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3. Stochastic Processes in Discrete Time

8.1 Information and Filtrations

Access to full, accurate, up-to-date information is clearly essential to any-
one actively engaged in financial activity or trading. Indeed, information is
arguably the moet important determinant of success in financial life. Partly
for eimplicity, partly to reflect the legislation and regulations against insider
trading, we shall confine ourselves to the situation where agents take deci-
sions on the basis of information in the public domain, and available to all.
We shall further assume that information once known remains known - is
not forgotten — and can be accessed in real time.

In reality, of course, matters are more complicated. Information overload
is as much of a danger as information scarcity. The ability to retain infor-
mation, organise it, and access it quickly, is one of the main factors which
will discriminate between the abilities of different economic agents to react to
changing mazket conditions. However, we restrict ourselves here to the sim-
plest possible situation and do not differentiate between agents on the basis of
their information processing abilities, Thus as time passes, new information
becomes available to all agents, who continually update their information.
What we need is a mathematical language to model this information flow,
unfolding with time. This is provided by the idea of & filtration; we outline
below the elements of this theory that we shall need.

The Kolmogorov triples (12, F, P), and the Kolmogorov conditional expec-
tations E(X|B), give us all the machinery we need to handle static situations
involving randomness. To handle dynamic situations, involving randomness
which unfolds with time, we need further structure.

We may take the initial, or starting, time as ¢ = 0. Time may evolve
discretely, or continuously. We postpone the continuous case to Chapter 5; in
the discrete case, we may suppose tiine evolves in integer steps, 1 =0, 1, . T
(say, stock-market quotations daily, or tick data by the second). There may
be a final time T, or time horizon, or we may have an infinite time horizon
(in the context of option pricing, the time horizon T is the expiry time).

We wish to model a situation involving randomness unfolding with time.
As above, we suppose, for simplicity, that information is never lost (or for-
gotten): thus, as time increases we learn more. We recall from Chapter 2 that
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o-algebras represent information or knowledge. We thus need a sequence of
‘o-algebras {F,, : n =0,1,2,...}, which are intreasing:

}-nc}-n-}-l (n=0;112i"')l

with F, representing the information, or knowledge, available to us at time
n. We shall always suppose all o-algebras to be complete (this can be avoided,
and is not always appropriate, but it simplifies matters and suffices for our
purposes). Thus Fo represents the initial information (if there is none, o =
{9, 12}, the trivial s-algebra). On the other hand,

Foo = i, %

represents all we ever will know (the ‘Doomsday o-algebra’). Often, Fo, will
be F (the o-algebra from Chapter 2, representing ‘knowing everything’. But
this will not always be so; see e.g. [218], §15.8 for an interesting example.
Such a family {F, : n = 0,1,2,...} is called a filtration; a probability space
endowed with such a filtration, {2, {Fn}, F, P} is called a filtered probability
space. These definitions are due to P. A. Meyer of Strasbourg; Meyer and
the Strasbourg (and more generally, French) school of probabilists have been
responsible for the ‘general theory of (stochastic) processes’, and for much of
the progress in stochastic integration, since the 1960s; see e.g. [69, 60, 163,
164).

For the special case of a finite state space 2 = {wy,... ,wn} and a given
o-algebra F on 2 (which in this case is just an algebra) we can always find a
unique finite partition P = {A;,..., A1} of 2, i.e. the sets A; are disjoint and
l_J:-__.l A; = 02, corresponding to F. A filtration F, therefore corresponds to a
sequence of finer and finer partitions Py. At time ¢ = 0 the agents only know
that some event w € 2 will happen, at time T' < oo they know which specific
event w* has happened. During the flow of time the agents learn the specific
structure of the (o-) algebras F,, which means they learn the corresponding
partitions P. Having the information in F, revealed is equivalent to knowing
in which A,‘") € P, the event w* is. Since the partitions become finer the
information on w* becomes more detailed with each step.

Unfortunately this nice interpretation breaks down as soon as 2 becomes
infinite. It turns out that the concept of filtrations rather than that of parti-

tions is relevant for the more general situations of infinite 2, infinite T and
continuous-time processes.

3.2 Discrete-Parameter Stochastic Processes
The word ‘stochastic’ (derived from the Greek) is roughly synonymous with

‘random’. It is perhaps unfortunate that usage favours ‘stochastic process’
rather than the simpler ‘random process’, but as it does, we shall follow it.
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We need a framework which can handle dynamic situations, in which time
evolves, and in which new information unfolds with time. In pnrt‘icular, we
need to be able to speak in terms of ‘the information available at time n’, or,
‘what we know at time n’. Further, we need to be able to increase n — thereby
increasing the informatior available as new information (typically, new price
information) comes in, and talk about the information flow over time. One
has a clear mental picture of what is meant by this - there is no conceptual
difficulty. However, what is needed is a precise mathematical construct, which
can be conveniently manipulated - perhaps in quite complicated ways — and
yet which bears the above heuristic meaning, Now ‘information’ is not only
an ordinary word, but even a technical term in mathematics - many books
have been written on the subject of information theory. However, information
theory in this sense is not what we need: for us, the emphasis is on the
flow of information, and how to model and describe it. With this by way of
motivation, we proceed to give some of the necessary definitions.

A stochastic process X ={X; : t € I} ia a family of random variables, de-
fined on some common probability space, indexed by an index-set J. Usually
(always in this book), I represents time (sometimes I represents space, and
one cells X a spatial process). Here, I = {0,1,2,...,T} (finite horizon) or
I={0,1,2,...} (infinite horizon). The (stochastic) process X = (Xn)ako I8
said to be adapted to the filtration (Fn)5Zo if

Xn is Fn — measurable.
So if X is adapted, we will know the value of Xn at time n. If
fn = d'(Xo,X1, e ,Xn)

we call (F,) the natural filtration of X. Thus a process is always adapted to
its natural filtration. A typical situation is that

J"n=o(W0)WIi"' vwﬂ)

is the natural filtration of some process W = (W,). Then .X is adapted to
(Fn), i.e. each X, is Fn- (or o(Wo,: - , Wa)-) measurable, iff

xn = fn(Wl)lWl) see lwn)

for some measurable function f, (non-random) of n+1 variables.

Notation. For a random variable X on (2, F, P), X (w) is the value X takes
on w (w represents the randomness). For a stochastic process X = (Xan), it
is convenient (e.g., if using suffixes, n; say) to use Xp, X (n) interchangeably,
and we shall feel free to do this. With w displayed, these become X, (w),
X(n,w), ete, C
The concept of a stochastic process is very genera-l - and s0 very flexible -
but it is too general for useful progress to be made without specifying further
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structure or further restrictions. There are two main types of stochastic pro-
cess which are both general enough to be sufficiently flexible to model many
commonly encountered situations, and sufficiently specific and structured to
have a rich and powerful theory. These two types are Markov processes and
martingales. A Markov process models a situation in which where one is, is
all one needs to know when wishing to predict the future - how one got there
provides no further information. Such a ‘lack of memory’ property, though
an idealisation of reality, is very useful for modelling purposes, We shall en-
counter Markov processes more in continuous time (see Chapter 5) than in
discrete time, where usage dictates that they are called Markov chains, For
an excellent and accessible recent treatment of Markov chains, see e.g. [171].
Martingales, on the other hand (see §3.4 below) model fair gambling games
- situations where there may be lots of randomnese (or unpredictability),
but no tendency to drift one way or another: rather, there is a tendency to-

wards stability, in that the chance influences tend to cancel each other out
on average,

3.3 Discrete-Parameter Martingales

Excellent accounts of discrete-parameter martingales are Neveu [169] and
Williams {218] to which we refer the reader for detailed discussions, We will
summarise what we need to use martingales for modelling in finance,

3.3.1 Definition and Simple Properties

Definition 3.3.1. A process X = (X,) is called a martingale relative to
((F), P) if

(i) X is adapted (to (F,));

(i) E|Xa| < 0o for all n;

(iii) E[Xn|Fn1) = Xney P —as. (n2>1).

X is a supermartingale if in place of (iii)

E(Xn|Fa-1] < Xn-t P—ga.a. (n21);
X is a submartingale if in place of (iii)

EB{Xp\Fao1]) 2 Xay P—as. (n2>1).

Using (iii) we see that the best forecast of unobserved future values of (X)
based on information at time 7y, is X,; in more mathematical terms, the 7,
measurable random variable Y which minimises E((Xn41 — Y)?|Fp) is X,.
Martingales also have a useful interpretation in terms of dynamic games: a
martingale is ‘constant on average’, and models a fair game; a supermartin-
gale is ‘decreasing on average’, and models an unfavourable game; a sub-
martingale is ‘increasing on average’, and models a favourable game,
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Note. 1. Martingales have many connections with harmonic functions in
probabilistic potential theory. The terminology in the inequalities above
comes from this: supermartingales correspond to superharmonic functions,
submartingales to subharmonic functions.

2. X is a submartingale (supermartingale) if and only if =X is a super-
martingale (submartingale); X is a martingale if and only if it is both a
submartingale and a supermartingale.

3. (X») is & martingale if and only if (X, — Xo) is a martingale, So we may
without loss of generality take Xo = 0 when convenient,

4, If X is a martingale, then for m < n using the iterated conditional ex-
pectation and the martingale property repeatedly (all equalities are in the
a.8.-sense)

E[Xn ':Fm] = E[E(Xn lfn-l)l-rm] = E[Xn—lp'-m]
=...= E[Xm|Fm] = Xm,

and similarly for submartingales, supermartingales.

5. Examples of a martingale include: sums of independent, integrable zero-
mean random variables (submartingales: positive mean; supermartingale:
negative mean),

From the Ozford English Dictionary: martingale (etymology unknown)

1. 1589. An article of harness, to control a horse’s head.

2. Naut, A rope for guying down the jib-boom to the dolphin-striker.

3. A system of gambling which consists in doubling the stake when losing in
order to recoup oneself (1815).

Thackeray: ‘You have not played as yet? Do not do so; above all avoid a
martingale if you do.’

Gambling games have been studied since time immemorial - indeed, the
Pascal-Fermat correspondence of 1654 which started the subject was on a
problem (de Méré’s problem) related to gambling. The doubling strategy
above has been known at least since 1816.

The term ‘martingale’ in our sense is due to J. Ville (1939), Martingales
were studied by Paul Lévy (1886-1971) from 1934 on (see obituary [155]) and
by J.L. Doob (1911-) from 1940 on. The first systematic exposition was [62].
This classic book, though hard going, is still a valuable source of information.

Example. Accumulating data about a random variable ([218], pp. 96, 166-
167). If £ € L}(2,F, P), M, := E(£|%n) (s0 My represents our best es-
timate of £ based on knowledge at time n), then using iterated conditional
expectations .

E(Ma|Fn-1) = E(EE|Fa)|Fnai] = E[{|Fn-1] = Ma-y,
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80 (M,) is a martingale. One has the convergence

Mn = My, := E[¢|Fes]) a.s. andin L!.

3.3.2 Martingale Convergence

We turn now to the theorems that make martingales so powerful a tool.

A supermartingale is ‘decreasing on average’. Recall that a decreasing
sequence (of real numbers) that is bounded below converges (decreases to
ite greatest lower bound or infimum). This suggests that a supermartingale
which is bounded below converges a.s.. This is 30 (Doob’s forward convergence
theorem: [218), §§11.5, 11.7),

More is true. Call X L!-bounded if

sup F | X, | < o0,
n

Theorem 3.3.1 (Doob). An L!-bounded supermartingale is a.s. conver-
gent: there erists X, finite such that

Xn =+ X (n—00) as.
In particular, we have ([218], §11.5):

Theorem 3.3.2 (Doob’s Martingale Convergence Theorem). An L!-
bounded martingale converges a.s.,

We say that
Xp 2+ Xe inl!
if
E|Xn = Xos| =0 (n—= o).

For a class of martingales, one gets convergence in L! as well as almost surely
([169), IV.2, [218], Chapter 14).

Theorem 3.3.3. The following are equivalent for martingales X = (Xn):
(i) Xn converges in L}; :
(1) X, is L'-bounded, and its a.s. limit X o, (which ezists, by above) satisfies

(iii) There ezists an integrable random variable X with
Xn = E[X|Fa).

Such martingales are called regular [189] or uniformly integrable [218).

E
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3.3.3 Doob Decomposition

Theorem 3.3.4. Let X = (X,) be an adapted process with each X, € L!.
Then X has an (essentially unique) Doob decomposition

X=Xo+M+A: Xo=Xo+M.+A, ¥n (3.1)

with M a martingale null at zero, A a predictable process null at zero. If also
X is a submartingale (‘increasing on average’), A is increasing: An < Any1
for alln, a.s.

Proof. If X has a Doob decomposition (3.1),
E[Xn - Xu-i'-rn-l] = E[Mn . Mn-ll}-n-ll + E[An - An—ll}-n-ll-

The first term on the right is zero, as M is a martingale. The second is
Ap = An-1, since A, (and An-y) is Fy_1-measurable by previsibility. So

E[Xp = Xn-1|Fa-1]= An = An-1, (3.2)

and summation gives

n
An =Y EB[Xk ~ Xiwi|Fimsl, aus.

k=1

We use this formula to define (A,), clearly previsible. We then use (3.1) to
define (M,), then s martingale, giving the Doob decomposition (3.1).

If X is a submartingale, the LHS of (3.2) is > 0, so the RHS of (3.2) is
>0, i.e. (An) is increasing. u]

Although the Doob decomposition is a simple result in discrete time, the
analogue in continuous time - the Doob-Meyer decomposition ~ is deep (see
Chapter 5). This illustrates the contrasts that may arise between the theories
of stochastic processes in discrete and continuous time.

3.4 Martingale Transforms

Now think of a gambling game, or series of speculative investments, in discrete
time, There is no play at time 0; there are plays at timesn=1,2,..., and

AX,, = X,. = X"_l

represents our net winnings per unit stake at play n. Thus if X, is a martin-
gale, the game is ‘fair on average’. :

Call a process C = (Cn)$%; predictable (or previsible) if
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Cy is Fn-1 — measurable for all n > 1.

Think of C,, as your stake on play n (Cj is not defined, as there is no play at
time 0). Previsibility says that you have to decide how much to stake on play
n based on the history before time n (i.e., up to and including play n - 1).
Your winnings on game n are ChAXp, = Cu(Xn = X,-1). Your total (net)
winnings up to time n are

n n
Yo=Y ChdXy =3 Ce(Xh = Xx-1).
k=1

=1
We write
Y=CeX, Yn=(CoX)a, AYn=CraX,

((CeX)o=0as Yu_, is empty), and call C ¢ X the martingale transform
of X by C.

Theorem 3.4.1. (i) If C is a bounded non-negative predictable process and
X is a supermartingale, C ¢ X is a supermartingale null at zero,

(1) If C is bounded and predictable and X is a martingale, C ¢ X is a mar-
tingale null at zero,

Proof. With Y = C ¢ X as above,

EY, — Yao1lFn-1) = ElCa(Xn = Xn-1)|Fn-1]
= CnE[(Xn b Xn-l)l-rn—!]

(as Cy, is bounded, so integrable, and F,_;-measurable, so can be taken out)
<0

in case (i), as C > 0 and X is a supermartingale,
=0

in case (ii), as X is a martingale. o

Interpretation. You can’t beat the system! In the nartingale case, previs-
ibility of C means we can’t foresee the future (which is realistic and fair). So
we expect to gain nothing — as we should.

Note. 1. Martingale transforms were introduced and studied by D.L. Burk-
holder [33]. For a textbook account, see e.g. {169], VII1.4,

2. Martingale transforms are the discrete analogues of stochastic integrals.
They dominate the mathematical theory of finance in discrete time, just as
stochastic integrals dominate the theory in continuous time.
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Lemma 3.4.1 (Martingale Transform Lemma). An adapted sequence of
real integrable random variables (My) is a martingale iff for any bounded pre-
visible sequence (Hy),

n
E (ﬁZH;,AM;,) =0 (n=1,2,..).
=1
Proof. If (M,,) is a martingale, X defined by Xy = 0,

n
Xn=)_ H.AM, (n>1)
k=1
is the martingale transform H ¢ M, so is a martingale.
Conversely, if the condition of the proposition holds, choose j, and for any
Fj-measurable set A write Hy, = 0 for n # j+ 1, Hyyy =I5, Then (Hy) is
previsible, so the condition of the proposition, E(3-) H,AM;) = 0, becomes

E(I4(Mj41 =~ Mj)] = 0.

Since this holds for every set A € F;, the definition of conditional expectation
gives

E(Mjy1|F;) = Mj.
Since this holds for every j, (Mn) is a martingale. a

Remark 3.4.1. The proof above is a good example of the value of Kol
mogorov’s definition of conditional expectation - which reveals itself, not
in immediate transparency, but in its ease of handling in proofs. We shall see
in Chapter 4 the financial significance of martingale transforms H ¢ M.

3.5 Stopping Times and Optional Stopping

A random variable T taking values in {0,1,2,...;+o0} is called a stopping
time (or optional time) if

{T<n})={w:Tw)<n}eF, ¥n<oo.
Equivalently,
{T=n}eF, n<oo, o {T>n}eF,, n<oo.

Think of T as a time at which you decide to quit a gambling game: whether or
not you quit at time n depends only on the history up to and including time n
-~ NOT the future, Thus stopping times model gambling and other situations
where there is no foreknowledge, or prescience of the future; in particular, in
the financial context, where there is no insider trading. (Elsewhere, T' denotes
the expiry time of an option. If we mean T to be a stopping time, we will say
80.)
The following important classical theorem is discussed in [218], §10.10.
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Theorem 3.5.1 (Doob’s Optional Stopping Theorem, OST). Let T
be a stopping time, X = (Xn)be a supermartingale, and assume that one of
the following holds:

(i) T is bounded (T'(w) < K for some constant K and allw € 2)
(ii) X = (Xn) is bounded (|Xn(w)| £ K for some K and alln,w);
(iii} ET < oo and (X, - Xp—y) is bounded.

Then Xt is integrable, and

EXr < EXo.

If X is ¢ martingale, then
EXr = EXo.

The optional stopping theorem is important in many areas, such as sequential
analysis in statistics. We turn in the next section to related ideas specific to
the gambling/financial context.

Write XT := Xpar for the sequence (X,) stopped at time T,

Proposition 3.5.1. (i) If (Xn) is adapted and T is a stopping time, the
stopped sequence (Xnar) is adapted.

(ii) If (X») is a martingale (supermartingale) and T is a stopping time, (XT)
is ¢ martingale (supermartingale).

Proof. If ¢; := 1(5¢T}H

Xran = Xo+ 3 $5(X; = X4-1)
j=1

(as the right is Xo + 3 joy (Xj = Xj-1), which telescopes to X7an). Since
{i < T} is the complement of {T < j} = {T < j~-1} € Fj-1, (¢n) is
predictable. So (XT) is adapted.

If (Xn) is a martingale, so is (X7) as it is the martingale transform of
(Xn) by (¢n). Since by predictability of (¢n)

n-1
E(XranlFac1) = Xo+ 3 65(X5 = Xj-1) + $n(ElXn|Fazi] = Xn-1)
i=1

= Xran-1) + ¢a(E{Xn|Fa-1] = Xn-1),

én > 0shows that if (Xn)isa supermartingale (submartingale), so is (XTan).
a

Note. 1. See e.g. [169], Lemma II-12.14 for a variant on this proof avoiding
the language of martingale transforms.

2. Part (ii) of the proposition says that if a game is fair, it remains fair when
stopped (by a stopping time, i.e. without prescience); if it is (un-) favourable,
it remains (un-) favourable when stopped.
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Examples

1. Simple Random Walk. Recall the simple random walk: S, := 3.7 X,
where the X, are independent tosses of a fair coin, taking values +1 with
equal probability 1/2. Suppose we decide to bet until our net gain is first +1,
then quit. Let T be the time we quit; T is a stopping time. The stopping
time T has been analysed in detail; see e.g.[108], §5.3, or Exercise 10.

From this, note:

(i) T < oo 2.s.: the gambler will certainly achieve a net gain of +1 eventually;
(ii) ET = +oo: the mean waiting-time until this happens is infinity.

Hence also:

(i) No bound can be imposed on the gambler’s maximum net loss before his
net gain first becomes +1.

At first sight, this looks like a foolproof way to make money out of nothing:
just bet until you get ahead (which happens eventually, by (i)), then quit.
However, as a gambling strategy, this is hopelessly impractical: because of
(ii), you need unlimited time, and because of (iii), you need unlimited capital
- neither of which is realistic.

. Notice that the optional stopping theorem (Theorem 3.5.1) fails here: we
start at zero, so So = 0, ESp = 0; but Sr = 1, so ESy = 1. This example
shows two things:

(a) The Optional Stopping Theorem does indeed need conditions, as the con-
clusion may fail otherwise (none of the conditions (i) - (iii) in the OST are
satisfied in the example above).

(b) Any practical gambling (or trading) strategy needs to have some integra-
bility or boundedness restrictions to eliminate such theoretically possible but
practically ridiculous cases.

2, The Doubling Strategy. The strategy of doubling when losing - the
martingale, according to the Ozford English Dictionary (§3.3) — has similar
properties. We play until the time T of our first win. Then T is 2 stopping
time, and is geometrically distributed with parameter p = 1/2. If T = n,
our winnings on the nth play are 2"~! (our previous stake of 1 doubled
on each of the previous n — 1 losses). Our cumulative losses to date are
14+2+...4 272 = 27~1 1 (summing the geometric series), giving us a
net gain of 1. The mean time of play is E(T) = 2 (so doubling strategies
accelerate our eventually certain win to give a finite expected waiting time
for it). But no bound can be put on the losses one may need to sustain before
we win, 80 again we would need unlimited capital to implement this strategy
- which would be suicidal in practice as a result.

3. The Saint Petersburg Game. A single play of the Saint Petersburg
game consists of a sequence of coin tosses stopped at the first head; if this is
the rth toss, the player receives a prize of $ 2". (Thus the expected gain is
Y, 272" = +00, 80 the random variable ie not integrable, and martingale
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theory does not apply.) Let S, denote the player’s cumulative gain after n
plays of the game. The question arises as to what the ‘fair price’ of a ticket
to play the game is. It turns out that fair prices exist (in a suitable sense),
but the fair price of the nth play varies with n - surprising, as all the plays
are replicas of each other.

Other examples may be constructed of games which are ‘fair’ in some
sense, but in which the player sustains a net loss, tending to —oo, with prob-
ability one. For a discussion of such examples, see e.g. [90].

3.6 The Snell Envelope

Definition 3.6.1. If Z = (Z,)N_, is a sequence adapted to a filtration (Fn),
the sequence U = (Un)N_, defined by

Un = 2w,
U, := max(Zn, E(Un41|Fn)) (n <N -=-1)

is called the Snell envelope of Z ({209]).

We shall see in Chapter 4 that the Snell envelope is the tool needed in pricing
American options.

Theorem 3.6.1. The Snell envelope (Uy) of (Zn) is a supermartingale, and
is the smallest supermartingale dominating (Z,) (that is, with Un > Zn for
alln).

Proof. First, Up > E(Un41|Fa), 80U is a supermartingale, and Uy, > Zp, 80
U dominates Z.

Next, let T = (T},) be any other supermartingale dominating Z; we must
show T dominates U also. First, since Uy = Zx and T dominates Z, Ty >
Un. Assume inductively that T, > Un. Then

Ta-i 2 E(Ta|Fa-1) 2 E(UalFa-1),

and as T dominates Z
Tn—l 2 Zn-l-

Combining,
Tn_l 2 mﬂx(Zn-l,E(Unlfn-])) = Un.-l.

By repeating this argument (or more formally, by backward induction), T >
Up for all n, as required. (]

Proposition 3.6.1. Ty :=inf{n>0:Us=2Zp} isa stopping time, and the
stopped sequence (UZT?) is a martingale.
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Proof. Since Uxy = Zn, To € {0,1,...,N} is well-defined. For k = 0,
{To = 0} ={Uo = Zy} € Fo; for k > 1,
{Th= k}y={Uo> Zo}N - O {Uk=1r > Zr1} N {Ukx = 2k} € F».
So Ty is a stopping time.
As in the proof of Proposition 3.5.1,
UTe = Upaz, = Uo + Y, 6403,
i=1
where ¢; = 1{7,>;} is adapted. Forn < N -1,
Vg1 = U3® = $n41(Unt1 = Un) = Lint1570} (Unsr = Un)-
Now U, := max(Zp, E(Un+1|Fn)), and
Uy > 2, on{n+1< T}
So from the definition of Uy,
Un= E(Un+1|}'n) on {ﬂ +1 < TO}
We next prove
UT2) = UTe = L1470 (Unt1 = E(Un411F2). (3.3)

For, suppose first that Tp > n+1. Then the left of (3.3) is Un41=Uhs, the right
i8 Un41 = B (Un+1|Fn), and these agree on {n+1 < To} by above. The other
poasibility is that Tp < n+1, i.e. To < n. Then the left of (3.3) is Uz, —Ur, =
0, while the right is zero because the indicator is zero, completing the proof
of (3.3). Now apply E(.|F») to (3.3): since {n+1 < To} = {To < n}° € Fn,

E{(UTe, - UT)|Fa) = Lins1<70} E(Uns1 = E(Un+11Fn)]1Fn)
= Ln41<T0)} [B(Un411Fn) ~ E(Un+11Fa)} = 0.

So E(U,ﬁd}'ﬂ) = UTo, This says that UZ° is a martingale, as required. O

Write Tn,~ for the set of stopping times taking values in {n,n+1,...,N}
(a finite set, as £ is finite). We next see that the Snell envelope solves the
optimal stopping problem.

Proposzition 3.6.2. Ty solves the optimal stopping problem for Z:
Uo = E(2r,|¥o) = sup{E(Zr|¥0) : T € Ton}.
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Proof. To prove the first statement we use that (UT°) is a martingale and
Ur, = Zr,; then

Uo = UT® = E(UR|Fo) = E(Un, |Fo) = E(Zn,|Fo).

Now for any stopping time T € To n, since U is a supermartingale (above),
so is the stopped process (UT) (see Proposition 3.5.1). Together with the
property that (U,) dominates (Z,) this yields

Uo = UJ® > E(UF\Fo) = E(Ur|Fo) 2 E(Zr|Fo),

and this completes the proof. Q
The same argument, starting at time n rather than time 0, gives

Corollary 3.6.1. If T, := inf{j > n: Uj = Z;},
Un = E(27,|Fn) = sup{E(Zr|Fn) : T € 7;|,N}-

As we are attempting to maximise our payoff by stopping Z = (Z,)
at the most advantageous time, the Corollary shows that T,, gives the best
stopping time that is realistic: it rnaximises our expected payoff given only
information currently available (it is easy, but irrelevant, to maximise things
with hindsight!). We thus call Ty (or T,, starting from time n) the optimal
stopping time for the problem. For textbook accounts of optimal stopping
problems, see e.g. [41], (169].

Optimal stopping problems have both an extensive - and quite deep -
mathematical theory and applications to areas such as gambling, as well as
the more speculative areas of mathematical finance. For a textbook treat-
ment, see e.g. [41] (the Snell envelope is treated in §4.4). The gambling- and
game-theoretic side of things is developed in the classic [66], and its recent
sequel [159].

There are extensive links between the martingale theory of Chapter 3 and
potential theory, classical and probabilistic. The least supermartingale majo-
rant - Snell envelope - in martingale theory corresponds to the least excessive
majorant in potential theory. This is called the réduite (reduced function) in
potential theory. It occurs in the fundamental theorem of gambling ([169),
§3.1); for the setting of probabilistic potential theory, see e.g. [163], IX.2.

Exercises

3.1 (i) Show that in general,

Var (i X.') = i Var(X;:) + Z Cov(X;, X;).

i#j

Exercises 81

(ii) Show that if (X,) is an L? martingale difference sequence (that is, X, =
Zn = Zn-1 with (Z,) an L? martingale),

Var(2,) = Var (i X;) = i Var(X;).

=1 =1
In particular, this holds if the X,, are independent.
3.2 1. Let X,Y € L*(2,F, IP). Show that the mean-square error

E[(Y - (aX +1))?]

is minimized for ¢* = Gov(X,Y)/Var(X) and b* = E(Y) — a* E(X).
2. Now let Y € L3(2, F, IP) and G & o-algebra with G C F. Show that
; . N - _ 2
a,b;xelzlﬂl(l}z,a,p)E (Y - (aXx +8))}] = E[(Y - B(Y|G)) 1.
3.3 A number d of balls are distributed between two urns, I and II. At each
time n = 0,1,2,... a ball is chosen - each with equal probability 1/d - and
transferred to the other urn.

(i) Show that the number of balls in urn I forms a Markov chain with tran-
sition probabilities

Piji+r =(d—1)/d, pig-1=14/d, pij =0 otherwise (i=0,1,...,d).

(ii) Show that the stationary distribution is (), where

e ()

- that is, if the process is started in this distribution, it stays in it. (This
is the Ehrenfest urn, treated in detail in [43], 129-132, [90], 377-378, etc. It
exhibits a strong ‘central push’ towards the central states, and is a discrete-
time analogue of the Ornstein-Uhlenbeck velocity process of §5.7.)

3.4 Consider a gambler who bets a unit stake on a succession of independent
plays, each of which he wins with probability p, loses with probability ¢ :=
1 - p, with the strategy of quitting when first ahead, Write S, for his net
gain after n plays,

Jn = P(Sl <0,:++,5n1 <£0,8, = 1)
for the probability that he quits at time n,

F(s) = Z fas®

n=1
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for the generating function of the sequence (fn). Show that:

(i) Fs) =(1-V1- 4pgs?)/(2gs);

(ii) fanor = S (3) (4p9)", fan = 0;

(iii) He eventually wins with probability 1if p > ¢, p/q if p < ¢ )
(iv) For p > ¢ (when he is certain to win eventually), the expected duration
of play is 1/(p—g) if p> ¢, +o0 ifp=¢= }. Thus if the game is fair, the
expected waiting time to quitting when first ahead is infinite. (For a detailed
account, see e.g. [90], X1.3, [108], §5.3.)

3.5 In the fair game case p = ¢ = § of the above:

(i) For each real 8, show that M, := (cosh §)~"e’S is a martingale;

(@) HT:=inf{n: 5, = 1} is the duration of play, P(T' <o) =1;

(iii) E(s? = SoPT =n) = (1- J‘L’71 —&%)/s, P(T = 2n—1) =
1)),

Eiv) )E(T(')n )= co. (Differentiate E(s7) in (iii) snd put s = 1)

(This illustrates the power of martingale methods in such problems; for a
detailed treatment, see [218], §10.12.)

4. Mathematical Finance in Discrete Time

4.1 The Model

We will study so-called finite markeis - i.e. discrete-time models of finan-
cial markets in which all relevant quantities take a finite number of values.
Following the approach of Harrison and Pliska [115] and Taqqu and Will-
inger [213), it suffices, to illustrate the ideas, to work with a finite probability
space (2, F, P), with a finite number |{2| of points w, each with positive
probability: P({w}) > 0.

We specify a time horizon T, which is the terminal date for all economic
activities considered. (For a simple option pricing model the time horizon
typically corresponds to the expiry date of the option.)

As before, we use a filtration JF consisting of o-algebras Fo C Fy C -+ C
Frp: we take Fo = {8, 2}, the trivial o-field, Fp = F = P(R2) (here P({2) is
the power-set of 2, the class of all 21! subsets of 2: we need every possible
subset, as they all - apart from the empty set — carry positive probability).

The financial market contains d+ 1 financial assets. The usual interpreta-
tion is to assume one (locally) risk-free asset (bond, bank account) labelled 0,
and d risky assets (stocks, say) labelled 1 to d. While the reader may keep this
interpretation as a mental picture, we prefer not to use it directly. The prices
of the assets at time ¢ are random variables, So(t,w), S1(t,w), ... ,Sa(t,w)
say, non-negative and F;-measurable (i.e. adapted: at time ¢, we know the
prices $;(1)). We write S(t) = (So(t), Sa(t), ... ,54(t)) for the vector of prices
at time i. Hereafter we refer to the probability space (£2,F, IP), the set of
trading dates, the price process S and the information structure I, which
is typically generated by the price process S, together as a securities market
model M.

It will be essential to assume that the price process of at least one asset
follows a strictly positive process.

Definition 4.1.1. A numéraire is a price process (X(t)){=o (a sequence of
random variables), which is strictly positive for allte {0,1,...,T}.

For the standard approach the risk-free bank account process is used as
numéraire. In some applications, however, it is more convenient to use a
security other than the bank account and we therefore just use Sp without
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further specification as a numéraire. We furthermore take S5(0) = 1 (that is,
we reckon in units of the initial value of our numéraire), and define Bl¢) =
1/So(t) as a discount factor. We will occasionally refer to assets 1,...,d as
the risky assets.

A trading strategy (or dynamic portfolio) ¢ is a JR#+! vector stochastic
process ¢ = ((t)T; = ((polt,w), p1(t,w), ..., pa(t,w))')iz, which is pre-
dictable (or previsible): each wi(t) is Fi-j-measurable for ¢ > 1. Here wilt)
denotes the number of shares of asset i held in the portfolio at time ¢ - to be
determined on the basis of information available before time t; i.e. the investor
selects his time t portfolio after observing the prices S(t — 1). However, the
portfolio () must be established before, and held until after, announcement
of the prices S(¢). The components ;() may assume negative as well as
positive values, reflecting the fact that we allow short sales and assume that
the assets are perfectly divisible.

Definition 4.1.2. The value of the portfolio at time t is the scalar product

d
Volt) = o(t)-S(t) 1= 3 wi®)Si(t), (t=1,2,...,T) and V(0) = ¢(1)-S(0).

i=0

The process Vi, (t,w) is called the wealth or value process of the trading strategy
®.

The initial wealth V,,(0) is called the initial investment or endowment of
the investor.

Now ¢(t) - S(t = 1) reflects the market value of the portfolio just after
it has been established at time ¢ — 1, whereas (t) + S(t) is the value just
after time ¢ prices arc observed, but before changes sre made in the portfolio.
Hence

o(t) - (S(t) - St = 1)) = p(t) - AS(t)

is the change in the market value due to changes in security prices which
occur between time ¢t — 1 and t. This motivates:

Definition 4.1.3. The gains process G, of a trading strategy ¢ is given by
¢ t
Gol(t) =Y w(r) - (S(r) = S(r=1)) = Y e(r)-48(r), (t=12...,T).
r=1 =1

Define 5(t) = (1,6()S1(t),... ,B()Sa(t))’, the vector of discounted
prices, and consider the discounted value process

V() = B)(e(t) - S®) = 0() - §¢), (t=1,2,...,T)

and the discounted gains process

w
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t ¢
Got) = e(r) - (8(r) - S(r-1)) = S wlr)-A5(r), (t=12...,T).
r=1

r=1

Observe that the discounted gains process reflects the gains from trading with
assets 1 to d only, which in case of the standard model (a bank account and
d stocks) are the risky assets.

We will only consider special classes of trading strategies.

Definition 4.1.4. The strategy ¢ is self-financing, ¢ € &, if
p(t) - S(t) = p(t+1)-St) (t=1,2,...,T=1). (4.1)

Interpretation. When new prices S(t) are quoted at time ¢, the investor
adjusts his portfolio from ¢(t) to ¢(t + 1), without bringing in or consum-
ing any wealth. The following result (which is trivial in our current setting,
but requires a little argument in continuous time) shows that renormalis-

ing security prices (i.e. changing the numéraire) has essentially no economic
effects.

Proposition 4.1.1 (Numéraire Invariance). Let X(t) be a numéraire. A
trading strategy @ is self-financing with respect to S(t) if and only if ¢ is self-
finaneing with respect to X (1)~1S(2).

Proof. Since X (t) is strictly positive for all ¢ = 0,1,...,T we have the
following equivalence, which implies the claim:

p(t) - Sty =pt+1)-5¢) (t=12,...,T-1)
L4

p(t)  X([)~1S(t) = p(t + 1) - X(t)718(@) (t=1,2,...,T—1).
(m]

Corollary 4.1.1. A trading strategy @ is self-financing with respect to S(t)
if and only if ¢ is self-financing with respect to S(t).

We now give a characterisation of self-financing strategies in terms of the
discounted processes.

Proposition 4.1.2. A trading strategy ¢ belongs to & if and only if
Vo) = Vi(0) + Go(t), (t=0,1,...,T). (4.2)

Proof. Assume ¢ € &. Then using the defining relation (4.1), the
numéraire invariance theorem and the fact that Sp(0) =1

Vo(0) + Golt) = (1) S(0) + D_w(r) - (5(r) = §(r - 1))
r=1

w(1) - 50) + (1) - 50
- S(e(r) = p(r + 1)) - $(r) = #(1) - 5(0)

r=1

olt) - 5(0) = T(t)

I
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Assume now that (4.2) holds true, By the numéraire invariance theorem
it is enough to show the discounted version of relation (4.1) for each ¢ =
1,2,...,T— 1. Summingup to t =2 (4.2) is

#(2) - 5(2) = (1) - 5(0) + (1) - (5(1) = 5(0)) + ¢(2) - (5(2) -~ S(1)).

) (5(2)
Subtracting ¢(2)-5(2) on both sides gives ¢(2)-5(1) = (1)-5(1). Proceeding
similarly - or by induction - we can show o(t) - S(t) = »(t + 1) - 5(t) for
t=2,...,T -1 as required.

We are allowed to borrow (so ¢g(t) may be negative) and sell short (so
#i(t) may be negative for i = 1,...,d). So it is hardly surprising that if
we decide what to do about the risky assets, the numeéraire will take care of
itself, in the following sense.

Proposition 4.1.3. If (p1(t),... ,%4(t)) is pn‘d:ctab!e and Vp is Fo-mea-
surable, there is a unique predictable process (po(t))i=; such that ¢ =
(90> @1, - -+, pd)" is self-financing with initial value of the corresponding port-
folio V,(0) =

Proof. If ¢ is self-financing, then by Proposition 4.1.2,

To(t) = Vo + Go(t) = Vo + D_(p1(T)A51(7) + ... + pa(r) A8u(T)).

=1

On the other hand,
Vo(t) = olt) - 5(1) = wolt) + p1(1)51(8) + ... + pa(H)Sa(2).
Equate these:

polt) = Vo + Z P1(T)AS1(7) + ... + pa(r) A54(T))

r=1

(@151 (t) + .. .+ pa(t)Sa(t)),
which defines @o(t) uniquely. The terms in S; () are
ei(0)ASi(t) - wi)Si(t) = —pit)Si(t = 1),

which is F,_,-measurable. So

t=1
polt) = Vo + I_(w1(1)ASK(7) + ... + pa(r) AS4(T))
=1
~(@1 St =1)+ ... +pa(t)Salt = 1)),
where as ¢;,...,pq are predictable, all terms on the right-hand side are

F._,-measurable, so g is predictable. ]
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4.2 Existence of Equivalent Martingale Measures
4.2.1 The No-Arbitrage Condition

The central principle in the single period example, §1.4, was the absence of
arbitrage opportunities, i.e. the absence of risk-free plans for making prof-
its without any investment. As mentioned there this principle is central for
any market model, and we now define the mathematical counterpart of this
economic principle in our current setting.

Definition 4.2.1. Let & C B be a set of self-financing strategies. A strategy
¢ € @ is called an arbitrage opportunily or arbitrage strategy with respect to
@ if P{V,(0) = 0} = 1, and the terminal wealth of ¢ satisfies

P{Vy(T) 20} =1 and P{V,(T)> 0} >0.

So an arbitrage opportunity is a self-financing strategy with zero initial
value, which produces a non-negative final value with probability one and
has a positive probability of a positive final value. Observe that arbitrage
opportunities are always defined with respect to a certain class of trading
strategies.

Definition 4.2.2. We say that a security market M is arbitrage-free if there
are no arbitrage opportunities in the class & of trading strategies.

We will allow ourselves to use ‘nc-arbitrage’ in place of ‘arbitrage-free’
when convenient,

We will use the following mental picture in analysing the the sample paths
of the price processes. We observe a realisation S(t,w) of the price process
S(t). We want to know which sample point w € £2 - or random outcome -
we have. Information about w is captured in the filtration F,. In our current
setting we can switch to the unique sequence of partitions P; corresponding
to the filtration F; (see Chapter 3). So at time ¢ we know the set A; € P, with
w € A;. Now recall the structure of the subsequent partitions. A set A € P,
is the disjoint union of sets Ai,..., Ak € Pi31. Since S(u) is F,-measurable
S(t) is constant on A and S(t + 1) is constant on the A, k=1,..., K. So
we can think of A as the time 0 state in a single-period model and each A,
corresponds to a state at time 1 in the single-period model. We can therefore
think of a muilti-period market model as a collection of subsequent single-
period markets. What is the effect of a ‘global’ no-arbitrage condition on the
single-period markets?

Lemma 4.2.1. If the market model contains no arbitrage opportunities, then
forallt €{0,1,...,T =1}, for all self-financing trading strategies p € ¢ and
for any A € P;, we have

() P(Vo(t +1) = Vp(t) 2 0|4) = 1 = P(V,(t +1) = V(1) = 0]4) = L,

(i) P(V,(t+1) = V(1) <O0|A) = 1 = P(V,(t +1) = Vo(t) = 0|4) = 1.
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The economic meaning of this result answers the question raised above.
No arbitrage ‘globally’ implies no arbitrage ‘locally’. From this the idea of the
proof is immediate. Any local trading strategy can be embedded in a global
strategy for which we can use the global no-arbittage condition.

Proof We only prove (i) ((ii) is shown in a similar fashion). Fix ¢t €
{0,...,T =1} and ¢ € &. Suppose P(V,,(t + 1) = Viy(t) 2 0]A) = 1 for some
AE 'P‘ and define 2 new trading strategy 1 for all timesu = 1,...,T as
follows:

For u < t: ¥(u) = 0 (‘do nothing before time t').
Poru=t+1: ¢p(t+1)=0ifw¢gA, and

wr(t+ 1,w) if weA and ke {l,...,d},
'pk(t"'l:w): -
wolt +Lw) -V, (t,w) if weA and k=0

(‘If w happens to be in A at time t, follow strategy ¢ when dealing with the

risky assets, but modify the holdings in the numéraire appropriately in order

to compensate for doing nothing when w & A.%)
Foru>t+1:yp(u)=0for ke {l,...,d} and

V)o(u’w)_—_- {(‘J’w(t+l.w) 'g ::;ﬁ,

( ‘Invest the amount \7¢ (t + 1) into the numéraire account if w happens to
be in A, otherwise do nothing’.)

The next step now is to show that the strategy ¢ is a self-financing trading
strategy. By construction ¢ is predictable, hence a trading strategy. For w ¢
A ¢ = 0, so we only have to consider w € A. The relevant point in time is
t + 1. Recall that () = 0, hence #(t) - S(t) = 0. Now

d
Wit +1) - 3(t) = (ot + 1) = % ())50(t) + D wn(t + 1)5k(®)
k=1

d
=3 pelt +1)5e(t) - V(1)
k=0
= p(t+1) - 8(t) - Tlt) = 0(t) - 50t) = V(1) = 0,
using the fact that ¢ is self-financing. Since ¢¥(u)- S(u) = 0 for u 't we have
Ylu+1)-S(u) = p(u) - S(u) for all u < ¢ (and for all w € N2). Whenu> t+1

and w € A we only hold the numéraire asset (with constant discounted value
equal to 1), so

u+1) - S(u) = Vy(t +1) = $(u) - Su).

Therefore the strategy ¢ is self-financing.
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We now analyse the value process of . Using our assumption P(V,(t+
1) = Vp(t) 2 0jA) =1 wesee that forallu >t +1landw € A

Vy(u) = p(u) - S(u) = (¢ +1)- St + 1)

d
= (po(t +1) = % (£))50(t) + 3 wr(t+ 1)3k(t)
k=1

d
=Y prlt+ 1)S(t) - V(1)

k=0
= Vot +1) = Vplt) > 0.

Since Vy(T) = 0 on A°® ¢ defines a self-financing trading strategy with
Vo (0) =0 and Vy(T) > 0. The assumption of an arbitrage-free market im-
plies Vy(T") = 0 or

0= P(%(T) > 0) = P ({#%(T) > 0} n 4)
= P(Vy(t+ 1) = Vs (t) > 0|A) P(A).

Therefore P(Vy(t +1) = Vy(t) = 0[4) = 1. o
The fundamental insight in §1.4 was the equivalence of the no-arbitrage
condition and the existence of risk-neutral probabilities. For the multi-period

case we now use the probabilistic machinery of Chapters 2 and 3 to establish
the corresponding result.

Definition 4.2.3. A probability measure IP* on (2, Fr) equivalent to IP is
called a martingale measure for S if the process S follows a IP*-martingale

with respect to the filtration IF. We denote by P(S) the class of equivalent
martingale measures.

Proposition 4.2.1, Let P* be an equivalent martingale measure (IP* €
‘P(S] ) ond ¢ € & any self-financing strategy. Then the wealth process V()
is a IP*-martingale with respect to the filtration IF.

Proof. By the self-financing property of ¢ (compare Proposition 4.1.2, (4.2)),
we have

Vo(t) = Vo(0) + Gp(t) (t=0,1,...,T).
So

Vot +1) = V) = Gyt +1) = Go(t) = p(t +1) - (5(t + 1) = 5(2)).

So for ¢ € P, Vi(y) is the martingale transform of the JP* martingale S by
i (see Theorem 3.4.1) and hence a IP* martingale itself.

The next result is the key for the further development.
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Prgposition 4,2.2. If an equivalent martingale measure ezists - that is, if
P(5) # 0 - then the market M is arbitrage-free.

Proof. Assume such a [P* exists. For any self-financing strategy ¢, we have
as before

Tu(t) = Vo 0) + 3 () - A5().
r=1

By Proposition 4.2.1, S(t) a (vector) P*-martingale implies V,(t) is a P*-
martingale. So the initial and final IP*-expectations are the same,

E* (Vo(T)) = E* (V(0)).

If the strategy is an arbitrage opportunity its initial value - the right-hand
side above - is zero. Therefore the left-hand side [E*(V,(T)) is zero, but
¥,(T) > 0 (by definition). Also each P*({w}) > 0 (by assumption, each
P({w}) > 0, so by equivalence each P*({w}) > 0). This and Vo(T) > 0
force V,,(T) = 0. So no arbitrage is possible. (m)

Proposition 4.2.3. If the market M is arbitrage-free, then the class P(S5)
of equivalent martingale measures is non-empty.

Because of the fundamental nature of this result we will provide two

proofs. The first proof is based on our previous observation that the ‘global’’

no-arbitrage condition implies also no-arbitrage ‘locally’. We therefore can
combine single-period results to prove the multi-period claim. The second
prove uses functional-analytic techniques (as does the corresponding proof in
Chapter 1), i.e. a variant of the Hahn-Banach theorem.

First proof. From Lemma4.2.1 we know that each of the underlying single-
period market models is free of arbitrage. By the results in §1.4 this implies
the existence of risk-neutral probabilities. That is, for each t € {0,1,...,T=-
1} and each A € P, there exists a probability measure JP(t, A) such that each
cell 4; C A, i=1,...,K4 in the partition Pe4y has a positive probability
mass and

%P(t,A)(A.‘) =1

i=1

Furthermore Ep(‘_d){g(l-!' 1)) = S(t) (where we restrict ourselves tow € A).
We can think of the probebility measures P(t, A) as conditional risk-neutral
probability measures given the event A occurred at timet, Now we can define
a probability measure P* on 2 by defining the probabilities of the simple
events {w} (observe that Fy = P(f2), hence the final partition consists of
all simple events). To each such {w} there exists a single path from 0 to T
and [P* is set equal to the product of the conditional probabilities along the
path. By construction
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ST P ({w)) =1

wefl
Since the conditional risk-neutral probabilities are greater than 0, P* ({w}) >
0 for each w € £ and [P* is an equivalent measure. The final step is to show
that IP* is a martingale measure. We thus have to show B (Sk(t+1)|F) =
S(t) forany k=1,...,d,1=0,...,T-1L Now Si(t) is Fi-measurable,
and since any A € F; can be written as a union of A’ € P, the claim follows
from

A[ék(tﬂ)dp‘ =A/’5'k(t)d1P',

which is true by construction of P* (Recall that we have Ep(a,¢ )(5';, (t+1) =
Ep(as)(Sk()).) O
For the second proof we need some auxiliary observations.
Since our market model is finite we can use results from Euclidean ge-

ometry. Define X* to be the set of non-negative random variables on (12, F)
and

Fi={Xe€X*: X(w)>0Vwe N and Iw € 2 such that X(w) > 0}.

Then I is a cone (closed under vector addition and multiplication by positive
scalars). If we assume no-arbitrage with respect to &, we have for any self-
financing strategy ¢,

Ve(0)=0 = V()¢

By Proposition 4.1.2 it follows that Go(T) ¢ I

The next lemma shows that we still have Go(T) & T if we only assume
predictability of 2 vector process (%1, ,pa) and choose & process @q accord-
ing to Proposition 4.1.3 in such a way that the strategy ¢ = (Po, %15+ 1 Pd)
has zero initial value and is self-financing,

Lemma 4.2.2. In an arbitrage-free market any predictable vector process

@' = (p1,... ,pd) satisfies .
Go(T) ¢ I

(Observe the slight abuse of notation: for the value of the discounted gains
process the zeroth component of 8 trading strategy doesn't matter. Hence we
use the operator G for d-dimensional vectors as well.)

Proof. By Proposition 4.1.3 there exists a unique predictable process (po(t))
such that ¢ = (o,91,...,%a4) has zero initial value and is self-financing.
Assume G, (T) € I'. Then using Proposition 4.1.2,

Vo(T) = BTV (T) = BT) ™ (Vo 0) + Go(T)) = B(T) ™' G(T) > 0.



92 4, Mathematical Finance in Discrete Time

Hence ¢ is an arbitrage opportunity with respect to @ by definition of I'. By
Lemma 4.2.1 this contradicts the assumption that the market is arbitrage-
free. [u]

Second proof of Proposition 4.2.3. Denote the vector space of all random
variables on 2 by X (this space can be identified with R"). We now form
the set V of random variables Gy (T), with ¢’ = (g1,...,%a) @ predictable
process:

Vi={XeX: X =Gu(T), ¢ predictable}.
By linearity of the discounted gains process G, in ¢’ this is a vector subspace
of the vector space X, By Lemma 4.2.2 this subspace does not meet I', i.e.
vnr=_a.
So V does not meet the subset
K:={Xel:) Xw)=1}
wefnl
Now K is a compact convex set. By the separating hyperplane theorem (The-
oremn C.0.1), there is a vector A = (A(w) :w € £2) such that for all X € K

AX =) Mw)X(w) >0,

wen
but for all Gy (T) in V,
AG(T) = Y Aw)Gp(T)(w) = 0. (4.3)
wen

Choosing each w € 2 successively and taking X to be 1 on this w and zero
elsewhere, (4.3) tells us that each A{w) > 0. So

Alw)
Lwren W)
defines a probability measure equivalent to P (no non-empty null sets). With
E* as [P*-expectation, (4.3) says that

E* (G(T)) =0,

P ({w}) =

l.e.

T
E* (2 o(r) -AS'(T)) =0.
r=1

In particular, choosing for each ¢ to hold only stock i,

T

E* (E (p,-(r)AS',-(T)) =0 (i=1,...,d).
r=1

Since this holds for any predictable ¢ (boundedness holds automatically as 2

is finite), the martingale transform lemma tells us that the discounted price

processes (S;(t)) are P*-martingales. o
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Note. Our situation is finite-dimensional, so all we have used here is Eu-
clidean geometry. We have a subspace, and a cone not meeting the subspace
except at the origin. Take A orthogonal to the subspace on the same side of
the subspace as the cone. The separating hyperplane theorem holds also in
infinite-dimensional situations, where it is a form of the Hahn-Banach the-
orem of functional analysis. For proofs, variants and background, see e.g.
[27, 214].

We now combine Propositions 4.2.2 and 4.2.3 as a first central theorem
in this chapter.

Theorem 4.2.1 (No-Arbitrage Theorem). The market M is arbitrage-
free if and only if there ezists a probability measure IP* equivalent to IP under
which the discounted d-dimensional asset price process S is a IP*-martingale.

4.2.2 Risk-Neutral Pricing

We now turn to the main underlying question of this text, namely the pricing
of contingent claims (i.e. financial derivatives). First we have to model these
financial instruments in our current framework. This is done in the following
fashion.

Definition 4.2.4. A contingent claim X with maturity date T is an arbi-
trary non-negative Fy-measurable random variable (which is by the finiteness
of the probability space bounded). We denote the class of all contingent claims
by X+,

A typical example of a contingent claim X is an option on some underlying
asset S, then (e.g. for the case of a European call option with maturity date
T and strike K) we have a functional relation X = f(S) with some function f
(e.g. X = (S(T) = K)*). The general definition allows for more complicated
relationships which are captured by the Fp-measurability of X (recall that
Fr is typically generated by the process S).
We say that the claim is attainable if there exists a replicating strategy
® € & such that
Vo(T) = X.

So the replicating strategy generates the same time T cash-flow as does X.
In a highly efficient security market we expect that the law of one price
holds true, that is for a specified cash-flow there exists only one price at
any time instant. Otherwise arbitrageurs would use the opportunity to cash
in a riskless profit (recall the recent case of option mispricing at NatWest
Markets as an excellent example of how arbitrageurs exploit mispricing [97]).
So the no-arbitrage condition implies that for an attainable contingent claim
its time ¢ price must be given by the value of any replicating strategy (we
say the claim is uniquely replicated in that case). This is the basic idea
of the arbitrage pricing theory. Clearly the equivalence of the no-arbitrage
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condition and the existence of risk-neutral probability measures imply the
possibility of using risk-neutral measures for pricing purposes, and we devote
this subsection to exploring this relation. :

Let us start by investigating the arbitrage pricing approach a bit further.
The idea is to replicate a given cash-flow at a given point in time. Using a
self-financing trading strategy the investor’s wealth may go negative at time
t < T, but he must be able to cover his debt at the final date. To avoid
negative wealth the concept of admissible strategies is introduced. A self-
financing trading strategy ¢ € @ is called admissible if V,(t) > 0 for each
t=0,1,...,T. We write &, for the class of admissible trading strategies.
The modelling assumption of admissible strategies reflects the economic fact
that the broker should be protected from unbounded short sales. From the
mathematical point of view it is not really needed and we use self-financing
strategies when addressing the mathematical aspects of the theory. (In fact
one can show that a security market which is arbitrage-free with respect to
&, is also arbitrage-free with respect to 9.)

We now return to the main question of the section: given a contingent
claim X, i.e. a cash-flow at time T, how can we determine its value (price) at
time ¢ < T ? For an attainable contingent claim this value should be given by
the value of any replicating strategy at time ¢, i.e. there should be a unique
value process (say Vx(t)) representing the timet value of the simple con-
tingent claim X. The following proposition ensures that the value processes
of replicating trading strategies coincide, thus proving the uniqueness of the
value process.

Proposition 4.2.4. Suppose the market M is arbitrage-free. Then any at-
tainable contingent claim X is uniquely replicated in M. .

Proof. Suppose there is an attainable contingent claim X and strategies
v and ¢ such that
Vo(T) = W (T) = X,

but there exists a 7 < T such that
Vo(u) = Viy(u) for every u < 7 and V,(7) % Vol7).

Define A := {w € 2 : Vy(r,w) > Vy(r,w)}, then A € 7 and P(A) > 0
(otherwise just rename the strategies). Define the F,-measurable random
variable Y := V,(r) — Vi (7) and consider the trading strategy £ defined by

£(u) = {9"(“) - ¥(u), usr
Lae(p(8) = $(w) + 14(YB(r),0,...,0), T <u<T.

Then £ is predictable and the self-financing condition (4.1) is clearly true for
t+# 7, and for t = 7 we have using that ¢, peP
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£(r) - S(r) = (p(r) = ¥(r)) - S{7) = V(7) = Vy(7),

E(r+1) - 8(r) = Lao(p(r +1) — $(r + 1)) - S(7) + 14Y (1) So(7)
= 14e(p(r) = ¥(7)) + S(7) + 1a(Vip (1) = V(7)) B() B~ (7)
= V(1) = Vy(7).

Hence ¢ is a self-financing strategy with initial value equal to zero. Further-
more

Ve(T) = Lae(9(T) = $(T)) - S(T) + 1a(YB(7),0, .. ,0) - S(T)
= 14YB(r)So(T) > 0

and
P{V(T) > 0} = P{A} > 0.

Hence the market M contains an arbitrage opportunity with respect to the
class & of self-financing strategies. But this contradicts the assumption that
the market M is arbitrage-free. m)

This uniqueness property allows us now to define the important concept
of an arbitrage price process.

Definition 4.2.5. Suppose the market M is arbitrage-free. Let X be any
attainable contingent claim with time T maturity. Then the arbitrage price
process wx(t), 0 <t < T or simply arbitrage price of X in M is given by the
value process of any replicating strategy @ for X.

The constructicn of hedging strategies that replicate the outcome of a
contingent claim (for example a European option) is an important problem in
both practical and theoretical applications. Hedging is central to the theory of
option pricing. The classical arbitrage valuation models, such as the Black-
Scholes model ([25); see §4.6 and Chapter 6), depend on the idea that an
option can be perfectly hedged using the underlying asset (in our case the
asseis of the market model M), so making it possible to create a portfolio
that replicates the option exactly. Hedging is also widely used to reduce risk,
and the kinds of delta-hedging strategies implicit in the Black-Scholes model
are used by participants in option markets. We will come back to hedging
problems subsequently (e.g. §4.5 in the finite setting).

Analysing the arbitrage-pricing approach we observe that the derivation
of the price of a contingent claim doesn’t require any specific preferences
of the agents other than nonsatiation, i.e. agents prefer more to less, which
rules out arbitrage. So, the pricing formula for any attainable contingent
claim must be independent of all preferences that do not admit arbitrage. In
particular, an economy of risk-neutral investors must price a contingent claim
in the same manner, This fundamental insight, due to Cox and Ross [45] in
the case of a simple economy — a riskless asset and one risky asset - and in its
general form due to Harrison and Kreps [114], simplifies the pricing formula
enormously. In its general form the price of an attainable simple contingent
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claim is just the expected value of the discounted payoff with respect to an
equivalent martingale measure.

Proposition 4.2.5. The arbitrage price process of any attainable contingent
claim X is given by the risk-neutral valuation formula

rx(t) = ) B (XBDIF) vi=0,1,.... T, (4.4)

where E* is the expectation operator with respect to an equivalent martingale
measure IP*.

Proof. Since we assume the the market is arbitrage-free there exists (at least)
an equivalent martingsle measure P*. By Proposition 4.2.1 the discounted
value process V, of any self-financing strategy ¢ is & [P*-martingale. So for
any contingent claim X with maturity T and any replicating trading strategy
@ € & we have for each t=0,1,...,T

mx(t) = Vo(t) = BT Vo (t)
= B{t) "L E* (Voo (T)|F) (as V,(t) is a P*-martingale)
= (1)~ E* (B(T)V, (T)|Fe) (undoing the discounting)

= B(t)~ E*(B(T)X|F) (as ¢ is a replicating strategy for X).
m}

4.3 Complete Markets: Uniqueness of Equivalent
Martingale Measures

The last section made clear that attainable contingent claims can be priced
using an equivalent martingale measure. In this section we will discuss the
question of the circumstances under which all contingent claims are attain-
able. This would be a very desirable property of the market M, because we
would then have solved the pricing question (at least for contingent claims)
completely. Since contingent claims are merely non-negative Fr-measurable
random variables in our setting, it should be no surprise that we can give a
criterion in terms of probability measures. We start with:

Definition 4.3.1. A market M is complete if every contingent claim is at-
tainable, i.e. for every non-negative Fr-measurable random variable X € xt
there exists a replicating self-financing strategy ¢ € & such that Vo(T) = X.

In the case of an arbitrage-free market M one can even insist on repli-
cating contingent claims by an admissible strategy € &b,. Indeed, if ¢ is
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self-financing and /P* is an equivalent martingale measure under which dis-
counted prices S are JP*-martingales (such [P* exist since M is arbitrage-free
and we can hence use the no-arbitrage theorem (Theorem 4.2.1), V,,(t) is also
a [P*-martingale, being the martingale transform of the martingale Sbye
(see Proposition 4.2.1). So

Volt) = B*(Vo(T)IF) (£=0,1,...,T).

If  replicates X, V,,(T) = X > 0, so discounting, Veo(T) > 0, so the above
equation gives V,,(t) > 0 for each t. Thus all the values at each time ¢ are
non-negative — not just the final value at time T’ - so ¢ is admissible.

Theorem 4.3.1 (Completeness Theorem). An arbitrage-free market M
is complete if and only if there exists a untque probability measure IP* equiv-
alent to IP under which discounted asset prices are martingales.

Proof, ‘=>': Assume that the arbitrage-free market M is complete. Then
for any Fr-measurable random variable X > 0 ( contingent claim), there
exists an admissible (so self-financing) strategy  replicating X: X = V,,(T).
As ¢ is self-financing, by Proposition 4.1.2,

T
BT)X = Vo(T) = Vi (0) + 3 _ (r) - AS(7).

r=1

We know by the no-arbitrage theorem (Theorem 4.2.1) that an equivalent
martingale measure [P* exists; we have to prove uniqueness. So, let [Py, [P,
be two such equivalent martingale measures. For i = 1,2, (Vo)) is 2
P;-martingale. So,

Ei(V(T)) = Ei(¥,(0)) = Vo (0),
since the value at time zero is non-random (Fo = {8, 22}) and B(0) = 1. So
E\(B(T)X) = B5(B(T)X).

Since X is arbitraty, Iy, JE; have to agree on integrating all non-negative
integrands. Taking negatives and using linearity: they have to agree on non-
positive integrands also. Splitting an arbitrary integrand into its positive and
negative parts: they have to agree on all integrands. Now [E; is expectation
(i.e. integration) with respect to the measure /P;, and measures that agree on
integrating all integrands must coincide. So P, = [P, giving uniqueness as
required.

‘e=’; Assume that the arbitrage-free market M is incomplete: then there
exists a non-attainable Fr-measurable random variable X > 0 (a contingent
claim). We may confine attention to self-financing strategies (which will in
the replicating case be automatically admissible). By Proposition 4.1.3, we



98 4. Mathematical Finance in Discrete Time

may confine attention to the risky assets Sy,...,Sq, as these suffice to tell

us how to handle the numéraire So.
Consider the following set of random variables:

T
V= {Y EX:Y =Yoo+ D pt) A5(t), oER, ¢ predictable}'
t=1

(Recall that Yo is Fo-measurable and set ¢ = ((ea(t)y - ,qfd(t))*)';":l with
predictable components.) Then by the above reasoning, the discounted value
B(T)X does not belong to V, so V is a proper subset of the set X of all
random variables on £ (which may be identified with R'™). Let P* be
a probability measure equivalent to [P under which discounted prices are
martingales (such PP* exist by the no-arbitrage theorem (Theorem 4.2.1).
Define the scalar product

(2,Y) = E*(2Y)

on random variables on §2. Since \.i_is a proper subset, thﬁ_{p exists 2 NON-zero
random variable Z orthogonal to V (since §2 is finite, R ig Euclidean: this
is just Buclidean geometry). That is,

E*(2Y)=0, YY€eV.

Choosing the special Y =1 € V given by ¢i(t) = 0,t = 1,2,... T i =
1,...,dand Yo = 1 we find
E"(Z) =0.

Write || X ||, = sup{|X(w)| 1w € 2}, and define P** by

Pr((w)) = (14 5o ) P,

By construction, P** is equivalent to P* (same null sets - actual!y, as P* ~
P and [P has no non-empty null sets, neither do P*,IP**). As Z is non-zero,
P** and P are different. Now

T T -
E~ (\; 0 -Aéu)) =Y P (Z pltw) Asu.w))

]
Ve
—
+

{ =]

t=1

Z T )
||4(2le P-(w}(z o(t,w) - AS(i,w)).
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which is zero since this is 2 martingale transform of the P*-martingale 5(t)
(recall martingele transforms are by definition null at zero). The ‘Z’ term
gives a multiple of the inner product

T
(2, elt) - A50)),
t=1

which is zero as Z is orthogonal to V and E‘T._.l p(t) - AS(t) € V. By the
martingale transform lemma (Lemma 3.4.1), S(t) is a IP**-martingale since
i is an arbitrary predictable process. Thus IP** is a second equivalent mar-
tingale measure, different from /P* So incompleteness implies non-uniqueness
of equivalent martingale measures, as required. m}

Martingale Representation, To say that every contingent claim can be
replicated means that every P°-martingale (where [P* is the risk-neutral
measure, which is unique) can be written, or represented, as a martingale
transform (of the discounted prices) by a replicating (perfect-hedge) trading
strategy . In stochastic-process language, this says that all IP*-martingales
can be represented as martingale transforms of discounted prices. Such mar-
tingale representation theorems hold much more generally, and are very im-
portant. For the Brownian case, see §5.8; for background, see {181, 220].

A further characterisation of completeness (due to Harrison and Pliska
[115) and Kreps [145)) entirely specific to the finite case, may be obtained
along the following lines.

Since we work in a finite probability space we can identify each F, with a
unique partition P; of 2, and at time ¢ the investors know which cell of this
partition contains the true state of the world, but they do not know more
than this. The price process S is said to contain a redundancy if P(aSi41 =
0|A) = 1 for some non-trivial vector «, some t < T, and some A € P;. If such
a redundancy exists, then there is an event A possible at time t which makes
possession of some one security over the coming period completely equivalent
to possession of a linear combination of the other securities over that same
period. If no such circumstances exist, then we say that the securities are
nonredundant. For each cell A of P;,t = 0,1,...,T — 1, let K;(A) be the
number of cells of Py which are contained in A. This might be called the
splitting indez of A ([64]; Duffie [70}, p.37 calls this number the spanning
number), Assuming the the market M is arbitrage-free and that the securities
are nonredundant, we must have K,(A) > d+ 1 for all ¢ and A. Using this
we have the following characterisation of completeness for a finite security
market,

Proposition 4.3.1. If the securities are nonredundant, then the model is
complete if and only if Ky(A) =d+1 foral A€P, andt=0,1,..., T~ 1.

We refer to Kreps [145) for a proof and further discussion (see Harrison
and Pliska [115] for an outline). The heuristic message behind Proposition
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4.3.1 is that in each circumstance A that may prevail at time t, investors

-must have available enough linearly independent securities to span the space

of contingencies which may prevail at time ¢ + 1. For a model with many
trading dates t and many states w, completeness depends critically on ?he
way uncertainty resolves itself over time, this being reflected by ti‘ae sph_ttmg
indices K¢ (A) (again we refer to [64, 72, 114, 115, 145] for further discussion).

4.4 The Fundamental Theorem of Asset Pricing: Risk
Neutral Valuation

We summarise what we have achieved so far. We call 8 measure [P* under
which discounted prices S(t) are IP*-martingales a martingale measure. Such
a IP* equivalent to the actual probability measure P is called an equivalent
martingale measure. Then:

o No-arbitrage theorem (Theorem 4.2.1): If the market is arbitrage-free,
equivalent martingale measures JP° erist,

o Completeness theorem (Theorem 4.3.1): 1f the market is complete (all
contingent claims can be replicated), equivalent martingale measures are
unique.

Combining:

Theorem 4.4.1 (Fundamental Theorem of Asset Pricing). In an ar-
bitrage-free complete market M, there ezists a unique eguivalent martingale
measure IP*.

The term fundamental theorem of asset pricing was introduced by Dyb-
vig and Ross (79). It is used for theorems establishing the equivalence of an
economic modelling condition such as no-arbitrage to the existence of the
mathematical modelling condition existence of equivalent martingale mea-
sures,

Assume now that M is an arbitrage-free complete market and let X € X' +
(> 0, Fr-measurable) be any contingent claim, ¢ an admissible strategy
replicating it (which exists by completeness), then:

Vo (T) = X.

As V,,(t) is the martingale transform of the [P*-martingale S(t) (by #(t),
¥,(t) is a P*-martingale. So Vo (0)(= V4(0)) = E* (Ve(T)) = E*(A(T)X),
giving us the risk-neutral pricing formula

V,(0) = B* (B(T)X).

More generally, the same argument gives V,(t) = BV, (t) = E* (B(T)X|F):
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V() = B®) E*(B(T)X|7:) (t=0,1,...,T). (4.5)

It is natural to call V,,(0) = mx (0) above the arbitrage price (or more exactly,
arbitrage-free price) of the contingent claim X at time 0, and Vx(t) = mx(t)
above the arbitrage price (or more exactly, arbitrage-free price) of the simple
contingent claim X at time t. For, if an investor sells the claim X at time ¢
for Vx(t), he can follow strategy ¢ to replicate X at time T and clear the
claim; an investor selling for this value is perfectly hedged. To sell the claim
for any other amount would provide an arbitrage opportunity (as with the

argument for put-call parity). We note that, to calculate prices as above, we
need to know only:

1. £2, the set of all possible states,

2. the o-field F and the filtration (or information flow) (F;),
3. P

We do not need to know the underlying probability measure [P - only its null
sets, to know what ‘equivalent to P’ means (actually, in this finite model,
there are no non-empty null-sets, so we do not need to know even this).

Now pricing of contingent claims is our central task, and for pricing pur-
poses IP* is vital and P itself irrelevant. We thus may - and shall - focus
attention on JP% which is called the risk-neutral probability measure. Risk-
neutrality is the central concept of the subject and the underlying theme
of this text. The concept of risk-neutrality is due in its modern form to
Harrison and Pliska [115] in 1981 - though the idea can be traced back to
actuarial practice much eatlier (see Esscher [87) and also Gerber and Shiu
[103]). Harrison and Pliska call IP* the reference measure; Bjork [18] calls it
the risk-adjusted or martingale measure; Dothan [64] uses equilibrium price
measure. The term ‘risk-neutral’ reflects the IP*-martingale property of the
risky assets, since martingales model fair games (one can’t win systematically
by betting on a martingale).

To summarise, we have:

Theorem 4.4.2 (Risk-Neutral Pricing Formula). In an arbitrage-free
complete market M, arbitrage prices of contingent claims are their discounted
expected values under the risk-neutral (equivalent martingale) measure IP*

There exist several variants and ramifications of the results we have pre-
sented so far.

Finite, Discrete Time; Finite Probability Space (our model)

Like Harrison and Pliska in their seminal paper [115] we used several re-
sults from functional analysis. Taqqu and Willinger [213] provide an approach
based on probabilistic methods and allowing a geometric interpretation which
yields a connection to linear programming. They analyse certain geometric
properties of the sample paths of a given vector-valued stochastic process
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representing the different stock prices through time. They show that under
the requirement that no arbitrage opportunities exist, the price increments
between two periods can be converted to martingale differences (see Chapter
3) through an equivalent martingale measure. From a probabilistic point of
view this provides a converse to the classical notion that ‘one cannot win
betting on a martingale’ by saying 4f one cannot win betting on a process,
then it must be a martingale under an equivalent martingale measure’, Fur-
thermore, they give a characterisation of complete markets in_terms of an
extremal property of a probability measure in the convex set P(S) of mar-
tingale measures for S (not necessarily equivalent to IP):

The market model M is complete under a measure Q on (2,F) if and
only if @ is an extreme point of P(S) (i.e. Q cannot be ezpressed as a strictly
conver combination of two distinct probability measures in P(S)).

They also show that the problem of attainability of 2 simple contingent
claim can be viewed and formulated as the ‘dual problem’ to finding a certain
martingale measure for the price process S.

Finite, Discrete Time; General Probability Space

The no-arbitrage condition remains equivalent to the existence of an equive-
lent martingale measure, The first proof of this was given by Dalang, Morton
and Willinger [50] using deep functional analytic methods (such as measur-
able selection and measure-decomposition theorems). There exist now several
rmore accessible proofs, in particular by Schachermayer [197), using more el-
ementary results from functional analysis (orthogonality arguments in prop-
erly chosen spaces, see also Kabanov and Kramkov [136)) and by Rogers [184],
using a method which essentially cones down to maximising expected utility
of gains from trade over all possible trading strategies.

Discrete Time; Infinite Horizon; General Probability Space

Under this setting the equivalence of no-arbitrage opportunities and existence
of an equivalent martingale measure breaks down (see Back and Pliska (7
and Dalang et al. [50] for counterexamples). Introducing a weaker regularity
concept than no-arbitrage, namely no free Junch with bounded risk - requiring
an absolute bound on the maximal loss occurring in certain basic trading
strategies (see [198] for an exact mathematical definition, [144] for related
concepts) - Schachermayer [198] established the following beautiful result:

The condition no free lunch with bounded risk s equivalent to the ezistence
of an equivalent martingale measure.

For a recent overview of variants of fundamental asset pricing theorems
proved by probabilistic techniques, we refer the reader to [129). We will not
pursue these approaches further, but use our finite discrete-time and finite
probability space setting to explore several models which are widely used in
practice.
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4.5 The Cox-Ross-Rubinstein Model

In this section we consider simple discrete-time financial market models. The
dev?loprxllent of the risk-neutral pricing formula is particularly clear in this
setting since we require only elementary mathematical methods. The link
to the fundamental economic principles of the arbitrage pricing method can
be obtained equally straightforwardly. Moreover binomial models, by their
very construction, give rise to simple and efficient numerical procedures. We

start with the paradigm of all binomial models - the celeb: -
Rubinstein model [44]. i

4.6.1 Model Structure

We take d = 1, that is,' our model consists of two basic securities. Recall that
the essence of the relative pricing theory is to take the price processes of these

basEC secu?ltxes as given and price secondary securities in such a way that no
arbitrage is possible.

. Our time horizon is T and the set of dates in our financial market model
1s.t = 0,1,...,T. Assume that the first of our given basic securities is a
(riskless) bond or bank account B, with price process

Bit)=(1+r)*, t=0,1,...,T,

implying that the bond yields a riskless rate of return r in each time interval
[t,t + 1). Furthermore, we have a risky asset (stock) S with price process

S(t) with probabilit
sean={Y probability p, _
(t+1) {dS(t) with probability 1-p, °= b T-1

with 0 < d < 4,5 € R (see Fig. 4.1 below).

(1) = uS5(0)

5(0)

1-»p S(1) = dS(0)

Fig. 4.1, One-step tree diagram

Alternatively we write this as
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S(t+1)
S(t)

We set up a probabilistic model by considering the_Z(t), ¢ = 1,...,T as
random variables defined on probability spaces ({2t, i, IP;) with

Zt+1):= t=0,1,...,T-1.

& =0 ={du}, i
Fo = F =P(2)={0,{d},{u}. 9},
Py =P with P({u}))=p, P({d})=1-p p€(0,1).
On these probability spaces we define
Z(t,uy)=u and Z(t,d)=4d, t= 1,2,...,T.

Our aim, of course, is to define a probability space on which we can model
the basic securities (B, S). Since we can write the stock price as

sty =50 [[2(r), t=12...,T,
r=1

the above definitions suggest using as the underlying probabilistic moslel of
the financial market the product space (2, F, P) (sce e.g. [218] ch. 8), i.e.

=10 x...xfh-:.f.?T:{d,u}T,

with each w € {2 representing the successive values of %(t}. t=1,2,...,T.
Hence each w € £ is a T-tuple w = (&1,...,@7) and & € f) =.{d,u}. For
the o-algebra we use F = P(f2) and the probability measure is given by

P({w})) = Pi({w1}) x ... x Pr({fwr}) = P({wr}) x ... x P({wr}).

The role of a product space is to model independent replif:ation of a ran-
dom experiment. The Z(t) above are two-valued random vanab}e.a. so can be
thought of as tosses of a biased coin; we need to build a probability space on
which we can model a succession of such independent tosses.

Now we redefine (with a slight abuse of notation) the Z )y t= LessT
as random variables on (£2, F, IP) as (the tth projection)

Z(t,w) = Z(t,we).

Observe that by this definition (and the above construction) Zy,...,2r are
independent and identically distributed with

P(Z(t)=u)=p=1- P(Z(t) = d).
To model the flow of information in the market we use the obvious filtration

Fo = {8, 92} (trivial o-field),
= ,...,Z = Sl,...,S(t)).
Fr -_-J_;-" = ;(é()l) it (class of all subsets of £2).
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This construction emphasises again that a multi-period model can be
viewed as a sequence of single-period models. Indeed, in the Cox-Ross-
Rubinstein case we use identical and independent single-period models. Aa we
will see in the sequel this will make the construction of equivalent martingale
measures relatively easy. Unfortunately we can hardly defend the assumption
of independent and identically distributed price movements at each time pe-

riod in practical applications. This is the reason why we introduce models of
Markovian type in §4.7.

Remark 4.5.1. We used this example to show explicitly how to construct the
underlying probability space. Having done this in full once, we will from now
on feel free to take for granted the existence of an appropriate probability
space on which all relevant random variables can be defined.

4.5.2 Risk-Neutral Pricing

We now turn to the pricing of derivative assets in the Cox-Ross-Rubinstein
market model. To do so we first have to discuss whether the Cox-Ross-
Rubinstein model is arbitrage-free and complete.

To answer these questions we have, according to our fundamental theo-
rems (Theorems 4.2.1 and 4.3.1), to understand the structure of equivalent
martingale measures in the Cox-Ross-Rubinstein model. In trying to do this
we use (as is quite natural and customary) the bond price process B(t) as
numéraire.

Our first task is to find an equivalent martingale measure of the same
class as P, i.e. a probability measure Q defined as a product measure via a
measure Q on (2, F) such that @({«}) = ¢ and Q({d}) = 1 —g. We call the
set of all measures of that type P. We have:

Proposition 4.5.1. (i) A martingale measure Q € P for the discounted
stock price S exists if and only if

d<l4+r<u (4.6)

(it) If equation (4.6) holds true, then there is a unique such measure in P
characterised by

_14r~d
fa= u—d (47)

Proof. Since S(t) = S(t)B(t) = S(t)(1 + r)t, we have Z(t +1) = S(t+
1)/8(t) = (S + 1)/5())(1 + r). So, the discounted price (S(t)) is a Q-
martingale if and only if for t =0,1,...,T -1

EQ[S(t+1)|F] = 5t) & EQ[(S(t +1)/51))|F) =1
S EQZ{t+1)|FR]=14r
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But Z(1),...,Z(T) are mutually independent and hence Z(t+ 1) is indepen-
dent of F, = 0(Z(1),...,2(t)). So

1+r=EQZ(t+1)|F)=E?(Z(+1)=ug+d(l-9q)

is a weighted average of u and d; this can be 1+r ifand only if 14+r € (d,u). As
Q is to be equivalent to /P and [P has no non-empty null sets, r = d—1,u-1
are excluded and (4.6) is proved.
To prove uniqueness and to find the value of g we simply observe that
under (4.6)
uxg+dx(l—g)=1l+r

has a unique solution. Solving it for ¢ leads to the above formula. a]
From now on we assume that (4.6) holds true. Using the above Proposition
we immediately get:

Corollary 4.5.1. The Coz-Ross-Rubinstein model is arbitrage-free,

Proof. By Proposition 4.5.1 there exists an equivalent martingale measure
and this is by the no-arbitrage theorem (Theorem 4.2.1) enough to guarantee
that the Cox-Ross-Rubinstein model is free of arbitrage.

To answer the question of market completeness we have to examine the
structure of equivalent martingale measures, We already know that there is
a unique martingale measure in the class P, but can we find other equivalent
martingale measures outside P? Examining the structure of the underlying
measure space (product space) again we can show that every probability
measure is a product measure, and hence all probability measures are of
class P. Using this result we conclude the following:

Proposition 4.5.2. The Coz-Ross-Rubinstein model is complele,

Proof. Since by Proposition 4.5.1 the equivalent martingale measure is unique,
the claim follows from the completeness theorem (Theorem 4.3.1). a

We translate the above measure-theoretic argument to economic language.
Since every probability measure is a product measure uniqueness of the equiv-
alent martingale measure on the product space is equivalent to uniqueness of
the individual martingale measures on the component space, (Observe that
this is true for general product space situations - it merely says that for in-
dependent random variables, the individual distributions determine the joint
distribution.) We thus have the following result.

Corollary 4.5.2. The multi-period model is complete if and only if every
underlying single-period model is complete.

We can now use the risk-neutral valuation formula to price every contin-
gent claim in the Cox-Ross-Rubinstein model.
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Proposition 4.5.3. The arbitrage price process of a contingent claim X in
the Coz-Ross-Rubinstein model is given by

mx(t) = BQ)E* (X/B(T)|F) Vt=01,...,T,

where; E* is the expectation operator with respect to the unique equivalent
martingale measure IP* characterised by p* = (1 +r —d)/(u - d).

Pmczf. T%xis follows directly from Proposition 4.2.4 since the Cox-Ross-
Rubinstein model is arbitrage-free and complete. 0

As the most prominent example of an contingent claim, we now price the
European call option.

quollary ?.5.3. Consider a European call option with ezpiry T and strike
price K written on (one share of) the stock S. The arbitrage price process
Cc(t), t=0, 1,...,T of the option is given by (set =T —1)

City=(@1+r"" jz;o C) P (1= p") (S AT - K)* (4.8)

Proof. Recall that

s@) =50 []20(), t=12,...,T.
j=1

B.y Prqposition 4.5.3 the price C(t) of a call option with strike price X at
timet is
Clt) = (1+r)~T-IE*((S(T) - K)*|7]
. T i +
= (14 #)~T-1 p* (su) 11 20 - 1{) f,]

i=t41

i=t+1

- r +
= (147~ T (S(t) II 2zt - K) ]
L
T-t
- (1 + r)—(T-t) JZ=; (TJT t)p'j(l - p-)T-t—j(S(t)ude-t—j - 1{)+.

We used' the extension of property 7 (role of independence) of conditional
expectations from §2.6 in the next-to-last equality. It is applicable since S(t)
is Fi-measurable, Z(¢ + 1),...,Z(T) are independent of F; and (z — K)*
is & non-negative function. Here j, T — ¢ — j are the numbers of times Z(i)
takes the two possible values d, u, n]

.For a European put option, we can either argue similarly or use put-call
parity (§1.3).
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4.5.3 Hedging

1 instei i d unique hedging
Since the Cox-Ross-Rubinstein model is complete we can ‘ﬂn
strategies for replicating contingent claims. Recall that this means we can find
a portfolio ©(t) = (wo(t), #1(E)): ¥ predictable, such that the value process
V,(t) = @olt) B(t) + ¢1()S(2) satisfies

Tx(t) = V(t), forall t= 0,1,...,T.
Using the bond as numéraire we get the discounted equation
x(t) = Vo(t) = polt) + w1 (1)S(t), forall t=0,1,... ,T.

ricing formula, Proposition 4.5.3, we know the arbitrage price pro-
?e}:;su;id? usinsg the rest’rictiou of predictability of #s this lrfa.ds to a unique
replicating portfolio process ¢. We can compute this portfolio process at u;y
point in time as follows. The equation [Tx(t) = po(t) + ¢1(t)S(t) has to be
true for each w = (W1,... ,Wty. .. ,wr) € 2 agd each t = 1,...,T (observe
that mx(0) = V,(0) = wo(1) + ¢1(1)S1 (0)). Given such a t we only can ;:139.
information up to (and including) time ¢ — 1 to ensure that ¢ is predictable.
Therefore we know the coordinates wy, ... ,Wt-1, but we can qnly have‘ one of
the values d or u. This leads to the following systefn of equations, whzf:h can
be solved for @o(t) and @1(t) uniquely. With a ahghf.kabuse of notation we
write & = (1,00 Wee1), Gu = (Wi, 00 ,We~1,u) and @d = (w1,... yWi=1,d)
(recall that since S(t) and ITx(t) are Fi-measurable they are ?Ot_lstant‘ on the
corresponding partition P; of 2, which in our current sett..lng is just given by
the first ¢ coordinates of w, and the same argument applies for ). Then

fx(t,ou) = polt, @) + o1 (8, @)5(t, du),
Ix(t,0d) = po(t,®) + p1(t,@)S(t,@d).

The solution is given by

§(t,ou)dx(t,od) = S(t,@d) Tx(t,0u)

olt &) = 3(t,0u) - S(2, wd)
_ ullx(t,@d) — diTx(t,&u)
- u-—d :
] Su) - Mx(t,&d
‘Pl(tuo) = HX(t!u ) X( }

S(t,au) - S(t,@d)
_ ﬁx[t,&'u) *ﬂx(t,ﬁd].
T S@-1,0)(u—-4d)

Observe that we only need to know & to compute w(t), hence p is predictatfle.
We make this rather abstract construction more transparent by constructing
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the hedge portfolio for the European call. We use the following notation.
Write

T-t
Olt,z) 1= (14 1)~ Z (T;-f)p.j(l — )Tt (zuddT=tF _ Kt

i=0
Then C(t, z) is value of the call at time ¢ given that S(t) = .
Proposition 4.5.4. The perfect hedging strategy ¢ = (o, 1) replicating the
European call option with time of ezpiry T and strike price K is given by
C(t, S{t — 1)u) — C(t, S(t — 1)d)
St-1)(u~d) !
uC(t, S(t — 1)d) - dC(t, S(t — 1)u)
T+ - '

Proof. C(t,z) must be the value of the portfolio at time ¢ if the strategy
v = (p(t)) replicates the claim:

®1 (t) =

po(t) =

wo(t)(1+ r) + 01 (1)S(t) = C(t, S(1)).
Now S() = S(t = 1)2(t) = S(t - 1)u or S(t — 1)d, so:
wo(t)(1 + 1) + 01 ()S(t = 1)u = C(t, S(t - 1)u),
eo(t)(1 + 1) + @1 ()S(t = 1)d = C(t, St — 1)d).
Subtract:
e1(8)S(t — 1)(u — d) = C(t, St — 1)u) - Ct, S(t - 1)d).

So ¢4 (t) in fact depends only on S(t — 1), thus yielding the predictability of
¢, and

_ Clt,S(t~ 1)u) - Ct, S(t - 1)d)
wit) = 50 -D(u-d) '

Using any of the equations in the above system and solving for ¢o(t) com-
pletes the proof. u}

Notice that the numerator in the equation for ¢, (t) is the difference of
two values of C(t, ), with the larger value of z in the first term (recall u > d).
When the payoff function C(t,z) is an increasing function of z, as for the
European call option considered here, this is non-negative. In this case, the

Proposition gives o1(t) > 0: the replicating strategy does not involve short-
selling. We record this as:

Corollary 4.5.4. When the payoff function is a non-decreasing function of
the asset price S(t), the perfect-hedging strategy replicating the claim does not
involve short-selling of the risky asset.
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f we do not use the pricing formula from Proposition 4.5.3 (i.e. lthe in-
forrilat.ion on the price pfocaa), but only the final values of the option (or
more generally of a contingent claim) we are still able to compute the ar-
bitrage price and to construct the hedging portfol.w by b&ck\\.'ard induction.
In essence this is again only applying the one-period celz.lculm‘flous of §1.4 for
each time interval and each state of the world. We outline this procedure for
the European call starting with the last period [T'— 1,77 We have to chooFie
a replicating portfolio ¢(T) = (o(T), #1(T) based on the information avail-
able at time T'—1 (and so Fr.;-measurable). So for each w € £ the following
equation has to hold:

C(T\w)= ‘PO(TI““‘)B(T»“") + ¢ (Tiw)s(Tt w).

Given the information Fr_; we know all but the last coordinate ?f w, and
this gives rise to two equations (with the same notation as above & denotes

the first T — 1 coordinates):
C(T,au) = po(T,@)1 +1)7 +¢1(T,&)S(T, &),
C(T,&d) = o(T,@)(1 +1)T + 1 (T, @)S(T,&d).
Since we know the payoff structure of the call at time T, eg. C(T,0u) =

(uS(T - 1,@) = K)* and C(T,&d) = (dS(T - 1,®) — K)*, we can golve the
above system and obtain

(uS(T - 1,@) — K)* = (dS(T = 1,6) - K)*

p(T@) = ST -Lo)u-a) *
L u(dS(T - 1,8) - K)* —duS(T - 1,0) - K)*
‘PO(Tiw) i (1 + r](u_ d)

Using this portfolio one can compute the arbitrage price of the European call
at time T — 1 in state of the world w as

C(T - 1,0) = po(T @)1 + )7~ + 1 (T, &) S(T = 1,&).

Now the arbitrage prices at time T — 1 are known aznd om; %a.n repeat the
rocedure to successively compute the gn.ces atT-2,...,1, . .
P The advantage of our risk-neutral pricing procedu‘re over thlis approaf:h is
that we have a single formula for the price of the contm_gent claim at all times
t at once, and don’t have to goto a backwards induction only to compute a

1

price at a special time t.

4.5.4 Comparison With the General Arbitrage Bounds

i ici that the price process
Using the pricing formula for the European call we see i
depegds on the current stock price S(t), the strike price K, the expiry date
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T, the interest rate r and (hidden in u, d) the volatility of the stock price. We
thus have in accordance with §1.3 the determining factors of the European
call price explicit in formula (4.8) and can examine their effects explicitly.
We use the notation C(F) to mean that we consider the price C of the call
as a function of the factor F, keeping all others fixed.

Changes in Option Price Relative to the Underlying Stock Price.
If the current stock price S is changed by an amount AS we see that

AC = C(S + AS) - C(S)
T
=(@+n)7T3 (G)P"(l =p)=
i=0
{((S+ AS)wdT-i - K)* — (SwidT~i - K)*+})
2 01

since the function (z — K)* is increasing in z. Hence C(S+ AS) > C(S) and
the value of the option increases as ihe underlying stock price increases, in
accordance with our findings in §1.3.

The quotient AC/AS measures the change in the option price for an
infinitesimal change in the stock price, keeping everything else fixed. If AS —
0 this quotient converges (under conditions of regularity) to C/8S and is
therefore often referred to as the option’s delta,

Looking at Proposition 4.5.4 we see the relation of the delta to the hedging
portfolio for the option. The number of stocks to be held in the portfolio
during period (¢ ~ 1,1] is given by the difference quotient

_ C(t,S(t = )u) = C(T, S(t - 1)d)
- St-1u-Sit-1)d

and this quotient is called the hedge ratio. This is an expression of the above
type and we see that the number of stocks in the hedge portfolio is given
approximately by the corresponding derivative, the option’s delta.

Changes in Option Price Relative to the Strike Price K. Since the
strike price K is only present in the expression (z — K)* and this function
is non-increasing in K, we immediately see that the options value is a non-
increasing function of the strike price.

Formula (4.8) can be used to discuss the other determing factors of the
option price in a similar (although quite tedious) manner,

e1(t)

4.6 Binomial Approximations

Suppose we observe financial assets during a continuous time period [0, T}
To construct a stochastic model of the price processes of these assets (to,
e.g. value contingent claims) one basically has two choices: one could model
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the processes as continuous-time stochsst.if: processes (for which the theo:ﬂ
outlined in Chapter 5 is needed and which is dqne in phapter 6) or one cou
construct a sequence of discrete-time models in which the .contlnuous-t_lme
price processes are approximated by discrete-time stochastic processes mha
suitable sense. We describe the the second approach _now lby examining the
asymptotic properties of a sequence of Cox-Ross-Rubinstein models.

4.6.1 Model Structure

me that all random variables subsequently introduced are defined
::zeaa::liltable probability space (R2,F,P). As in §4:5 we want to model .two
assets, a riskless bond B and a risky stock S, whlcl} we now observe in ;
continuous-time interval [0,7]. To transfer the‘ contn.auous-tame fra.z;;ewort
into a binomial structure we make the following ad,]nstme.nts. Loo! mgﬁ:d
the nth Cox-Ross-Rubinstein model in our sequence, thersf is & prespec k
number k, of trading dates. We set 4n = ‘I':/k,, and dl.\nde [O,T]km 1,.
subintervals of length A,, namely [j = [14n, (J + %)An]. j= 0,.. t,; ; -1
We suppose that trading occurs only at the ?quldmt'ant time p:;ln ,.JM-}-‘
jAqs, i =0,... ka — 1. We fix rn as t.he riskless mt.ereai: ra m:r e
interval I;, and hence the bond process (in the nth model) is given by

Bltny) = (1+r), i=0,.00 ka.

In the continuous-time model we compound c_ont.inuous!y with s:?ot ratedr 21.0
and hence the bond price process B(t) is given by B(t) = ¢™. In order ;
approximate this process in the discrete-time framework, we choose rp suc!
that

14 rn = e"4n, (4.9)

i i i j = t {14r,) =exp(rjdn) =

With this choice we have for any j = 0,...,kn that { 4 )

ex;s(rt,, 4). Thus we have approximated the bond process exactly at the time
oints of the discrete model.

’ Next we model the one-period returns S(tn j+1 }/S(ta,;) of the stock. );ly a

family of random variables Zaiyi=1,.00 kn taking values {dn,un} Wit

P(Zn,i =1Up) =pn = 1- P(zn,i = dn)

for some pn € (0,1) (which we specify later). W::th tl_'lese Zp,j we model the
stock price process Sy in the nth Cox-Ross-Rubinstein model as

J
Sn(tn.j) = Sn(o)HZn,h i=0, 1,... ,k,.,.'
i=1
i ificati i turns we get a complete de-
With the specification of the one-period re . : g
scription of the discrete dynamics of the stock price process in each k(ﬂ}ox
Ross-Rubinstein model. We call such a finite sequence Zn = (Zng)i2y 8
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lattice or tree. The parameters p,dn,pn, ks differ from lattice to lattice,
but remain constant throughout a specific lattice. In the triangular array
(Zng), t=1,...,kq; n=1,2,... we assume that the random variables are
row-wise independent (but we allow dependence between rows). The approx-
imation of a continuous-time setting by a sequence of lattices is called the
lattice approach.

It is important to stress that for each n we get a different discrete stock
price process S,(t) and that in general these processes do not coincide on
common time points (and are also different from the price process S(¢)).

Turning back to a specific Cox-Ross-Rubinstein model, we now have as
in §4.5 a discrete-time bond and stock price process, We want arbitrage-
free financial market models and therefore have to choose the parameters
tp, dn, pn accordingly. An arbitrage-free financial market model is guaranteed
by the existence of an equivalent martingale measure, and by Proposition
4.5.1 (i) the (necessary and) sufficient condition for that is

dn <141, <t

The risk-neutrality approach implies that the expected (under an equivalent
martingale measure) one-period return must equal the one-period return of
the riskless bond and hence we get (see Proposition 4.5.1(ii))

1+ n "dn
po = TR =G5 u:_} e (4.10)

So the only parameters to choose freely in the model are u, and d,. In the
next sections we consider some special choices.

4.6.2 The Black-Scholes Option Pricing Formula

We now choose the parameters in the above lattice approach in a special
way, Assuming the risk-free rate of interest » as given, we have by (4.9)
14r, = ¢"2% und the remaining degrees of freedom are resolved by choosing

up and d,. We use the following choice:

up = e®VA, and dn =ull = e"7VER,

By condition (4.10) the risk-neutral probabilities for the corresponding single
period models are given by

R R
Pn = Up — dn - eV da — e-an. )

We can now price contingent claims in each Cox-Ross-Rubinstein model using
the expectation operator with respect to the (unique) equivalent martingale
measure characterised by the probabilities pj, (compare §4.5.2). In particular
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we can compute the price C(t) at time ¢ of a European call on the stock
S with strike K and expiry T by formula (4.8) of Corollary 4.5.3. Let us
reformulate this formula slightly. We define

o = min {j € No|S(0)uhds=~7 > K}. (4.11)

Then we can rewrite the pricing formula (4.8) for t = 0 in the setting of the
nth Cox-Ross-Rubinstein model as

Kn .
c® =+t 3 (F)pd - pi SO - )

- 50) {Z () (=) (4 :f")h_j}

kn
—(1+ra)* K [E (k;)P;j(l"P;)k"-j .

J=aa

Denoting the binomial cumulative distribution function with parameters
(n,p) as B™P(.) we see that the second bracketed expression is just

B*~Pilay) =1- BF~ P (ag).
Also the first bracketed expression is Bknibn(a,) with

L]
Pnlin

141

Pn =

That pn is indeed a probability can be shown straightforwardly. Using this
notation we have in the nth Cox-Ross-Rubinstein model for the price of a

European call at time ¢t = 0 the following formula:

Cn(0) = Sa(0)B**?"(an) - K(1 + ra)~ ks B¥~P5 (an). {4.12)

(We stress again that the underlying is Sn(t), dependent on n, but S, (0)
5(0) for all n.) We now look at the limit of this expression.

Proposition 4.6.1. We have the following limit relation:

lim Cn(0) = Css(0)
n—oo

with Cps(0) given by the Black-Scholes formula (we use S = 5(0) to ease

the notation)

Cs(0) = SN(dy(5,T)) — Ke™ T N(d2(8,T))- (4.13)

The functions dy(s,t) and dq(s,) are given by
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_ log(s/K) + (r+ %)t
a1 ’

dy(s,t) = dy(s,t) = oVt = log(s/K) + (r — &)t
oVt

and N (.} is the standard normal cumulative distribution function (§2.3).

dl(s,t)

Proof, Si = iti
shmvf ince S, (0) = S (say) all we have to do to prove the proposition is to

(i) lim Bf~Pr(a,) = N(di(S,T)),

n—=oo

(i) lim B*»Pa(a,) = N(da(S,T)).

These statements involve the conver, istributi
gence of distribution functi
use the theory outlined in §§2.7, 2.8, 2.9. o SnERr
To show (i) we interpret

B*nibr(a,) = P(an < Yy < k)

wi-th (Yn) a sequence of random variables distributed according to the bino-
mial law with parameters (k,, pn). We normalise Y, to

kn
(Bjin =P
n=Yn_E..(.f2.)= Yﬂ-kmﬁ“ —jgl o Pn)
VVar(Y,) Vknoa(l = pn) - VEnbn(l - ﬁn),
where By, j=1,...,ks; n=1,2,.,. are row-wise independent Bernoulli

random variables with parameter p i imi
Pn. Now using the central limit th
(Theorem 2.9.2) we know that for @, = @, 8, — § we have e

lim P(an < Yo < Bn) = N(B) = N(a).

By definition we have

P (an < Yo < ko) = P (an < ¥ < 6n)

with
— G — knpn

ap = ——=—0
VknpPa(l = pn)

Using the following limiting relations:

and B, = k(1 —Pn)

" VEnBall = Fn)

. 1 ) R
nll’l{.lopn=§, nll'ngoku(l-2p,,)\/4 =—T(£+%),

and the defining relation for a,, formula (4.11), we get
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log(K/S) + knovBn _ kndn
lim a, = lim E—m
n-l-boo Ly : }knﬁn(l "ﬁn)
im log(K/S) + cknVAn(1 = 2n)
s 20 \/knBnpn(1 = Pn)

_log(K/S) = (r+ )T _ _ .
. a\/]—_' = dl(SaT)

Furthermore we have

lim Bn = lim \/kapr'(1 = Pn) = +0o0.
n=oo =00
So N(Bn) = 1, N(an) =& N(=d1) =1~ N(d;), completing the proof o_f (i).
To prove (ii) we can argue in very much the same way a.n'd ar}-w:-..nt.
parameters af, and 85 with pn replaced by pj. Using the following limiting
relations:

4 r
tim gt =, Jim k(1= 2V =T (5-7):

we get

. o lo8(K/S) +onVER(1 - 291)

- = l
A% = T 2ey/ndnph(l—Ph)

log(K/S) = (r=%)T _ o 1

= oVT B

For the upper limit we get
lim 85 = lim /ka(p3)~1(1 = pp) = +00,
n =400 n—$o00

whence (ii) follows similarly. o

heBy tlElel)above propoeitio);a we have derived the classical Black-Sc.holes Pu—
ropean call option valuation formula as an asymptotic limit of cfpt.lon prices
in a sequence of Cox-Ross-Rubinstein type models with a special choice of
parameters. We will therefore call these models discrete Black-Scholes mod-
els. A straightforward analysis of the continuous-time Black-Scholes marg(et
model using stochastic calculus is contained in Chapter 6. Let us mention
here that in the continuous-time Black-Scholes model the dyna:mxcs of t".he
(stochastic) stock price process S(t) are modelled by a geometric Brownian
motion (or exponential Wiener process). The sample Ra.thn of this stochastic
price process are almost all continuous and the prolbab!hty law of S(t) at any
time { is lognormal. In particular the time T' distribution of log{S(T)/5(0)}
is N(Tp,To?). Looking back at the construction of our sequence of Cox-
Ross-Rubinstein models we see that
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kn
log Sg(g) = " log(Za,),

i=1

with log(Z, ¢) Bernoulli random variables with

P(10g(Zn 3} = 0v/An) = pn = 1 = P(l0g(Zn,) = —0\/4y).

By the (triangular array version) of the central limit theorem we know that
log properly normalised converges in distribution to a random variable
with standard normal distribution. Doing similar calculations as in the above
proposition we can compute the normalising constants and get

; Sa(T) 2 2
nli’néolog 30) ~ N(T(r - ¢*/2),T¢?),
i.e. 2387 is in the limit lognormally distributed.

Using the terminology of weak convergence we can therefore say that the
probability measures IP" induced by the distributions of S, (T')/S(0) con-
verge to the probability measure @ induced by N (T'(r—0c?/2),To?). Now the
probability measures IP" are the risk-neutral equivalent probability measures
in the nth Cox-Ross-Rubinstein model, and we will show in Chapter 6 that
in continuous-time market models, similarly to discrete-time financial market
modelling, contingent claims can be priced using risk-neutral equivalent mar-
tingale measures. In particular we will show that in the above Black-Scholes
market the (in this case unique) equivalent martingale measure is given by

Therefore as & direct consequence of the definition of weak convergence
(compare expression (2.2)) we have

Proposition 4.6.2. Let X be a contingent claim of the form X = h(S(T))
with h a bounded, uniformly continuous real function. Denote by IT% resp.
IIx the timet = 0 price of X in the nth discrete-time resp. the continuous-
time Black-Scholes market model. Then

. n
nlL%Hx = Tx.

Proof. Writing the pricing formula for the contingent claim using the ex-

pectation operator with respect to the risk-neutral probability measures, we
have

1% = Eps (h(Sa(T))) = / hdP",
Tesp.

Mx = Eq(h(S(T)) = / hdQ

(since the o-field at ¢ = 0 is assumed to be trivial, we can use expectation
instead of conditional expectation), and the portmanteau theorem gives the
result. )
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Example. Using h(z) = max{0, (K — z)} we get the above convergence for
the European put option, 2nd put-call parity gives the result for the European
call option (as above). Observe g(z) = max{0, (z — K)} is unbounded, so we
cannot use Proposition 4.6.2 to give anotkher direct proof of Proposition 4.6.1.

The above results relied heavily on the fact thai contingent claims con-
sidered were of European type, i e, only dependent on the value of S(T). In
Chapter 6 we will reconsider the approximation procedure and show that we
have in fact weak convergence in functional form, that is, for all t € [0,T]
simultaneously. Thus we get approximation for path-dependent contingent
claims also. .

We now turn briefly to different choices of u, and d, and their effects,

4.6.3 Further Limiting Models

As already mentioned different choices of the sequences (un) and (dn) lead
to different asymptotic stock price processes. We briefly discuss two possible
choices.

Jump Stock Price Movements

The key to the results in the last section was the weak convergence of the ge-
quence of random variables log(%—%l). To show this convergence we basically
used the De Moivre-Laplace theorem for binomial random varisbles. We now
use another classical limit theorem for binomial random variables - the ‘weak
law of small numbers® or ‘law of rare events’, which states that for certain
parameters the limiting distribution is a Poisson distribution (compare §2.9).
Indeed, if we choose u, = u = ¢¢, { > 0 (independent of ) and dn = efén
with some 0 < € < r we have (for latge enough n) an arbitrage-free market
model with unique risk-neutral probabilities p}, given by

. _ exp(rdn) - exp(€4n)
N u — exp(£4n)

For this lattice approach the step size of an upward move remains constant
through all Cox-Ross-Rubinstein models, but the probability it will occur
becomes very small. On the other hand, the size of a downward move becomes
very small (as A, — 0, we have d, — 1), but its probability becomes very
close to 1.

Recall that in the sequence of Cox-Ross-Rubinstein models we modelled
the stock price at time T as

=0, (n — o0).

kn
log S?"(%%l = E log(Zn,1),

i=1
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with log(Zp,¢) Bernoulli random variables. Given the size of the up and down
movements and- the probabilities p}, as above, an application of the law of rare
events (see §2.9) shows that the corresponding sequence of equivalent proba-
bility measures P of the Cox-Ross-Rubinstein models converges weakly to
the probability measure @ induced by a Poisson distribution with parameter
A= Tulesl)

We can apply the pormanteau theorem again to find the valuation formula
of a European put and use put-call parity to get the pricing formula for a
European call. We use the following notation: Cy, is the time ¢ = 0 price of

a European call in the nth Cox-Ross-Rubinstein model with parameters as

above and
[=~)

!f’“(a:): I—Wﬂ(z—l)zze_ﬂpi

il
i=z

the complementary Poisson distribution function with parameter u. With
this notation we have the following limiting relation:

' — 72 _ -rT _%
nllegoCn = 5(0)0*(z) — Ke™" ¥ (z).

The parameter ) is given as above and z = (log(K/S(0)) — €T)/ log .

In the limiting continuous-time model the stock price process has to be
modelled in such a way that ‘jumps’ are possible, i.e. the paths of the stochas-
tic stock price process must allow discontinuities. This is done by using the
continuous-time Poisson process (or another point process, see Chapter §5.2).
The distribution of the stock price process in the continuous-time model is
then log-Poisson. This kind of binomial model was introduced by Cox and
Ross in [46]; see also [46], p.365 for a somewhat different textbook treatment.

Constant Elasticity of Variance Diffusion

We now allow the up and down movements of the binomial process to dif-
fer predictably from period to period. More explicitly we write (using the
notation from above)

tn = Un(Sn(§8n), An) and dn = dn(Sn(idn), 4n).

To obtain an arbitrage-free market we have to choose the probabilities in the
underlying single-period models according to (4.7), i.e.

exp{rdn} = dn(Sn(idn), 4n)
Un (Sﬂ (jdn]l Aﬂ) = dn(sﬂ (j‘dﬂ)! Aﬂ) '

This, of course, implies that the equivalent martingale measure for the nth
Cox-Ross-Rubinstein model is dependent on the whole family of probabilities

P01+« Phger _
For instance, if we use the functions

Pnj= P:s,j(sn (74n)) =
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u(y,t) = pyt + o Vi and d(y,t) = pt - oV, 0<p<,
and set

un(S(t),1) = exp{u(S(t),1)} and da(S(t),t) = exp{d(S(t), 1)},
we have

e"An _ ehSnlfan)Ba=0SE(1ANVET
Prd = S AN Ant oSk AnVAr — ehSa(An)An-oSI(ANVES"

With these parameters one can show that the probability measures P" con-
verge weakly to a probability measure @ induced by a certain gamma-type
distribution. This leads to the constant elasticity of variance option pricing
formula for the limit of European call option prices at time 0 in the above
sequence of Cox-Ross-Rubinstein models:

(- -] - -]
lim Cno=S(0) 3 9(i,2)G(i + A y) = Ke™™ 3 _g(i + 4, 2)G(6, ).

i=1 i=1
The function g(i,u) is the gamma density function

=ty =1
i) = Ty

and the function G(i, z) the complementary gamma distribution function

o0

G(i,2) = /g(i, u)du.

z

The parameters are given as A = 1/(2(1-p)), z = 2ArS(0) ke /2 /(o?(eT/* =~
1)) and y = 2ArK ¥ /(a?(erT/> - 1)).
The corresponding continuous-time stock price dynamics are given by

dS(t) = pS(t)dt + ¢S(t)PdW (1)

(where dW (t) denotes the stochastic differential with respect to the Wiener
process — we treat this in Chapter 5) and the constant elasticity in the (con-
ditional) variance term (in front of dW(t)) gives the name to this model.

Remark 4.6.1. The numerics of the above approximations have been subject
to investigation for quite some time (see [31, 152] for discussion and refer-
ences), Such numerical schemes are easy to implement, for instance using
Mathematica, and the reader is invited to do so.
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4.7 Multifactor Models

We now discuss examples of discrete-time financial market models with more
than two underlying assets. Such models are useful for the evaluation of mul-
tivariate contingent claims, such as options on multiple assets (options on
the maximum of two or more agset prices, dual-strike options, and portfo-
lio or basket options). For the exposition we assume d + 1 financial assets
S0,S14.++ 1 S4. We assume Sy = B, a risk-free bank account or bond, and use
B as numéraire,

4.7.1 Extended Binomial Model

This model, proposed by Boyle, Evnine and Gibbs [28], uses a single binomial
tree for each of the underlying d risky assets. So we have 2¢ branches per node.
We discuss the case d = 2 (i.e. the model consists of two risky assets and the
bank account) in detail; the generalisation to d > 2 is straightforward. To
show that this model is arbitrage-frec we have to find an equivalent martin-
gale measure and to show that it is complete we have to prove uniqueness of
the equivalent martingale measure. A similar argument to that for the Cox-
Ross-Rubinstein model shows that the multi-period extended binomial model
is arbitrage-free (complete) if and only if the single-period model is (compare
§4.5.2). So it is enough to discuss the single-period model with trading dates
t=0and t = 1(= T). We assume a risk-free rate of return of r > 0, so
B(0) = 1 and B(1) = 1 + r. Furthermore we have two risky assets, 5 and
S3. Since both risky assets are modelled by single binomial trees, we have four
possible states of the world at time ¢ = 1 with values of (Sy(1), S2(1)) given
by (u181(0), u252(9)) with probability puu, (¥151(0), d252(0)) with probabil-
ity pud, (d151(0), u3S2(0)) with probability psu and (dySi(0), d252(0)) with
probability py4, where we assume u; > di, i = 1,2 and positive probabilities.
Under the risk-neutral probabilities pl,,pls Pay: Pas the discounted stock
price processes S;(t) = S;(t)/B(t) have to be martingales. These martingale
conditions imply the following two equations:

E{51(1)] = 51(0) ¢ (ply + Pha)us + (3 + Paa)d1 = (L +7),
E[5:(1)) = 5:(0) & (phy + Pl )2 + (Pha + Pag)ds = (1 + 7).

Furthermore, besides the fact that the p* have to be positive to generate an
equivalent measure, we must have

Pau + Paa+ Do, + 03 = 1.

So we have three equations for the unknown probabilities p, P} 4 Pous Paa
and in general (depending on the parameters uy,dy, uz,da, r) we will have
several (even infinitely many) solutions of the system of the equations above.
This means that the extended binomial model is arbitrage-free, but not com-
plete (in accordance to our rule of thumb (§1.4) that we should have as many

financial assets to trade in as states of the werld),
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4.7.2 Multinomial Models

The extended binomial model shows that while it is tempting to model each
asset by a single binomial tree we lose the desirable property of market com-
pleteness in doing so. We will therefore now construct a arbitrage-free, com-
plete market model (with d > 2 financial assets) following the informal rule
of allowing as many different states of the world as we have assets to trade
in, Furthermore the stochastic stock price processes in this model can be
constructed to be of Markovian nature, that is, rather than the single-period
returns being independent unconditionally, they are independent given the
present value of the process. This also allows for a more reslistic repre-
sentation of the true prices and is more in line with the most prominent
continuous-time model, the Black-Scholes market model, in which the stock
price processes are Markovian, We follow an approach which is basically due
to He [116]. Again we only discuss the d = 2 case (with the risk-free bank
account B, with rate of return r > 0, as numéraire asset and two risky assets
51,83); the case d > 2 follows by the same prescription. Let us start with
the single-period model. As in the extended binomial case above we assume
trading dates t = 0 and t = 1(= T), but now we have only three possible
states of the world at time ¢ = 1. Indeed we set

S1(1) = 51(0)2, and Si(1) = S2(0) 23,
with

P(Zy =un, 22 =un) =p1; P21 = 12,22 = u2) = p3j
P(Z, = uy3, Z2 = u33) = p3.

In general Z; and Z; are not independent, but we still can choose uy; in
such a way that they are uncorrelated, Under the risk-neutral probabilities
P}, P}, p3 the discounted stock price processes Si(2) = Si(t)/B(t) have to be
martingales. These martingale conditions imply the following two equations:

E[$,(1)] = 51(0) ¢ v11p] + v12p; + v1apg = (1 +7),
E[Sz(l)] = SQ(O) = Ule;_ + unp; + Ugsps = (1 + 1‘).

Furthermore, besides the fact that the p* have to be pos-itive to generate an
equivalent measure, we must have

pi+pat+p3=1

Therefore we have three equations for the three unknown probabilities and
in general (given reasonable parameters u;;) we will have a unique solution
of the system of the equations above, and hence an arbitrage-free, complete
financial market model.

In the multi-period setting with time horizon T and the set of trading
dates given by {0 =1y < t; < ... <ty = T} of equidistant time points with
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distance 4, (observe that we have n time steps), we model the stock price
processes by

k
Si(tk) = Si(0) HZ.-,', k=0,1,...,n,i=12,

=1

with a sequence of independent random vectors (Z1));¢;¢n such that 2,
Zgj ) are uncorrelated {but possibly dependent) and

P(Z(j_) = u(?, Zé":) = ug":l)) = pé":);
P(Zl") £ u’g?,zéf) e u%)) =p2’.);
]P(Zy) = uy, 7/9) =ufy) = P:(aJ)°

Since for each j the random vector ZU) can be in one of three possible states,
the above argument applies for each ‘underlying’ single-period market and
the multi-period market is arbitrage-free and complete.

The most important case here is 29+ = w(S(t;),15,6¥)), i=1,2, j =
0,...n — 1, with a sequence of independent random vectors (€));<,n-1
such that c(f”, cg’) are uncorrelated (but possibly dependent) and sufficiently
smooth functions u;. Then u? *1) are & predictable functions of S(t;) making
the discrete stochastic process S;(t) Markovian, We will construct a financial
market model of this type in §6.4.

4.8 Further Contingent Claim Valuation in Discrete
Time

4.8.1 American Options

Recall that is never optimal to exercise an American call early.

We now consider how to evaluate an American put option, European and
American call options having been treated already. The new feature is the
need to distinguish between the stopping region, where it is optimal to stop
and exercise our American option early, and the continuation region, where
it is optimal to proceed as with the European counterpart and continue. The
distinctive feature of American options, and the main difficulty in dealing
with them, is that it is not in general possible to price the option without at
the same time finding the stopping and continuation regions. Furthermore,
these regions cannot be found ‘once and for all’ by explicit formulas, but
must instead be found by a recursive procedure, case by case. We use the
discrete-time Black-Scholes model of §4.6, i.e. two financial assets, a risk-free
bank account (used as numéraire) and a risky stock, modelled in a binomial
set-up. We now divide the time interval [0, T] into N equal subintervals of
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length A say. Assuming the risk-free rate of interest r (over [0,T]) as given,
we have 1 + p = e"@ (where we denote the risk-free rate of interest in each
subinterval by p). The remaining degrees of freedom are resolved by choosing
u and d as follows:

u= e”‘/z, and d=u-!=eV3,
By condition (4.7) the risk-neutral probabilities for the corresponding single
period models are given by

. _l+p—d _ erd _ g-oVa
- u-d - ¢0V'Z.-.¢_-€\/3“

Thus the stock with initial value S = S(0) is worth Su’d? after i steps up and
j steps down. Consequently, after N steps, there are N 4 1 possible prices,
SuldN=i (= 0,...,N). There are 2V possible paths through the tree. It is
common to take N of the order of 30, for two reasons:

(i) typical lengths of time to expiry of options are measured in months (9
months, say); this gives a time step around the corresponding number of
days,

(ii) 230 paths is about the order of magnitude that can be comfortably handled
by computers (recall that 219 = 1,024, so 2%° is somewhat over a billion).

We can now calculate both the value of an American put option and
the optimal exercise strategy by working backwards through the tree (this
method of backward recursion in time is a form of the dynamic programming
(DP) technique, due to Richard Bellman, which is important in many areas
of optimisation and Operational Research).

1. Draw a binary tree showing the initial stock value and having the right
number, N, of time intervals.

2. Fill in the stock prices: after one time interval, these are Su (upper) and
Sd (lower); after two time intezvals, Su?, § and Sd? = S/u?; after i time
intervals, these are Sudi=J = Su?/= at the node with j ‘up’ steps and § - j
‘down’ steps (the (i, j)’ node).

3. Using the strike price K and the prices at the terminal nodes, fill in the
payoffs fi,; = max{K — Su’ dN=-7,0} from the option at the terminal nodes
underneath the terminal prices.

4, Work back down the tree, from right to left. The values f,-? of the corre-
sponding European option at the (%, j) node are given in terms of those of its
upper and lower right neighbours in the usual way, as disccunted expected
values under the risk-neutral measure:

fE = AP’ firrjar + (1= ") fitr ).

The intrinsic (or early-exercise) value of the American put at the (i, §) node
~ the value there if it is exercised early - is
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K - Suid-i

(when this is non-negative, and so has any value). The value of the American
put is the higher of these:

fiy = max{fZ, K - Su/d'~7} o
= max {3 (p* fiyrja1 + (1= p*) finrj), K = Sw/d =7},

5. The initial value of the option is the value f; filled in at the root of the
tree.
8. At each node, it is optimal to exercise early if the early-exercise value there

exceeds the value ff,? there of the corresponding European option.

Note. The above procedure is simple to describe and understand, and simple
to program. It is laborious to implement numerically by hand, on examples
big enough to be non-trivial. Numerical examples are worked through in
detail in [122], 359-360 and [46), 241-242.

Mathematically, the task remains of describing the continuation region -
the part of the tree where early exercise is not optimal. This is a classical
optimal stopping problem, and as we mentioned above, a solution by explicit
formulas is not known - indeed, is probably not feasible. It would take us
too far afield to pursue such questions here; for a fairly thorough (but quite
difficult) treatment, see [207]. We will, however, connect the work above with
that of Chapter 3 on the Snell envelope. Consider the pricing of an American
put, strike price K, expiry T = N, in discrete time, with discount factor 1+p
per unit time as earlier, Let Z = (Z,))A, be the payoff on exercising at time
n. We want to price Z,, by Un say (to conform to our earlier notation), so as
to avoid arbitrage; again, we work backwards in time. The recursive step is

1 {3
Uy = max{zn-l: IT;E [Unl}-n-il},
the first alternative on the right corresponding to early exercise, the second
to the discounted expectation under P*, as usual. Let Up = Un/(1+r)" be
the discounted price of the American option: then

(.jn-l = max {Zn-h E.[[-]nlfn.q]}.
Thus (,) is the Snell envelope (§3.7) of the discounted payoff process (Zn).
It is thus:

(i) a P*-supermartingale, .
(ii) the smallest supermartingale dominating (Z,),
(iii) the solution of the optimal stopping problem for Z.

We conclude by showing the equivalence of American and European calls
without using arbitrage arguments.
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Theorem 4.8.1. Let (Zn)Y be an adapted sequence, h := Zn; write Ca(n),
Cg(n) for the values at time n of the American and European options gen-
erated by the payoff function h. Then

(i) Ca(n) 2 Ce(n),
(ii) If Cg(n) > Za, then Ca(n) = Cg(n).

Proof. (i) We use the supermartingale resp. martingale property of the price
processes of the discounted American resp. European call to get

Caln) 2 B (Ca(N)IFa) = B* (C(M)Fa)) = Cr(n).

(ii) (Cg(n)) is a P*-martingale, so in particular a P*-supermartingale. Be-
ing the Snell envelope of (Zn), (Ca(n)) is the least P*-supermartingzle
dominating (Z,). So if Cg(n) 2 Zn as in the condition of the theorem,
Ge(n) > Caln), so C(n) = Ca(n). o

Corollary 4.8.1, In the Black-Scholes model with one risky asset, the Amer-
ican call option is equivalent to its European counterpart.

Proof. Here Z, = (Sp — K)4+. Discounting,
Ce(n) = (1+p) N E* (S~ — K)+|Fn)
> B (Sv-K(+ A ~NIFa) =8 - K14+ p)7N
since S, is a [P*-martingale. Without the discounting, this says
Cr(n) > Sa — K(14p)~N-")

This gives Cg(n) > Sn — K; also Cg(n) 2 0; 80 Cg(n) > (Sa = K)+ = Zn,
and the result follows from the theorem. a

4,8.2 Barrier Options

Barrier options are options whose payoff depends on whether or not the stock
price attains some specified level before expiry. We will be brief here, referring
to §6.3.3 for 2 more extensive discussion of barrier options in continuous time,
The simplest case is that of a single, constant barrier at level H. The option
may pay (‘knock in’) or not (‘knock out’) according as to whether or not
level H is attained, from below (‘up’) or above (‘down’). There are thus four
possibilities - ‘up and in’, ‘up and out’, ‘down and in’, ‘down and out’ -
for the basic - single, constant barrier — case. In addition, one may have
two barriers, with the option knocking in (or out) if the price reaches either
a lower barrier H, or an upper barrier Hz. More generally, one may have
non-constant — ‘moving’ - barriers, with the level a function of time.
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As always, it pays to be flexible, and to be able to work in discrete or
continuous time, as seems more appropriate for the problem in hand. For a
full treatment in continuous time, see [224], Chapters 10, 11, or §6.3.3. Now a
continuous-time price process model, such as the Black-Scholes model based
on geometric Brownian motion (§6.2) may be approximated in various ways
by discrete-time models (such as the discrete Black-Scholes model, the Cox-
Ross-Rubinstein binomial tree model of §4.5); for the passage from discrete
to continuous time, see §4.6 (and more generally, §5.9 below).

When we have a barrier option in discrete time, we price it as with the
American options of §6.3.1 by backward induction. Some sample paths hit the
barriers, and for these we can fill in the payoff from the boundary conditions
that define the barriers; as before, we fill in the payoff at the terminal nodes
at expiry. We then proceed backwards in time recursively, at each stage using
all current information to fill in, as before, the payoffs at new nodes one time
step earlier. When we reach the root, the payoff is the value of the option
initially.

Problems may easily be encountered when dealing with barrier options in
discrete time if the discretisation process is not chosen and handled with care.
A new discretisation process, due to Rogers and Stapleton [187], proceeds by
first discretising space, by steps 6z > 0, and then discretising time, into
To, T1,, Where

T0:=0, Tog1:=inf{t > m 1 |X(#) = X(m)| > 8z}, n>0,
and deal with the resulting random walk (£,), where
&n = X(mn)-

This approximation scheme is accurate, reasonably fast, and very flexible: it
is capable of handling a wide variety of problems, with moving as well as fixed
barriers. For the theory, and detailed comparison with other available meth-
ods, see [187); another approach is due to AitSahlia and Lai [3]. Techniques
useful here include continuity corrections for approximations to normality,
Edgeworth expansions, and Richardson extrapolation.

4.8.3 Lookback Options

Lookback - or hindsight - options, which we discuss in more detail in §6.3.4 in
continuous time, are options which convey the right to ‘buy at the low, sell at
the high’ — in other words, to eliminate the regret that an investor operating
in real time on current, partial knowledge would feel looking back in time
with complete knowledge. Again, most of the theory is for continuous time
(see e.g. [224], Chapter 12), but a discrete-time framework may be preferred
~ or needed, if the only prices available are those sampled at certain discrete
time-points. Care is obviously needed here, as discretisation of time will miss
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the extremes of the peaks and troughs giving the highs and lows in continuous
time.

Discrete lookback options have been studied from several viewpoints; see
e.g. (120, 138, 153]. An interesting approach using duality theory for random
walks has recently been given by AitSahlia and Lai [2].

4.8.4 A Three-Period Example

Assume we have two basic securities, a risk-free bond and a risky stock. The
one-year risk-free interest rate (continuously compounded) is r = 0.06 and
the volatility of the stock is 20 %. We price calls and puts in three-period
Cox-Ross-Rubinstein model. The up and down movements of the stock price
are given by

w=eVE =11224 and d=u"!=e""Y2 = 08910
with o = 0.2 and A = 1/3. We obtain risk-neutral probabilities by (4.7)

. ed—d
P=="a

We assume that the price of the stock at time t = 0 is S(0) = 100. To price
a European call option with maturity one year (T’ = 3) and strike K = 10)
we can either use the valuation formula (4.8) or work our way backwards
through the tree. Prices of the stock and the call are given in Fig. 4.2 below.,
It is interesting to compare the approxinative Cox-Ross-Rubinstein prices ¢,
(discrete model with n time steps, see (4.8), (4.12) to the Black-Scholes price
Cps = 10.9895 (according to (4.13)). We have

= 0.5584.

n c(n)
5 11.33
10 10.79
50 10.95
100 10.97
200 10.98
500 10.99

To price a European put, with price process denoted by p(t), and an Amer-
ican put, P(t), (maturity T = 3, strike 100), we can for the European put
either use the put-call parity (1.1), the risk-neutral pricing formula, or work
backwards through the tree. For the prices of the American put we use the
technique outlined in §4.8.1. Prices of the two puts are given in Fig. 4.3. We
indicate the early exercise times of the American put in bold type. Recall
that the discrete-time rule is to exercise if the intrinsic value K — S() is
larger than the value of the corresponding European put.

4.8 Further Contingent Claim Valuation in Discrete Time

S =141.40
5 =125.98 c=41.40
¢ =27.79
S =100 ¢=18.16 5 c=12.24
¢=1156 = 100
5 =89.10 < & =1050 5 =89.10
= 3. c=0
c=367 5 =179.38
EI=I0 S =170.72
ce=0
time t =0 t=1 t=2 t=3

Fig. 4.2. Stock and European call prices
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P =573
p = 10.65 p=8.90
P =10. P =8.90
10.90 p=18.64
P = 20.62 p=29.28
P =129.28
time ¢ =0 t=1 t=2 t=3

Fig. 4.3. European p(.) and American P(.) put prices
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Exercises

4.1 Construct hedging strategies for the European call and put in the setting
of the example in §4.8.4.

4.2 Compare the Black-Scholes price with Cox-Ross-Rubinstein price ap-
proximations. Is the convergence of Cox-Ross-Rubinstein prices to the Black-
Scholes price ‘smooth’ or ‘oscillating’? (See [152] for details.)

4.3 Consider a European call option, written on a stock S, with strike price
100 which matures in one year. Assume the continuously compounded riskfree
interest rate is 5%, the current price of the stock is 90 and its volatility is
=02 ’

1. Set up a three-period binomial (Cox-Ross-Rubinstein) model for the stock
price movements.

2. Compute the risk-neutral probabilities and find the value of the call at
each node.

3. Construct a hedging portfolio for the call.

4.4 Consider put options, written on a stock S, with strike price 100 which
mature in one year. Assume the continuously compounded riskfree interest
rate is 6%, the current price of the stock is 100 and its volatility is o = 0.25.

1.Set up a three-period binomial (Cox-Ross-Rubinstein) model for the stock
price movements. .

9. Compute the risk-neutral probabilities and find the value of a European
put at each node.

3. Construct a hedging portfolio for the European put,

4. Now compute the values of a corresponding American put at each node
and set up 2 hedging portfolio. Compare with the hedging portfolio in 3.

4.5 Consider 2 European powered call option, written on a stock S, with
expiry T and strike K. The payoff is (p > 1):

S(T) - KP, S(T) 2 K;
CP(T)={§)(1) : S$T3<K.

Assume that T' = 1 year, S(0) = 90,0 = 0.3, K = 100. Consider a two-period
binomial model.

1. Price C, using the risk-neutral valuation formula.

2. Construct a hedge portfolio and compute arbitrage prices (which of course
will agree with the risk-neutral prices) using the hedging portfolio.

3. Compare the hedge portfolio with a hedge portfolio for 2 usual European
call. What are the implications for the risk-management of powered call
options?
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4,6 In static hedging of exotic opticns one tries to construct a portfolio of
standard options - with varying strikes and maturities but fixed weights that
will not require any further adjustment ~ that will exactly replicate the value
of the given target option for a chosen range of future times and market
levels.

We will construct a static hedge for a barrier option in a binomial five-
period model. Consider a zero interest-rate world with a stock worth 100
today. The stock price can move up and down 10 with probability 0.5 at the
end of a fixed period.

Our target for replication is a five-period up-and-out European-style call
with a strike of 70 and a barrier of 120. This option has natural boundaries
both at expiration in five periods and on the knockout barrier at 120

Create a portfolio of ordinary options that collectively have the same
pay-off as the up-and-out call on the boundaries. To create such a portfolio
following the steps:

1. Start with an ordinary call struck at 70. It has the same payoff if the barrier
is never reached.

2. Add a short position in 10 five-period calls with strike 120 to the portfolio
to make the portfolio value 0 at the time 4 boundary point.

3.Add a long position in 5 three-period calls struck at 120 to complete the
portfolio.

For each portfolio compute the value-process at every node and compare it
with the value of the barrier option.



