second condition:

m5(91.26 — 106.18) + B1.0304 = 0.
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Solving these two equations for the two unknowns gives

mg = 13.64/(121.09 — 91.26)
= 0.4573

and
B = 6.62.

Given that our portfolio replicates the option, to avoid arbitrage the value of
the traded option must equal the cost of the synthetic option, that is,

c(0) = B = 6.62,

which agrees with the value given in Figure 5.8. =

Formalizalion

Let us formalize the previous example. The formalization involves little more than re-
placing the numbers in the previous example with symbols. Nonetheless, the formal-
ization generates insight into the differences between hedging with spot versus
hedging with futures.

Suppose that the option matures at date T. It is assumed that the futures contract
used in the replicating portfolio has delivery at date T, where Tz may be before or

after T.
The cost of the replicating portfolio at date £ is given by

Vy=mzx 0+ B

= 8. (5.65)

In this equation, B represents the amount invested in the short-term interest rate and
m g equals the number of units held of the futures contract.

Next period, under the binomial model, the stock price can take one of two pos-
sible values, S(1)U or S()D, implying two possible futures prices, F+ 1, T 5)’ or
F(t + 1, Tg)". The value plus cash flows from the replicating portfolio in the up state
are set such that

mg{F( + 1,Ta) — F(L.Ta)] + BR = et + 1
In the down state, they are set such that
mglF(t + LT’ — FT)] + BR = c(t + )"

We have two equations in two unknowns, thus we can solve for mg and B.

gt
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For the present purposes we will only discuss the hedge ratio and solve for m,.
Subtracting the two equations gives the hedge ratio:

mg = [c(t + 1)V — c(t + DPY[F( + LTz = & + 1,T)"). {(5.66)

Let us compare this hedge ratio to that used if we were using the underlying stock in
the replicating portfolio. Rewriting Expression (5.37) with a minor but obvious
change in notation gives the hedge ratio on the stock:

ms={e(t + )Y = c(t + DPYIS(EU ~ S(1)D]. (5.67)

As seen by comparing these two expressions, the two hedge ratios will differ. The de-
nominator in Expression (5.66) is the difference in futures prices, while in Expression
(5.67) it is the difference in stock prices. The magnitude of i versus my is discussed
in the next section.

Hedge Ratios

Here we relate the hedge ratio using futures contracts for an option on the stock to the
hedge ratio using the stock. The argument uses our insights from Chapter 2 regarding
forward contracts and futures contracts,

Recall that in Chapter 2 we proved that if interest rates were deterministic, then
forward and futures prices are identical, implying

F(t,Tz) = F(1,T5),
where F(1, T;) denotes the forward price at date ¢ for a contract with delivery at date
i For a stock paying no dividends we also proved a cash-and-carry relationship:
F@,Tz)B(t, T;) = S(). (5.68)
We can use these relationships to make our comparison. Substituting Expression

(5.68) into (5.66) and comparing the result with Expression (5.67) gives a relation-
ship between the two hedge ratios:

Me=mB(t + 1,T,). (5.69)
& s F

The hedge ratio based on futures is the hedge ratio based on spot multiplied by the
price of a zero-coupon bond. As B(f + 1, Tz) = 1, we get

Mg = Hlg.

- In other words, the hedge ratio with futures is never greater in absolute magnitude
than the hedge ratio with stocks. Expression (5.69) can prove useful because it en-
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ables one to compute m; given only knowledge of mg and interest rates. Unfortu-
nately, this relationship only holds under deterministic interest rates.

5.9 SUMMARY

Using the binomial model for the evolution of the underlying asset’s price, we demon-
strate how to price derivative securities. To price a derivative security such as an op-
tion, we construct a synthetic option using a portfolio of the underlying asset and
riskless borrowing/lending. We show how to construct this portfolio so that it per-
fectly replicates the payoffs to the traded option. To avoid arbitrage, the cost of con-
structing this synthetic option must equal the value of the traded option.

We use this insight to describe a simple way, called risk-neutral pricing, to value the
option as a discounted expectation using equivalent martingale probabilities. Using this |
technique, we use the binomial model to approximate the Black-Scholes option model. ‘

Futures contracts are also studied. We show that given the lattice specifying the :
prices of the underlying asset, we can determine the arbitrage-free futures prices for 5
a futures contract written on the underlying asset. We also demonstrate an alternative
method of replicating an option that uses a portfolio containing futures contracts and
riskless borrowing/lending instead of the underlying stock.

The binomial model is a powerful tool, and it will be used in subsequent chapters
for pricing and hedging other derivatives including stock index derivatives, foreign
currency derivatives, commodity derivatives, and interest rate derivatives.
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QUESTIONS

Question |

A European call option with strike price $50 matures in one year. Divide the one-yea!
interval into two six-month intervals. The continuously compounded risk-free rate._?_f_
interest is 5.00 percent and the volatility is 30 percent per annum.
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a) Using Expression (5.42), determine the up and down factors.

b) Determine the martingale probability of an up state occurring.

¢) Ifthe current stock price is $40, determine the value of the option using the mar-
tingale probabilities.

d) At each node in the lattice, describe the replicating portfolio, that is, the invest-
ment in the stock and riskless asset. Verify your answer to {c),

Question 2

A European put option with strike price $45 matures in one year. Divide the one-year
interval into two six-month intervals. The continuously compounded risk-free rate of
interest is 4.50 percent and the volatility is 20 percent per annum,

a) Using Expression (5.42), determine the up and down factors,

b) Determine the martingale probability of an up state occurring,

c) Ifthe current stock price is $35, determine the value of the option using the mar-
tingale probabilities,

d) At each node in the lattice, describe the replicating portfolio, that is, the invest-
ment in the stock and riskless asset, Veri fy your answer to {c).

Question 3

A futures contract written on the ABC stock matures in 106 days. Divide the [06-day
period into two intervals of length 53 days. The continuously compounded risk-free
rate of interest is 4.35 percent and the volatility of the return on the stock is 25 per-
cent per annum. The current stack price is $60.

a) Using Expression (5.42), determine the up and down factors. Note: get A=
53/365.

b) Determine the martingale probability of an up state occurring.

©)  Determine the futures price at each node in the lattice using the martingale prob-
abilities,

Question 4
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Divide the one-year interval into two six-month intervals. The continuously

compounded risk-free rate of interest is 4.75 percent and the volatility is 20 percent
per annurn,

a) Determine the up and down factors for the stock.
‘ b) Determine the martingale probability of an up state.
c) Ifthe current stock price is $60, determine the futures prices at each node using
the martingale probabilities.
d) Determine the value of the option.

Question 5

The continuously compounded risk-free rate of interest is 4.80 percent and the
volatility of the return on a stock is 25 percent per annum. Compute the up factor, U,

the down factor, D, the value of R, and the martingale probability, , for different val-
ues of the interval A. Complete the following table.

A R U D W

1

0.5
0.25
0.125

Question 6  Replicating a Stock

Suppose that a futures contract is written on a stock. The contract matures in twelve
months. The current stock price is $100 and the stock’s volatility is 25 percent. Divide
the one-year period into two six-month intervals, The up factor is defined by

U= exp{(r — c2)A + o\/A]) = 1.2106.
The down factor is defined by

D = exp[(r — 0¥2)A — o\/A] = 0.8501.

In both equations, o is the volatility (25 percent), r is the continuously compounded

rate of interest (6 percent per annum), and A is the length of the interval (0.5).
Construct a portfolio using the futures contract and investing in the riskless asset -

to replicate the stock. Describe the construction of this portfolio at each node.

Question 7 European Call Options

A European call option with strike price $50 matures in one year. Divide the one-ye
interval into two six-month intervals. The up and down factors are described by
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U= exp|(r — o¥/2)A + oVA] = 1.20460
and
D =exp[(r — ¢/2)A — oV/A] = 0.84586,

where r, the continuously compounded risk-free rate of interest, is 5.00 percent and
volatility is 25 percent. The time interval, A, is 0.5. Note that if one dollar is invested
in the riskless asset for six months, after six months its value is 1.0253. The current
stock price is $50.

a) Determine the martingale probability of an up state.

b) Determine the call price by using the equivalent martingale probabilities.

¢) How would you hedge this option using futures contracts and the riskless asset?
Consider a futures contract that is written on the stock and matures in a year,

d) What is the hedge ratio if you used stocks to hedge?

Question 8 European Put Options

A European put option with strike price $50 matures in one year. Divide the one-year
interval into two six-month intervals. The up and down factors are described by

U=expl(r - o¥2)A + a\/A] = 1.172832
and
D =exp[(r— c¥/2)A — o/A] = 0.883891.

The risk-free rate of interest, #, is 5.60 percent continuously compounded and the
volatility, o, is 20 percent. The time interval, A, is 0.5. The current stock price is $50.

a) Determine the put price by using the equivalent martingale probabilities.

b) if you have written this option, how would you hedge your position using a fu-
tures contract and a riskless asset? Consider a futures contract that is written on
the stock and matures in a year.

Question 9

Determine the value of a European put option with a strike price of $50 and a matu-
rity of one year. The current stack price is $50 and it is known that over the life of the
option no dividends will be paid,

a) Divide the one-year interval into two periods of six months’ length. Assume a bi-
nomial process for the stock price. The up factor is defined by

U=exp[(r — 0%/2)A + o\/A] = 1.245615

and the down factor by

D =expl(r ~ 0%2)A — o\/A] = 0.814947.
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The risk-free rate of interest, r, is 6 percent (continuously compounded); the
volatility, o, is 30 percent; and A = 0.5. The equivalent martingale probability of
an up state occurring is 0.5. Use the equivalent martingale approach to price the
option,

b) What is the initial replicating portfolio? Determine the investment in the stock
and the investment in the riskless asset.

c) What is the initial value of the replicating portfolio? How is this value related to
the vatue of the put option?

d) Ifthis option was American, what would its value be?

Question 10

Consider the following type of equity contract. In a year’s time, if the price of
BioBetaMedic (BBM) stock is between $30 and $60, you must pay the going spot
price to buy the stock. If the stock price is above $60, you must pay an amount given
by the formula

60 + 0.1(5 — 60),
where S'is the stock price (§ = 60). If the stock price is below $30, you must pay $30.

a) Draw a diagram showing the amount you must pay for the stock when the con-
tract matures. Ignore the initial cost of the contract.

b) You can construct this payoff by buying the stock plus different options. Identify
the options. Justify your answer without the aid of diagrams.

¢} Divide the one-year interval into two periods of six months. Assunte a binomial
process for the stock price. The up factor is defined by

U=exp[(r ~ o¥2)A + o/A] = 1.27904

and the down factor by

D = exp[(r — a*2)A — o\/A] = 0.77969,

where r is the risk-free rate of interest, 5.85 percent (continuous compounding), ;.
the volatility is 35 percent per year, and A = 0.5. The current stock price is $4
Use the martingale approach to price this type of contract. The equivalent mar:
tingale probability of an up state (down state) is 0.5. What is the value of th
portfolio of options? i
d) How would you redesign this contract such that the net value of the options i
zero?




