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ASSET PRICE DYNAMICS

4.0 INTRODUCTION

arbitrage arguments. Although these bounds limit the price of the option, they

can be quite large. For example, consider a European call option with a strike
price of 100, maturity date in six months, and an underlying asset price of 100. Let
the interest rate be 6 percent. Using Results 3 and 4 in Chapter 3, we know that the
value of the option must be less than 100 or greater than 2.96. This leaves us with lots
of room in which to maneuver. To price options more precisely, we must make addi-
tional assumptions about the probability distribution describing the possible price

l n Chapter 3 we derived upper and lower bounds for option prices using simplé

changes in the underlying asset.

The purpose of this chapter is to study a model for the evolution of asset Pprices.
The model needs to be simple enough to facilitate analysis, but complex enough to
provide a reasonable approximation to the actual evolution of asset price movements.
The model selected for presentation, with these characteristics in miind, is the lognor-
mal distribution model, the “workhorse” for the subsequent options/futures pricing
theory. It underlies the Black-Scholes model for pricing equity derivatives (Chapter
8) as well as the pricing of foreign currency dervatives (Chapter 11) and the special
cases of the Heath-Jarrow-Morton model studied in Chapters 16 and 17. The follow-
ing section provides a complete analysis of the lognormal distribution and justifies its

selection as the basic model for asset price dynamics.

The lognormal distribution is well suited for continupus trading models and the
g models (and
the use.of calculus) is less intuitive than discrete trading models (and the'use of alge-

use of calculus. Nonetheless, it is our experience that continuous tradin

- bra). For this reason we also introduce the binomial model.

The binomial model is cast in discrete time, and it is a very usefy] teaching tool
for understanding the pricing and hedging of options/futures, Furthermore, if the bi-
nomial model is carefully constructed it can also serve as an approximation to the
lognormal distribution and is useful in practice. In fact, in applications such as

* American option valuation, the binomial approximation to the lognormal distribution

is the model of choice for many financial institutions,

Because of its simplicity, we will utilize the binomial model in this text to ex-
plain the arguments underlying the various options/firtures pricing theories. Nonethe-
less, the lognormal distribution will always be lurking in the background, motivating

and calibrating the models used in the various applications,
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4.1 THE LoeNoRMAL DlSTﬁmLmow

To fix discussion, the asset under consideration in this chapter will be called a
stock, The analysis, however,

applies equally well to most other assets and commod;-
ties addressed in this text,

4.1 THE LOGNORMAL DISTRIBUTION

A lognormal distribution for stock price returns is the standard model uged in finan-
cial economics. Why? The answer is the topic of this section.

We show that given some reasonable assumptions about the random behavior of
stock returns, a lognormal distribution is implied. These assumptions, in fact, char-
acterize the lognormal distribution in a very intuitive manner. This intuition is im-
portant for our understanding because, to reiterate, the lognormal distribution is the
“workhorse” for the subsequent derivative securities theory.

To motivate the analysis, consider a typical stock price chart as illustrated in
Figure 4.1. A stock price evolution is usually very jagged, with peaks and valleys,
sometimes separated by trend-like rises or declines, As all stock analysts and portfo-
lio managers know, the future price of a stock is uncertain and very difficult to pre-

dict. For illustrative purposes, weé have subdivided the time horizon [0, T'] into »

equally spaced intervals of length A. By understandin

ing the stock price process over
each interval, we can understand it over the total horizon,

Fisure 4.1 A Dpical Stock Price Chare
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We start by dcvelopiﬁg
Define z, to be the continuoy
val[t — A, 1], that is,

some notation. Let $(7) be the stoc

k’s price at date ¢,
sly compounded return on the stock over the time inter-

S0 = S(z ~ A)e”, 4.1

To analyze the stock price
into » intervals of length A, wh
terval is denoted by S(A), at the end of the second intervai by §(2A) and so forth, and
at the end of the nth interva] by S(T). We can write the stock price S(T) as the prod-
uct of the ratios of the intervening stock prices:

50~ ‘[S(ﬁ(ﬂ)] [ =2 - [g%] [%%)] 50 42

This follows because on the right side of this expression, we are always multi-

plying and dividing by the same stock prices. Next, substituting the definition of the
continuously compounded return into Expression (4.2) gives the desired resnlt:

S(T) = S()eatzaa+. *2r_ptip

| ) ' 4.3)
j . To define:
i’ AN =z 4z + otz 4z (4.4)
;I . Z(T) rlepresents the continuously compounded return on the stock over the horizon
[0,7].

2Ty = InfS(T)/S(0)] is seen to be the sum of the continuously compounded re-
turns over the # intervals. This simple linear relationship is the reason for working

» Stock retums appear to be gener-
rmally, we impose two assumptions:

Assumption Al. The returns {z} are independently distributed.

Assumption A2. The returns {z,} are identically distributed.

ated by the same distribution, Fo

The first assumption, A1, implies that the retarn over the interval [t~

A,1] z,is
of nouse in predicting the return Z,44 Over the next interval.

"This can be seen by substitwting Expression {4.4) into (4.3) to abtain (') = S0 e™N),
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The second assumption, A2, implies that the return z, does not depend upon the
previous stock price S(¢ — A).

These two assumptions together imply that stock prices follow a random walk.?
This characteristic of stock prices has often been associated with “efficient market”
theory,?

Given these two assumptions, we now describe how the return changes as the size
of the time interval A declines. We want to ensure that the characteristics of the return
over each interval, as described in Assumptions A1 and A2, remain intact as the size of
the time interval becomes smaller. To achieve this end, we add two more assumptions:

Assumption A3. The expected continuously compounded return can be written
in the form

Elz] = pa,

where ju is the expected continuously compounded return per
unit time,

Assumption A4. The variance of the continuously compounded return can be
written in the form

var[z,] = ¢?A,

where o” is the variance of the continuously compounded re-
turn per unit time,

Assumption A3 states that the expected value of the continuously compounded
return equals a constant . times the length of the interval A.

Assumption A4 states that the variance of the continuously compounded return
equals a constant o” times the length of the interval A.

Both the expected return and the variance of the return are seen to be proportional
to the length of the time interval. Thus, as the length of the time interval decreases,
these two moments of the stock rehun’s distribution decrease proporticnately.

Technically, these assumptions ensure that as the time interval decreases, the be-
havior of the distribution for Z(T') does not explode fior degenerate to a fixed point.
It remains random and similar in appearance to any other size interval, appropriately

magnified

Given these four assumptions, the expected continuously compounded return

-over the horizon [0, '] is

ELZTN = B(zy) + Ezyy) + - + E(z)

= > pA  using Assumptions A2 and A3

F=1

=T 4.5)

2A random walk does not imply any particular probability distribution for stock price changes.
*The efficient matket theory is described in Fama (1970, 1991).
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CHAPTER 4 ASSET PRICE DYNAMICS

The variance of the continuously compounded return over the horizon {0, T]is

var[Z(T)] = var(z,) + var(z,) + ... + var(z,)

= > o’A  using Assumptions A2 and A4
J=1

= ¢’T. (4.6)

At this point it may appear as if we have not made any restrictive assumptions
about the probability distribution for each continuously compounded return z, and
thus Z(T'). But, Assumptions Al to A4 are quite powerful and imply that for infini-
tesimal time intervals, the distribution for the continuously compounded return z, has
a normal distribution with mean pA and variance o*A. The proof of this result relies
on the Cenral Limit Theorem from probability theory. Because the proof provides no
additional insight, we Ieave it to interested readers to pursue the proof in the refer-
ences (see Cox and Miller, 1990). This result, in turn, can be shown to imply that
stock prices are lognormally distributed. :

Let us summarize what we have achieved. Given a horizon [0, T], we divided it
into » intervals of length A and examined the distribution of the continnously com-
pounded returns over each interval. We imposed Assumptions A1 throngh A4 on the
nature of these returns based on empirical considerations. The assumptions implied
that for infinitesimal intervals, returns are normally distributed. Since the sum of n
independent normally distributed random variables is itself normally distributed, us-
ing Expression (4.4), we see that Z(T") = In[S(T)/S(0)] is normally distributed with
mean p I-expression (4.5) and variance ¢’T-expression (4.6). But, this is equivalent
to stating that the stock price S(T') is lognormally distributed.

In fact, Assumptions Al throngh A4 characterize the lognormal distribution for
stock returns. Why? If Z(7') has a normal distribution, z, will satisfy Assumptions A1
through A4 as well. Thus we have obtained our “workhorse” model for the evolution
of stock prices, as exhibited in Figure 4.1.

Figure 2.2 displays typical shapes for 2 normal and a lognormal distribution. Part
A shows the distribution for the continvously compounded returns. Note that these
returns can be negative, given that the normal distribution is defined for both positive
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CHAPTER 4 ASSET PRICE DYNAMICS

and negative values.* Part B shows the distribution for the stock price at date T. The
lognormal distribution is only defined for positive values.’

If the stock price at date Tis described by a lognormal distribution, the expected
stock price at date T given today’s price can be shown to be

E[S(T) | S(®)] = SO)exp(u.T + 0°T/2). @7

A proof of this result is given in the chapter Appendix; we will use it in Chapter 5.
The assumption that stock prices are lognormally distributed is a convenient as-
sumption and one that we will use extensively. It allows us to derive relatively simple
expressions for different types of derivative securities. For example, this assumption
is used in the Black-Scholes option model, which is the standard basic model for pric-
ing equity options. However, simple convenience is not necessarily a sufficient justi-
fication for employing a particular assumption, and this is why we motivated this
assumption based on four intuitive and empirically verifiable assumptions. This issue
is briefly discussed again in Section 4.5.

4.2 THE BASIC IDEA (BINOMIAL PRICING)

Given that the lognormal distribution for stock price movements has been discussed,
we now consider another related model, the binomial medel. The binomial model is
useful as a teaching tool in understanding options/fiutures pricing and hedging theory.
We will subsequently relate this binomial model back to the lognormal distribution.

Fisure 4.3 Binomial Pricing

$140.70 probability Y,

$83.30 probability ¥,

The return is defined as the price relative.
Xf the stock is $140.70, the return is 1.407.
K the stock is $83.30, the return is 0.833.

Expected return = (1.407 + 0.833) (1) = 1.12.

Variance of return - =[(1.407 - 1.12)? + (0.833 - 1.12)2}(%)
= (0.0824 +0.0824) (1)
0.0824

“The normal distribution is defined from miniis infinity to plus infinity.
*The lognormal distribution is defined from zero to plus infinity.
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Fioure 4.4 Multiperiod Extension

Today 6 Months 1 Year

Us - ——
' ; The
Ay  DUS 1 identical
1 UDS |
— = — ! price
DS
D
LetS()=S.

To be concrete, we must first consider a numerical example. Let the price of 2
stock today be $100. We are interested in the stock’s price ina year. For simplicity, as-
sume that the stock does not pay any dividends over this period and that at the end of
the year, the stock’s price can take on only one of two possible values: either $140.70
with probability %, or $83.30 with probability Y, (see Figure 4.3). .

The expected dollar return on the stock is 1.12, where the dollar refurn is de-
fined to be the price relative (one plus the percent return).

We can represent the stock price at the end of one year, S(1), in the following
maoner:

S (i) - 1U,S(0) if the stock price moves “up”
DyS(0)  ifthe stock price moves “down,”

where S(0) is the initial stock price, $100. U, is called the up-factor with U, = 1.407,
and D, is called the down-factor with D, = 0.833,

The assumption that the stock price can take only one of two possible values at
the end of each interval is referred to as the binomial model. We could have alter-
natively assumed that at the end of each interval the stock price could have one of
three (or more) possible values. The restriction to the binomial model is made for
two reasons. The first is for simplicity. Jumping ahead, Figure 4.4 shows that even
the binomial model gets complicated. Had we assumed that the stock could take

one of three possible values ai the end of each interval, then Figure 4.4 would be -

even more cluttered and complex. Second, for most Ppurposes, as the time interval
between price movements declines, this assumption is not as resirictive as it
appears. We will show later that the binomial model can be used to approximate a
lognormal distribution. '

Ty

o
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Regardless, you might argue that it is unrealistic to assume that the stock price
can have only one of two possible values in a year. Given the multitude of events that
may happen, one might expect a large number of possible values. We agree. As 2 first
step toward accommodating this possibility, let us divide the one-year period into two
subintervals of length six months. At the end of each of these six-month periods, it is
now assumed again that the stock price can take on one of two possible values:

S+ 1) = Us() if the stock price moves “up”
DS(t) if the stock price moves “down,”

where (¢} is the stock price at date ¢, and U and D are constants, Ubeing greater than D,

The range of possible outcomes is shown in Figure 4.4. There are now three pos- -
sible prices at the end of the year (U?S, UDS, D?5). Such a figure is referred to as a
Iattice.

We wish to make a number of comments about Figure 4.4. First, what are the val-
ues of Uand D? A complete answer will be given in the next section. For the moment,
notice that it is unreasonable to expect the initial values for the up and down factors,
U = 1.407 and D = 0.833, to remain unchanged as the number of intervals increases.
Because, if they remained unchanged, then as the number of periods increased the
magnitude of the largest stock price would explode (approach infinity). To avoid this
result, the size of the up and down factors must depend on the number of intervals.

Second, we assumed that the up and down factors do not depend on time and are
state independent.® These assumptions imply that the lattice recombines at the end of
each interval, giving a total of three distinct possible prices for the stock at year end.
If we had n intervals per year, 1 being a positive integer, there would be (n + I)pos-
sible stock prices at year end. We could relax the assumptions of time and state inde-
pendence, but it would result in an increase in the complexity of the lattice. An
illustration of this complexity occurs when we talk about the pricing of interest-rate
derivative securities in Chapter 15.

4.3 FORMAL DESCRIPTION (BINOMIAL PRICING)

In order to formalize’ the description of the lattice, we divide the horizon [0, T] into
n periods of equal length A, where T = nA. Let S(¢) denote the stock price at date ¢,
where £ = 0, A, 24, ..., nA. Remember that S(0) denotes today’s stock price. All fu-
ture stock prices are uncertain, :

At some intermediate date ¢, the stock price next period, date £ + A, would take
the values '

“By state independent, we mean (hat the up and down factors do ot depend on the level of the stock price,
*This is not intended to be a rigorous derivation, We want to concentrate on the underlying economics with-
out getting too involved in the mathematics. For more rigor, see the references.
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Fieure 4.5 Multiperiod Bionomial Pricing

t=0 =1 =2 =3 t=4 StockPrice Probahifity
S(d) = 5(0) U 4
SO ~ .
-S(0)L2 5(4) = S(O0) U°D 4p3(1-p)
SO SOW2D '
S0)<C OWD S(4) = 5(0) U202 6p*(1-p)?
SO)D SOUD?
SOD2<_ S(4) = $(0) UD® 4p(1-p)3
: RY(1)]23d
5(4) = 5(0) D* (1-p)*

- |8(OU . with probability p
S+ 8)= {S(r)D with probability I — p. : “8

Taking A = 1, a lattice of four intervals i5 shown in Figure 4.5. Observe that at
the end of four intervals, the stock price S(4) can have one of five possible values.

The probabilities are determined by considering the number of up and down
transitions along all the feasible paths through the lattice. At date T, after n inter-
vals, there are (n + 1) possible values for the stock price S(7T). These values and
their associated probabilities are listed in Table 4.1 on the next page. The probabil-
ities are easily computed, and the resulting distribution for the time T stock price is
known as a multinomial distribution. Tables for its values can be readily found in
standard statistical software.

The formal description of the binomial model is now complete. To use this
model in applications, the specification of the factors I/ and D is crucial. Different
choices of U and D will generate different models for the stock price. Next we will

show how to specify I/ and D so that the lattice of stock prices will approximate the
lognormal distribution.

4.4 THE BINOMIAL APPROXIMATION TO THE

LOGNORMAL DISTRIBUTION

We now show how to use the binomial model of the previous section to approximate

the lognormal distribution of Section 4.1. It is done by choosing the up (U') and down
(D) maghitudes in a clever fashion.
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Taeve 4.1 Stock Prices at Date T for a Lattice with n Intervals

S(T) ProBaBILITY
Syu” - P’

SOU"~'D 'l')p"”’(l -p)
SOy - 2p? ;)p"" (1-p¢

(
sour (7 )pa-pr

SO (1—p)

where the binomial coefficient (7} is defined by
(n)_m AXn-DXMm—2)..2x%1
kX GE-1)X . X2X1][(n - B X1 —k—1) X .. X2 X 1"

For example, when » = 4, the values for k= 3 and 2 are:

(4)_ 4X3IX2X1 (4)_ 4X3X2X1
3) BX2XIX1 2/ RXOxXeExi

Recall that the binomial representation assumes that, at the end of each interval,
the stock’s return can take only one of two possible values. Let us rewrite the binomial
representation as

A=, = |PA+TOVA  with probability ¥,
I[SEYSE =~ M) =2, [p,A ~oVA  with probability ¥, “9)

With probability %, the stock’s (continuously compounded) return goes “up” to
wA + o/A, and with probability Y, the stock’s return goes “down” to pA —
o+/A: The choice of the probability of an upward movement to be Y, is justified
subsequently.

The expected return over [t — A, #] is

Efz] = (p;\A +oVAYY) + (nA - oVAY')
= W

and the variance is
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varfz] = (oVAY (%) + (~aVAY(Y)
= ¢?A.

The expected return, 4, is often called the drift because it is the value to which
the stock return drifts before it is shocked by +o'VA or —o'VA {(see Expression
(4.9)). The square root of the term ¢ is often called the stock’s volatility (o) be-
cause it reflects the size of the random shocks in the stock’s return as it moves
through time, ’

* We now argue that Expression (4.9) approximates a lognormal distribution. Note
that, by construction, Expression (4.9} satisfies Assumptions Al through A4 in
Section 4.1. First, z, is independently and identically distributed since the probabili-
ties (%), the drift p, and the volatility o do not change with ¢ (Assumptions A1 and
AZ2). Second, Assumptions A3 and A4 are seen to be satisfied by the expected return
and variance of Expression (4.9). They are both proportional to the length of the time
peried A. Thus, by the argument used in Section 4.1, for infinitesimal intervals (asA
tends to zero), z, is approximately normally distributed.®

This is an important observation because it implies (as argued earlier) that the bi-
nomial representation in Expression (4.9) approximates a lognormal distribution.
Using Expression (4.9), the stock price at date £ can be written in the form
_ exp(A + VA with probability ¥,
S®=5¢-1) [exp (na — cr\/Kg with probability '/z . (4.10)
Given this expression, we can easily identify the up and down factors in Figure 4.4
in terms of the instantaneous expected return per umit time, I, the instantancous

, volatility per unit date, o, and the length of the interval, A. They are

U = exp(pA + o'VA)
and
D = exp(uA — oV/A).

A final comment is in order. Because we are only interested in approximating a
lognormal distribution as A gets small via a binomial répresentation, the représenta-
tion of stock price movements in Expression (4.10) is not uniquely determined. There
are other ways of representing stock price movements that satisfy Assumptions AT’
through A4° :

*A. formal proof is given in Cox and Miller (1990, Chapter 5).
*The representation used in Cox, Ross, and Rubinstein (1979) is

— r_ ax [exp(@VE) with probability [1 + (n/o)VAE}2
Sty =St~ 4) {gxp(—o'\/K) with prebability [1 ~ (u/a)VA]/2.
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| Expmeee Binomial Lattice Approximation to the Lognormal Distribution

Suppose that the expected return p is 11 percent per year and the volatility o is
25 percent per year. These numbers can be calibrated to market data,

In Figure 4.6 the horizon is one year, In Part A we have split this into two
six-month intervals, implying the number of periods, n = 2, arid the length of

each interval, A = Y, = 0.5. Therefore, the expected drift is

pA =0.11 X .05 = 0.055

and the volatility over the interval is

L 0VA = 025XV05 = 0.1765.

lerice; froti Bxipression (4.9) the qﬁe.’p‘eﬁbd'cqnﬁnuodgj;id;‘;;ﬁagnded re-
turits ¢an be written as AR . it s

{_- 02318 with probability. ¥,

CETlts by,

Fieure 4.6 Binomial Stock Price Latfices

Part A

Today ¢ Months 12 Months

' $158.98
$126.00

$100 < $111.63
$88.53

‘ $78.38

Today 4 Months 8 Months 12 Months

$172.11
$143.62
$119.84 $128.95
$100< $107.60 .
$89.79- $96.62
$80.62

$72.39
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$128.95
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N $72.39
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TaeLr 4.2 Size of the Up and Down Factors

103.

NUMBER OF INTERVALS ~ LENGTH OF INTERVALS  Up Facror  Down Factor

n A U D

1 1 1.4333 0.8694
1.2609 0.8853

0.8979

et 3

Note two points from this example. The size of the up and down factors, U and
D, change as the length of the inte

rval changes. This relationship of U and D to the
time interval A is summarized in Table 4.2. As the length of the interval A decreases,

the size of the up factor U decreases toward 1 and the size of the down factor D in-
creases toward 1. It is always the case that the size of the up factor U is greater than
the size of the down factor D. This model will be utilized repeatedly later on in the

text to understand the pricing and hedging of options and futures.
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I

: Fioure 4.7 Pattern of Price Movements

Part A
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. If the coin toss is “tails,” the stock price next interval is
S(t + &) = S(t)exp(nA — 0 VA).
In Figure 4.7, Part A, a three-day interval is used, so A = 3/365. In Part B,

a'one-day interval is used, so A = 1/365. You should comparte these figures to
Figure4.1. & '

4.5 EXTENSIONS

We now discuss generalizations of the lognormally distributed stock price process.
Recall that the lognormal distribution is characterized by Assumptions A1 through A4,
Changing any of these assumptions will imply a different stock price distribution; the
two assumptions most often modified are Assumptions A3 and A4. For example, the
mean reurn . and the variance of the return o2 can both be made functions of the stock
price. This modification changes the stock price process to 2 non-lognormal distribution.

There are many reasonable distributions for which the return’s variance depends
upon the stock price level. For example, in some markets it is observed that the vari-
ance of price changes increases as the stock price increases. In terms of returns, it im-
plies that the variance of the stock’s return decreases as the stock price ificreases. We
can incorporate this idea by assuming that

varfz] = n?A/S(),

where m is the “new” volatility term.

This modification of Assumption A4 yields a stochastic volatility model for the
stock price, which causes a number of complications. First, the lattice may not re-
combine, implying that in Figure 4.4 we would have four different price levels at the
terminal time.' This condition can cause computing problems when the number of
intervals is large. Second, successive price changes will no longer be independently
distributed, which complicates the statistical procedures employed when estimating
the parameters p and 4. '

4.6 STOCHASTIC DIFFERENTIAL EQUATION REPRESENTATION

To read the academic literature on option pricing, one must be acq.uainted with the
stochastic differential equation representation of lognormally distributed stock prices.
We hereby provide a simple introduction,

"%See Nelson and Ramaswamy (1990) for a description of how to use binomial processes to approximate
different types of processes.
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An elegant way to represent Assumptions A1 through A4 for continuous com-
pounded returns is"!

Z. 4= WA+ oWt + A) - v,

where [W(¢ + A) — #(1)] is a normally distributed random variable with zero mean
and variance A, _

The above equation is usually expressed in terms of stock price changes. Recall
that, by definition,

Z+ 4 = IN[S( + A)/S(O] = InS(¢ + A) - InS{).
Hence we can write Assumptions Al through A4 alternatively as
InS( + A) ~ InS() = pA + o[ F( + A) — W), ' 4.11)

Replacing discrete changes with infinitesimal changes, that is, df = A, dInS(¢) =
InS(z + A) ~ InS(), and dW() = W + A) ~ (), we obtain

dInS(f) = pdt + od W), A 4.12)

Expression (4.12) is the form by which Assumptions A1 through A4 most often ap-
pear in the literature,

For distributions more complex than the lognormal, Expression (4.12) can be
generalized to

dInS(t) = pfz, S(BH)dt + ofs, S(14W(), (4.13)

where dnS(#) represents the change in the natural logarithm of the stock price from
date £ to ¢ + dt, with df being an infinitesirnal change in time. [z, $(¢)] is the instan-
taneous expected return per unit time, and W (¢) is a Brownian motion.

A Brownian motion, by definition, is a random variable that is normally dis-
tributed with zero mean, variance dt, and has independent increments (that is, d(1)
and dW(t + dt) are independently distributed).

Note that, in this general form, both the mean and volatility are functions of date
¢ and the current stock price, S(z). Expression {4.13) is called a differential equation

""The expected value of z, is
Efz,] = pa

and the variance is

varfz,] = oclvar{A(2)]

= giA.
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because the stock price S(¢) is only defined implicitly by describing its changes
through time.

Different assumptions about the form of the volatility give rise to different solu-
tions S(¢) to this stochastic differential equation. The standard assumption is to as-
sume that y and o are constants, which is the form of the equation implied by
Expression (4.12). The solution for &§(¢) in this case is a lognormal distribution, It is
the stock price distribution underlying the Black-Scholes option pricing model and

the special cases of the Heath-Jarrow-Morton model studied later.

4.7 COMPLICATIONS

We now consider various complications to the preceding theory.

Lognormal Distribution

If we look at the empirical distribution of continuously compounded refurns, we find
that the tails of the distribution are fatter than those expected by a normal distribution.
This condition is inconsistent with a lognormal distribution for stock prices. By ex-
amining the dynamic properties of stock price changes, there is also some evidence
that the volatility of the distribution changes,'? which is inconsistent with a lognormal
distribution for stock prices because stochastic volatility causes the distribution of re-
turns fo have fat tails. There js a growing literature using stochastic volatility stock
price models to price derivative securities. We will return to this point shortly. ‘

Continuous Trading

In the binomial model approximation to the lognormal, the length of the trading pe-
riod A decreases in size as we increase the number of intervals. In the limit, the length
of the trading period becomes infinitesimal and implies that trading is approximated
as being continuous. This, of course, is not true because there are holidays and week-
ends on which markets close. ' :

The closing of markets on weekends and holidays can cause Assumptions A1
through A4 to be violated, In particular, French (1980) has documented that over
weekends the volatility of returns differs from that during the week, violating
Assumption A4, which assumes a constant volatility. If we know the different
volatilities during the different periods, we can introduce these complications info
our description of stock price movements via the generalizations discussed in
Section 4.5. : ) :

The tradeoff for increased realisth will be increased complexity. The choice be-
tween the two (realism versus simplicity) is made with the use of the models in mind.

“See Schwert (1989) and Haugen, Talmor, and Torous (1991).
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Trading rooms often prefer realism, while corporate treasury departments often pre-
fer simplicity.

Gonimuously Changmg Prices

Assumptions A3 and A4 imply that for infinitesimal time intervals, returns are not-
mally distributed with a variance approaching zero. It implies that stock price
changes will be quite small, and in the limit, continuously changmg Unfortunately,
an institutional feature of most markets is the existence of minimum allowed price
changes. For example, in equity markets the minimum price change is usually ¥, per
share. We have ignored this institutional feature, and for most of the book we will
continue to ignore it because, for large dollar positions, continuously changing prices
is a reasonable approximation.

However, this institutional feature may affect how we estimate different parame-
ters and test the models. For example, academic studies often ignore deep-out-of-the-
money options near expiration because option prices are near zero, and s canbe a
large percent of the option’s value. Traders also recognize these difficulties and will
often refrain from trading deep-out-of-the-money options near expiration.

4.8 SUMMARY

To price derivative securities, we need a way of representing the evolution of the fu-
ture prices of an asset. We need a model that is simple enough to perform analysis but
complex enough to provide a realistic approximation. The lognormal distribution is
our selection.

However, to facilitate understanding we study the binomial model. We show how
to specify the up and down factors such that as the number of intervals increases—or
equivalently, the length of each interval decreases—the binomial model approximates
a lognormal distribution. The binomial form of this representation will also be the
model used to explain the pricing and hedging of equity, stock index, foreign cur-
rency, commodity, and interest rate derivatives in subsequent chapters.
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QUESTIONS

Question 1

What are the four assumptions that characterize a lognormal distribution for stock
price returns? ' :

Question 2

The expected value of a continuously compounded rate of return is 12 pércent per
year and its volatility is 30 percent per year. :

a) What is the expected return and volatility over a one-month period?
b) What is the expected return and volatility over a two-month period?
<€) What is the expected return and volatility over a three-month period?
d) "What is the expected return and volatility over a six-month period?

Question 3

What is the dollar expected return and standard deviation of the dollar return over
[¢,  + A] for the stock price in Expression (4.8)?
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Question 4

Consider the following binomial model for a stock S, for¢ =0, 1, 2.
121

75 110

100
25

S0

81

a) What is thie probability that 5= 1217

b) What is the probability that S, =997

€} What is the probability that S, = 817

d) What is the expected stock price at date 1?7

¢} What is the variance of the stock price at date 1? At date

27 Is the stock price
variance increasing, decreasing, or constant across time?

Question 5

Consider a lognormaIA distribution with me

an refurn per year of p. = 0.05 and return
standard deviation per year of o = 0.2,

a) What are the up (U) and down (D) magnitudes for the binomial ainproximations
to this lognormal distribution for an arbitrary set size A?

b) Compute the values in a) for A = 1,1/2, 1/4, 1/8. What happens to {7 and D as A
decreases? :

¢) Using A = 1, construct the binomial tree for

two time steps. Let the initial stock
price be $100.

Question 6

The expected value of the continuously

compounded rate of return is 12 percent per
annum and its volatility is 30 percent

per annum. The curzent stock price is §100.

a) Hthe interval A is chosen to be one day, that is, A = 1/365, use Expression (4.10)
to compute the binomial distribution of stock prices over the interval.

b) Calculate the expected value of the stock price relative.

¢} Calculate the volatility of the stock price relative,

What relationship does your
computed value have with the value of ¢\VVA?
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Question 7

The expected value of the continuously compounded rate of return is 15 percent per
annum and its volatility is 30 percent per annum. The current stock price is $100.

a) Ifthe time interval is chosen to be one week, that is, A = 7/365, use Expression
{4.10) to compute a binomial lattice of stock prices over three weeks.

b) Compute the expected stock price at the end of one week.

¢) Compute the expected stock price at the end of two weeks.

d) Compute the expected stock price at the end of three weeks.

e} How does your answer to part d) compare to the expected stock price computed
using Expression (4.7)?

Question 8

The expected value of the continuously compounded rate of return is 18 percent per
year and its volatility is 35 percent per year. The return is normally distributed. Below
you are given the outcome of tossing a fair coin with outcomes Heads (H) or Tails (T).

Sequence 1 2 3 4 5 6 7 8 9 10
Outcome T T H T H H T H H H

The current stock price is $25.

a} Ithe interval is 5 days, that is, A = 5/365, use Expression (4.10) to generate a
random sequence of stock prices, ) :
b) Repeat this exercise with the interval being one day, A = 1/365,

Question 9

Given the information in Question 8, you are now givén the values of a random draw-
ing from a normal distribution with zero mean and variance A, where A = 1/365.

Sequence AW
1 —0.0604
—0.0219
0.0178
—0.0174
0.0244
0.0538
—0.0230
0.0152
0.0467
0.0396

S W R W N
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a) Use Expression (4.11) to generate a random sequence of stock prices.
b) Compare your answers to those in Question 8b).

Question 10

Suppose the stock price is described via the stochastic differential equation

dlnS(1) = wdt + cdW(p),

a) What distribution does the stock price follow?

b)  This description implicitly assumes that trading takes place continuously in time.
What problems are there with this assumption?

¢) This description implies that stock prices change continuously, What problems
are there with this implication?

APPENDIX: THE EXPECTED VALUE OF THE FUTURE
STOCK PRICE ‘

We want to prove

E{S(TY | (S(0)] = S(0)exp(uT + o>T12).

From Expression (4.4) we have

S =sOepizm

. where Z(T) is normally disis
variance o7, using Express

 where z s a realized value of Z(T"), i
. The'expected value of S(T)) condi

 EBmI501=s0

Completmg tl:i:é:'s__'c:ltifaré. gives,

ZZ((rl)— :

E
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