
INTEREST RATE CONTRACTS 

13.0 INTRODUCTION 

n our examination of the pricing and hedging of options and futures in Chap- 
ter 5 and in Chapter 8 through Chapter 12, we made the strong assumption that 
interest rates are constant through time. We imposed this assumption in order to  

simplify our discussion of pricing and hedging. This assumption implies that all de- 
fault-free securities, and options or futures on default-free securities,.are identical 
fiom an economic perspective. That is, they are all riskless, and they all earn the same 
constant interest rate. 

The assumption of constant interest rates is obviously an unrealistic assumption. 
But for short-dated options and futures on underlying assets distinct fiom and uncor- 
related with interest rates (like common stock), it is an acceptable first approxima- 
tion. For these derivatives, interest rates are only of secondary importance to the 
analysis. Yet, for options and futures on the term structure of interest rates, this as- 

: sumption is unreasonable and unacceptable, even as a first approximation. 
The next step in our examidtion of derivatives--Chapter 13 through Chap- 

ter 17-is to study the relaxation of this constant interest rate assumption. 
Our first task in this chapter is to examine the basic types of traded default-free 

securities making up the term structures of interest rates, that is, Treasury bills, 
Treasury notes, Treasury bonds, and the futures contracts written on these instruments. 
Also necessary is an understanding of related interest rate instruments: Eurodollar for- 
ward rate agreements and futures. In subsequent chapters we will examine other in- 
terest rate contracts and the pricing and hedging of interest rate derivatives. 

13.1 ZERO-COUPON BONDS 
First we discuss default-free zero-coupon bonds. We recall that a zero-coupon bond 
is a bond that has no coupon payments. Profits from owning such a security come 
solely fiom price appreciation. Zero-coupon bonds are sometimes called discount 
bonds because they are sold at a discount, a price lower than the par or face value of 
the bond that is paid at maturity. 

U.S. Treasury bills are zero-coupon bonds issued by the U.S. government. 
Because their payment is guaranteed by the taxing power of the U.S. government, 
they are generally considered to be default-free. Treasury bills (T-bills) aie short-term 



13.1 ZERO-COVPON  BOND^ 

by the U.S. govefnment via competitive auctions. Every Thursday the Treasury auc- 
tions new 91-day (13-week) and 182-day (26-week) T-bills, and every fourth 
Thursday it auctions new 364-day (52-week) T-bills. The minimum facevalue of a 

Discount Rates 

For U.S. T-bills, the discount rate', id ,  is defined by 

B(0, T) = [l - id(T/360)], 

where B(0, T) is the date-0 value of a T-bill with a dollar payoff at maturity T. The 
maturity is expressed in days, and it is assumed that there are 360 days in the year. 
Table 13.1 gives some examples of bidlasked quotes for T-bills. 

TABLE 1 3.1 Deasurj- Bill Quotes, 
Thursday, May 28,1998* 

JwI 04 "90 6 4.39 4.15 - 0.m 4.41 
J m  11 'W 13 4.U 4 .4  -0.06 4.47 
JUn 10 '98 20 4.16 4.Q - 0.06 4.49 
JUn 25 '90 27 4.53 4.49 -9 .0  *n 
JUl 02 '98 34 4.65 4.61 - 0.05 4.69 
Jul W'98 41 4.67 4.61 - O . M  4.R 
JUI 16 a 4.n 4.67 -am 4.76 
JUI Z) '98 LS 4.79 4.75 - O.M 4.u 
JUl JO '98 62 4.81 4.W -0.05 4.B 
AUO 06 '99 69 4.86 4.M -O.M 4.95 
A- 13 "90 76 4.B 4.88 -0.05 5.00 
Aug 10 "90 83 4.94 4.92 - 0.05 5.05 
AUO n '99 w 4.92 4.91 -0.05 5.w 
sep a3 "90 97 4.w 4.94 -0.05 5 .4  
w @3 98 97 4.97 4.W +&@I 5.H 
S8 Y % l W  4.W 4.97 -0.05 5.11 
Sc0 17'90 111 5.00 4.W -0.01 5.13 
k f 3  2 4 9  lac 4.w 4% -om 5.11 
Oct 01 '98 125 5.05 5.01 -0.01 5.17 
Oct 4 '98 137. 5.01 5.m -0.01 5.19 
Oct 15 % 139 5.W 5.0  -0.01 5.23 
.m 22 '98 116 5.07 5.05 -0.001 5.23 
Oct 29% 153 4.95 4.93 -0.01 5.11 
NW. 05 '98 W 5.11 5.W -0.01 5.28 
Nov 12 '99 167 5.13 5.11 .... 5.31 
NOV 19'98 174 5.12 5.10 -0.01 5 3  
Nw27'P1)181 5.13 5.12 .... 5.33 
Dcc 0 9 8  IU 5.13 5.o :0.01 5 3  
Dtc 10'98 195 5.13 5.11 .... 5.32 
Jan 07wm 5.11 5.09 .... 5.30 
Feb 0199 251 5.13 5.11 +0.01 5.33 
Mar0499279 5.14 5.12 .... 5.36 
Aw 01 'W 307 5.14 5.12 +0.01 5.37 
Apr 2V '99 135 5.14 5.12 +0.01 5.38 
Mav 27 'W 363 5.14 5.13 +O.Ol 5.41 

'A good reference for interest rate calculations is Stigum (1981). 
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For securities such as stocks, the ask price is higher than the bid price. This is not 
the case for the T-bill quotes, however, due to the inverse relation between the T-bill's 
price and the discount rate. Thus the ask rate is less than the bid rate. Referring to 
Table 13.1, consider the Treasury bills that mature on August 20. These T-bills have a 
maturity of 83 days. The bid rate is 4.94, which exceeds the ask rate of 4.92. 

From these rates, however, we can show that the ask price on T-bills does exceed ' 1 
the bid price. Indeed, the bid is a discount rate of 4.94 implying a price of 

4.94 83 
Bid price = 10,000 B(0, T) = 10,000 

I = $9,886.1 1, 

( .  
given that Treasury bills trade with a face value (payom of $1 0,000. The ask discount 

! I rate is 4.92, implying a price of 

Ask price = 10,000 

, , = $9,886.57. 
jj l 

In terms of dollars, the ask price is greater than the bid price. This completes our dis- 
cussion of discount rates. 

ji ( li  Simple Interest Rates I 
Here we discuss simple interest rates (see also Chapter 1). The simple interest rate, 
i,. is defined as I 

assuming a 365-day year. In some cases a 360-day year is used. 
The difference between discount rates and simple interest rates is greater the 

higher the discount rate and the longer the time to maturity. For example, consider a 
discount rate of 4 percent and a maturity of 30 days. The T-bill price with face value 
100 is 

This implies an equivalent simple rate of 

,I j = 4.069 percent, 



a difference of 0.069 percent. If a 360-day year had been used, the simple interest rate 
would be 4.013 percent, a difference of only 0.013 percent. 

Continuously Compounded Interest Rates 

The continuously compounded annual inbrest rate, r, is defined by 

assuming a 365-day year. 

B(0, T) = 0.996667, 

andT=gOdays,then 

r = {-ln [B(O,T)])(365/T) 
= 4.062 percent. 

They are each important, and each has its own use. For example, discoupt rates are 
used in quoting Treasu~y bill prices and in the T-bill futures markets. Simple interest 
rates are used in the Eurodollar markets, swaps markets, and foreign currency mar- 
kets. Continuously compounded rates are used primarily in academic articles. There 
are two reasons for this difference. First, the use of continuously compounded inter- 
est rates avoids a lot of minor problems with respect to market conventions. Second, 
much theoretic'al work is in continuous time for which it is convenient to use contin- 
uously compounded rates. 

13.2 COUPON BONDS 
Let now discuss default-fieecoupon bonds. Coupon bonds are bonds with regular 
interest payments, called coupons, plus a principal repayment at maturity. The princi- 
pal is called the face value of the bond. 

Intuitively, the value of a coupon-bearing bond is determined by summing the 
present value of all its coupon payments and the present value of the terminal face 
value. To be precise, we need to introduce some notation. Suppose that the coupon 
bond makes coupon payments c at dates t = I, . . . , T, where T is the maturity date of 
the bond. Let the face value of the bond F be paid at the maturity date T. This section 
only considers coupon bonds with no default risk. Bonds with default risk are studied 
in Chapter 1 8. 
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First we examine the pricing of default-free coupon bonds. Let B(0,r) denote the 
present value of receiving one dollar at date t with no risk of default. This amount is 
the price of a zero-coupon bond. The value of the coupon-bearing bond is equal to 

T 

B,(O) = 1 cB(0, t) + FB(0, T). 
t =  1 

This expression states that the coupon bond's value, B,, equals the sum of the 
present value of all the coupon payments and the face value. This is an arbitrage-free 
pricing relation. The right side of Expression (13.4) represents the cost of construct- 
ing a synthetic coupon bond with identical coupon payments and face value as the 
traded coupon bond. The synthetic coupon bond consists of c zero-coupon bonds of 
maturity t for t = 1, . . . , Tplus F additional zero-coupon bonds of maturity T. 

If the left side exceeds the right side of Expression (13.4), then the arbitrage op- 
portunity would be to sell short the coupon bond and go long the synthetic, pocketing 
the difference, with no future obligations. If the right side exceeds the left side, then 
changing the signs of the previous trading strategy generates arbitrage profits. The 
only condition consistent with no arbitrage is an equality. 

We now illustrate the use of Expression (1 3.4) to value a coupon bond. 

. - vduing a Coupon ~ o n d  

coupon payments plus pritlcipal. - - 
. . 

TABLE 13.2 Pricing ofa  Bond 

PRICING OF A 

MATURITY ZERO-COUPON 
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Yield-to-Maturity 
The yield-to-maturity is defined as an interest rate per annurn that equates the pres- 
ent value of future cash flows to the current market value. We can express this defin- 
ition algebraically. 

A bond that pays interest annually 
For a bond that pays interest annually, the yield-to-maturity, y, is defined as 

where B, denotes the price of the coupon-bearing bond, c is the coupon at date t, F is 

culated numerically. 

each semiannual.period is divided by 2 ($2). Because of the ability to reinvest the 
semiannual coupon, the effective annual yield-to-maturity, y,, is 

yA = (1 + y/2)2 - 1. 
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Semiannual Yield-to-Maturity 
In this example we illustrate the use of Expression (13.6). Consider a bond with 
a maturity of two years that pays a coupon on a semiannual basis. The coupon 
is 7.00 percent per annum, implying that every six months of the dollar value of 
the coupon payment is $3.50 per $100 face value. Let the market value of the 

Again, by a trial and error basis, y e  find that yl2 = 2.49 percent. The effkktive 
annual yield-to-maturity is 

The yield-to-maturity is the holding period return per year on the coupon bond 
only if the coupons can be reinvested at the same rate as the yield-to-maturity. 

To see this result, consider a bond that matures in one year and has a coupon of 
$3.00 that is paid semiannually. Let the bond sell at par. The yield-to-maturity, y, is 
defined as 

implying that y = 0.06. 

the yield-to-maturity. At the end of the first six months, the investor receives the 
coupon and the calculation assumes that the hvestor can reinvest this coupon at the 

103 + 3 (1 + 0.03) = 106.09. 

which agrees with the effective annual yield-to-maturity in Expression (13.7): 

y, = (1 + 0.0612)~ - 1 
= 6.09 percent. 
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The important point is that the effective yield implicitly assumes reinvestment of the 
coupon payments at the yield-to-maturity over the life of the bond We should ques- 
tion the validity of this assumption in a world with changing interest rates. 
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hypothetical data, suppose that the bid price is 129:28 and the ask price 130:OO. 
The accrued interest, AI, is determined by the formula 

AI= C( 
Number 6f Days Since Last Coupon Was Paid 

Total Number of Days in Current Coupon Pqriod 
); (13.9) 

where C is the semiannual coupon payment. In this case, suppose that the 
number of days hi the current coupon period is 182 and the number of days 
since the last coupon was paid is 85. The accrued interest is 

If the bond is purchased at the bid price, the total cost is 

If the bond is purchased at the ask price, the total cost is 

The final column ofTable 13.3 refers to stripped 'Ikeasuries. A Treasury note or 
bond is composed of two components: coupon payments and a final payment of prin- 
cipal. These two components can be sold separately as synthetic zero-coupon bonds, 
which are the Treasury strips. The notation np or bp means it is a Treasury note or 
Treasury bond principal payment underlying the strip and ei means the.instrument is 
a claim on coupon payments. 

Floating Rate Notes 

A floating rate note is a debt contract with specified face value, maturity, and 
coupon payment dates. The interest payments change over time, and they are based 
on the current interest rate times the principal. A floating rate note's interest payments 
are reset at each coupon date. 

Let us consider a one-year floating rate note with semiannual interest payments 
and unit facevalue. Today, the coupon for the first six months is based on the date-0 
six-month rate. Let the six-month rate at date 0 be 5.25 percent per annum; the 
coupon is then c = 0.052512 = 0.02625. Let us move forward six months: The first 
coupon has been paid and a new coupon is set. The next coupon is based on the new 
six-month rate. For example, suppose in six months that the new six-month rate is 
5.60 percent expressed on a per annum basis; the next coupon is then 
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The computation of interest payments in this way results in the floating rate note 
always being valued at par (a dollar value) at each reset date. To see this, we start at 
the last payment date and work backward in time. Six months from now, the floating. 
rate note has one coupon payment remaining plus a principal repayment. The coupon 
payment is $0.028 and the principal repayment is $1.00. The present value of these 
cash flows is a dollar, that is, 

[l + 0.056 X (1/2)] 

This .occurs because the discount rate coiresponds to the interest earned. 
Similarly, at date 0, the value of the floating rate loan is again a dollar. The float- 

ing rate note receive!? the next coupon payment of 0.02625, and it can be retimi at a dol- 

[l + 0.0525 X (1/2)] 

At reset dates the floating rate note sells at its par value. In this example, the par value 

13.3 THE TERM STRUCTURE OF DEFAULT-FREE 
INTEREST RATES 

Now we study the term structure of interest rates, which is defined as the relationship 
between the yield-to-maturity on a zero-coupon bond and the bond's maturity. Figure 
13.1 shows a typical teqn structure. In this figure, the term structure is upward slop 
ing, which is the most cotninon shape. Historically, however, both flat and downward 
sloping term structures have been obse~ed. 

Forward Rates 

Here we examine forward rates. Before giving the formal definition, we explain for- 
ward rates through a simple example. 

Suppose that the yield on a one-year zero-coupon bond is 5.85 percent per an- 
num, and '6.03 percent per annum on a two-year zero-coupon bond. If we invest one 

at the end of two years. Alternatively, we could invest one dollar in a series of one- 
year zero-coupon bonds, rolling over the investment at the end of the first year. At the 

$(1 + 0.0585). 
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5.2 

5.0 :' i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 I5 16 17 18 19 20 

Maturity (years) 

The one-year rate of interest fkom year one to year two is not yet known today, given 
that interest rates are random. But we can always find an implied one-year '%break- 
even" interest rate to equate the value of the two investment strategies. Above this 
break-even rate, the rollover strategy is better; below this break-even rate, the two- 
year strategy is better. By definition, the one-year break-even rate from year one to 
year two is 

implying that the break-even rate is 

This break-even rate is called the forward interest rate at date zero from year one to 
year two. The first argument of zero in the notation f(O, 1,2) is used to denote the fact 
that the forward rate is implied by the term structure at date zero. The second argu- 
ment denotes the date the forward rate starts, and the third argument denotes the date 
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the forward rate ends. To summarize, given the term structure of interest rates at date 
0, the forward rate h m  date 1 to date 2 is denoted by f (0,1,2). 

We could determine the forward rate in terms of bond prices. The value of a one- 
year zero-coupon bond is 

1 
B(07 l) = 1 + 0.0585 

and the value of a two-year zero-coupon bond is 

1 .  B(0,2) = 
(1 + 0.0603)2 ' 

Therefore, the forward rate can be computed by 

This completes the simple example. The next section formalize. the above definition 
for arbitrary future time periods. 

Formalization 

Here we give the formal definition of a forward rate. The one-year forward rate from 
year T to year T + 1 implied by today's term structure is defined by 

zerocoupon yield, a consequence of the mathematical definition in E m i o n  (13.10). 
In Figure 13.3, the term structure is inverted or downward sloping. In this case, 

the forward curve is alwavs below the zero-coumn vield curve. 

t date T to date T + A is defined by 

1 
B(0, T + A) = B(0, T) 

1 + f(O,T,T + A) A ' (13.1 1) 

where A is measured in units of a year. 
For a six-month forward rate, A = 'I,; for a three-month forward rate, A = 'I,; and 

for a one-month forward rate. A = 'I,,. We illustrate this definition via an exarnule. 
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Par Yield Curve 

This example illustrates the computation of a par yield curve. We are given the 
following information. 

Maturity (Years) T-bill Price I 

:i 

!j 
For a bond of maturity one year with face value 100 and paying an annual ; 
coupon c, the value of the bond is 

c X (0.9494) + 100 X 0.9494 
= 100. 

We want to select the coupon so that the bond sells at par. This gives the equa- . 

tion for the par yield: 

c = 100(1 - 0.9494)/0.9494 f 

= 5.33. ; -.! 
%: 

. 

For a bond with maturity two years with face value 100 and- paying an annual .. -g 
. ' Z . 5  

coupon of c, the par yield equation is .: .,: 
.,: ,'3 
. . $, 

.,.: b< 
....... c X (0.9494 + 0.8982) + 100 X 0.8982 

: : .  .',>& - 
i, l: 
: :f ...r 

= loo. . . . . . . . .  . iz -. 

. . .  ... . . ::.:. :. ;:-< -. 
. . . . : .  .:/;:~$~ 

. . .  
For P bond with maturity ' h e  y&&d face value 1 0 0 ~ $ ~ i &  an &xi*.$$ 

.. ....... :..... -. 
. coupon of c, the pat yield equition is ..:?,? 

. . 
. . . . . .  ,: . . :  .:,;if$ 

... .. >.& ....'., * 

Therefore: 



Generalizhg this example, given a bond with maturity T years, a face value of F, 
and which pays an annual coupon of c dollars at dates 1,2, . . . , T, the par yield equa- 
tion is 

Hence the par coupon yield is 

Note that to calculate the par coupon yield, it is necessary to know the entire term 
structure of interest rates. The discussion of the par yield curve is now complete. 

Computing the Zero-Coupon Yield Curve 

We now discuss some practical mculties that arise in computing the zero-coupon 
yield curve using market prices. To construct the zerocoupon yield curve, we require 
a complete set of zero-coupon bond prices out to twenty or thirty years. 
Unfortunately, these zerocoupon bonds do not trade. The longest maturity for a 
Treasury bill is one ye&, implying that we must extract zero-coupon bond prices with 
maturities greater than one year fiom coupon bond prices (or use the Treasury strips). 
We illustrate this calculation through an example. 

. - ImpUcit zero-coupon ~ o h d  ~ c a s  
- - . . . , :  . . . 

In this ejramplc we'$lwhate a '!bo&stpPpiiig9' &haislie f i r  calculating the 
zero-coupon yields using coupon b,ond pries. s G ~ o ~  that we hawW the price 
of a six-month T-bill,. B(0; 6) = 0.9748, and a twelve-m0nth.T-bill, ~(0, 12j = 
0.9493. A Treasury note'.~.th maturity. ,18 months and paying a:se&annual 
coup& of 8.0 percexit per annumum istrading i t  103.77. Given this infomiation, 
wecan determine the implied price of a zero-coup.on bond with maturity 18 
months via the equation 

. . 

103.77 = 4 x B(O,Q + 4 x B(O, 12) + (4 + loo). x B(O, 18) 
= 4 X (0.9748 + 0.9493) + 104 X B(O,18), 

implying that 

B(O,18) = 0.9238. 

This type of "bootstrapping" technique, illustrated in the previous example, can 
be used to determine the whole term structure of zero-coupon yields. For example, 



with a two-year Treasury note we can determine the value of the two-year zero- 
coupon bond's yield. [ 

'1n practice, however, many complications arise. First, the maturity structure of 
existing Treasury notes and bonds is not equally spaced. For example, we may have a 
Treasury note with maturity of two years. The next Treasury note may have a rnm- 
rity of two yean and nine and a half months. This necessitates using different econo- 
metric techniques to generate the curve. Second, we may want to use only prices for 
the on-the-run bonds, that is, prices for the last auctioned bonds, which are usually 
the most actively tiaded. While we may have quotes for all the available bonds, both 
on-the-run and off-the-run, some of these quotes may be "old" and not reflect current 
conditions. Third, some bonds have special tax treatments that affect the price. These 
bonds should be omitted fiom the computation. Unfortunately, due to these three ob- 
servations, constructing a term structure of interest rates is not an easy exercise. 

13.4 TRADITIONAL NIEASURES OF INTEREST RATJ3 RISK 
We now study the traditional measures of interest rate risk--duration and convex- 
ity-and their limitations. These traditional measures currently enjoy widespread use 
by commercial and investment banks. However, they will eventually be replaced by 
the techniques presented in Chapter 15 through Chapter 17. 

Duration 

Duration is often used to measure the risk of a bond. To see why, let B, denote the 
current value of a coupon bond with yield-t+maturity y. Let the bond pay an annual 
coupon of c dollars at dates t = 1, . . . , T, and have a face value of F d01lars.~ From 
Expression (13.5) we can write the bond's value as 

If the yield-to-maturity changes by a small amount, Ay, by how much does the 
bond's price change? 

Let AB, denote the change in the bond's price, that is, 

AB, BCQ + Ay) - B,(y). 

For a small change in the yield-to-maturity, the change in the bond's price can be writ- 
ten as 

'The analysis for a bond that pays a semiannual coupon is given in the Appendix of this chapter. 
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We obtain this expression by using a Taylor series expansion of the bond's price around 
the bond's yield.' Expression (13.15) shows the sensitiviiy of the bond's price to 
changes in the bond's yield. The coefficient preceding Ay is a measure of this sensi- 
tivity, that is, a measure of risk. We now show how this coefficient relates to duration. 

The classical definition of duration is 

which is often referred to as Macauley's Duration. 
Substituting Expression (1 3.16) into Expression (1 3.15) gives 

The proportional change in the bond's price is related to the duration multiplied by 
the change in the yield-to-maturity divided by one plus the initial yield-to-maturity. If If . 

we change the definition of duration, we can obtain a simpler relation. The second de- 
f i t ion is referred to as modified duration4: 

DM = Dcl(l + y). 

find that the bond3 return is directly proportional to modified duration, that is, 

ABc= -B, X D,X Ay. 

For a given change in the yield-to-maturity, the change in the bond's value is the 
multiplicative product of the three terms on the right side of Expression (13.19). The 
minus sign reflects the inverse relationship between yield and price. This expression 
explains why modified duration is used as a measure of a bond's risk. It measures the 
sensitivity of the bond's return to changes in the bond's yield 
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This example illustrates the computation of a coupon bond's duration. 
Consider a two-year bond with an annual coupon of $8.00 and a face value of 
$100. The ymual yield-to-maturity is 8.12 percent and the bond's price is . '-- 

$99.7864. 
Table 13.4 shows the calculations nkessary to. dekmb4  the modified du-. - i: 

ration of the bond The classical dimition is 1.9258 years amj the kodified du- , I  

ration is 1.7812. This coupon bond is &d.to be"mow..risky". than a:one-ye* :, 
zero-coupon bond and "less risky" than a zem-wu&n:bond . . . . .  becaw&. 2: 
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Convexity 

Here we study the concept of a coupon bond's convexity. The use of modifled dura- 
tion to d@be changes in the bond's price due to changes in the yield-to-maturity is 
accurate only for small changes in the yield-to-maturity. This can be illustrated with 

duration only considers linear changes in the bond's price because it is obtained f?om 
a linear approximation. This is represented by the straight line on Figure 13.4. The re- 
lationship between yield and the bond's price, however, is nonlinear. h fact, the rela- 
tionship between the bond's price and yield. is convex. For small changes in yields, 
this nonlinearity is unimportant. But, for large changes in yields, it is necessary to 
take this nonlinear relationship into account. 

For example, suppose that the yield-to-maturity in Table 13.4 increases to 8.50 
percent from 8.12 percent per mum. The new bond price5 is 99.1 144. The change 
in the bond's price is 

dB, = 99.1 144 - 99.7864 

me bond price is 

= 99.1 144. 







In practice, this never happens. Short-tenn rates are more volatile than long-term 
rates. The long and short sections of the tenn structure may even move in opposite di- 
rections. Furthermore, for large parallel shifts in the term structure, convexity adjust- 
ments help, but even these leave errors. 

This same insight can be obtained using the techniques of Chapter 15. From a 
different perspective, we show that the problem with using Expression (13.19) to de- 
scribe changes in the bond's price is that we are making a strong implicit assumption 
about the probability distribution describing bond price changes. This implicit as- 
sumption is equivalent (over infinitesimal intervals) to assuming that only small and 
parallel shifts in the tenn structure of interest mtes are possible. We will expand on 
this issue in Chapter 15. 

TREASURY BILL mJTURES 
We now study the lhasury bid futures contract. For theTreasury bill futures con- 
tract, the underlying asset is a Treaswy bill with face value of one million dollars and 
a maturity of 9 1 days. The last trading day on the T-bill futures contract is the business 
day immediately preceding the first delivery day. Under the terms of the contract, de- 
livery may occur on one of three successive business days, implying that the underly- 
ing Treasury bill may have a maturity of 89,90, or 91 days when delivered. 

The price of a T-bill futures contract is quoted in terms of an index, which de- 
pends on a futures discount rate for a 90-day Treasury bill. The index value is corn- 
puted as follows: 

Idexvalue = 100 - Futures Discount Rate (%). 

For example, if the index value is 96.81, then the fidwcs discount rate is 3.19 percent. 
The futures contract price is defined by 

where by convention a 90-day maturity and a 360-day year is used. 
A one-point change in the index implies a $25 change in the T-bill futures price. 

For example, suppose the index increases by one point to 96.82 from 96.81, imply- 
ing the futures discount rate decreased from 3.19 to 3.18. The new contract delivery 
price is 

The change in the T-bill futures price is $25 (= 992,050 - 992,025). 
Observe that there is a positive relationship between changes in the value of the 

index and the T-bill futures price, implying that the bid-quote is below the askquote. 
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Qpical bidlask quotesfor T-bill futures are shown in Table 13.6. These quotes are 
h m  the T-bill futures contracts trading on the Chicago ~ercantile Exchange (CME) 
on T h d y ,  May 28,1998. For the June contract, the settlement index value is 94.99 
and the futures discount rate is 5.01. 

The final marking-to-market at the expiration of the futures contract sets the 
T-bill fitq-es contract price equal to the value of a 9Oday T-bill: 

Thus, at delivery, the futures discount rate converges to the spot T-bill rate. Our de- 

We study Eurodollar contracts in this section. A Eurodollar is a U.S. dollargenomi- 
nated deposit held by a bank outside the U.S. The rate at which a bank is willing to 
lend Eurodollars is referred to as the London Interbank Offer Rate (LIBOR). The rate 
at which a bank is willing to borrow is known as the London Interbank Bid Rate 
(LIBID). Eurodollar rates are generally higher than corresponding Treasury rates be- 
cause Eurodollai rates are commercial lending rates containing credit risk. There are 
institutional factors such as reserve requirements that can also affect the spread be- 
tween Eurodollar and Treasury rates. 

Here we study Eurodollar deposits in detail. We need to define a term structure of 
E~odollar rates. This is done by first defining a teim structure of "zero-coupon 
Eurodollar bonds." Let L(0, T) denote the time-0 value of a Eutodollar deposit'that 
pays one dollar at time T. Alternatively stated, L(0, T) represents the present value of 



a Eurodollar paid at time l: The graph of L(0, T) versus T is called the term structure 
of Eurodollar zero-coupon bond prices.. 

The T-period LIBOR (or Eurodollar) rate can be defined from these zero- 
coupon bond prices. The T-period LIBOR rate 4(T)  is defined as the simple inter- 
est rate using a 360day-year convention for the Eurodollar deposit with maturity T, 
that is, 

where T is measured in days. 
The graph of t(T) versus T is the term structure of Eurodollar rates.' Figure 13.5 

contains a typical upward sloping term structure for these Eurodollar deposits. 
Table 13.7 gives LIBOR rates on Thursday, May 28,1998, as reported in the Wall 

Street Journal on Friday, May 29.One-month rates are 5.65234 percent, three-month 

FIGURE 13.5 A Tpical Term S t ruc tu~  of Eurodollar Rates 
I 

Q(T) 
(percent) 

I I I I I I - 
0 1 2 3  6 1 year 

Months T (maturity) 

'In fact, [(T) should be subscripted by a zero to indicate the current date. We avoid this subscript to sim- 
plify the notation. 
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TAU. 1 3.7 Mc&zey Market ~ a t e s ,  Thursday, May 28,1998* 

5.6875 percent, six-month 5.75000'percent, and one-year 5.87500 percent. These 
rates give an increasing term structure as illustrated in Figure 13.5. 

Forward Rate Agreements (FRAs) 
A forward rate agreement (FRA) is a contract written on LLBOR that requires a 
cash payment at maturity based on the difference between a realized spot rate of in- 
terest and a prespecified forward rate. We first give an example, which will be gen- 
eralized, and then describe some of the properties of FRAs. 

[e(gi) - o.o563]'x(ql/36@) 

Four points should be noted from this FRA example. First, a 360-day-per-year 
convention is used in computing rates, in keeping with other Eurodollar contracts. 
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Second, the payment is discounted with the realized LiBOR rate. Third, we have 
assumed that there is no risk of default on the part of the writer of the FRA, im- 
plying that the payment contracted is the payment received. Fourth, the value of 
the contract can be positive or negative, depending on whether t(91) is greater 
than or lesser than 0.0563. Thus, an FRA is a 'bet" on the futures movements of 
the three-month LIBOR rate. Table 13.8 shows typical bidtask quotes for forward 
rate agreements. FRAs typically range fiom 1 X 4 to 12 X 18, as illustrated in 
Table 13.8. 

Formalization 

This section formalizes the previous example. 
Let us consider an FRA that matures in T months' time. The contract is written 

on the m month LIBOR rate. This contract is referred to as a T X (T + m) FRA. At 
maturity, . . the value of the contract is, by defmition, 

(t(m) - FRA) (ml360) 
V(T) = Principal X 

where t (m)  is the m month period LIBOR rate at date T, m is months measured in 
days, and FR4 is the T X (T + m) forward rate agreement's rate that was set when the 
contract was initiated 

When an F R 4  contract is initiated, the F R A  rate is set such that the value of the 
contract is zero. This convention ensures that no cash is exchanged at the time the 
FRA contract is initiated. 

We will prove that this condition implies that the FRA rate is set such that 

TABLE 13.8 Forward Rate Agreement Rates 
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For example, if the index value is 94.12, the Eurodollar futures deposit rate is 5.88 
percent per annum. The contract price, by def~t ion,  is 

A. one-basis-point change in the index value causes a $25 change in the 
Eurodollar futures price. For example, if the index value increases by one basis point 
to 94.13 from 94..12, the htures deposit rate decreases by one point to 5.87, and the : 
new Eurodollar futures contract price is . 

The change in the value of the Eurodollar futures contract is therefore $25 per one- 
point change in the index. 

The final marking-&market at the expiration of the Eurodollar futures contract 
sets the c~ntract price equal to 

where t(90) is the 90-day LIBOR rate8 at the expiration of the contract. The 
Eurodollar futures deposit rate converges to the Eurodollar spot rate at the delivery 
date of the contract 

Expression (1326) looks similar in form to Expression (1323) for the T-bill fb- 

bill and the discount rate: 

An.inverse relationship exists between the value of a Eurodollar deposit and the 
LIBOR rate (a simple interest rate): 

Value of Eurodollar Deposit = 1,000,000 

gT6e rate used is an average rate. For contracts traded on the London Exchange, the settlement price is 
computed by using the quotes between 9:30 a.m. and 1 1:00 am. on the last trading day stated by a random 
sample of 16 h m  a list of designated banks. The three highest and three lowest quotes are disregarded. 
The settlement price will be 100 minus the average of the remaining 10 rates. 

For contracts traded on the CME, a slightly different averaging procedure is used 



tant ramifications for the pricing of these contracts. Our description of ~urodoll& fu- 
tures contracts is now complete. 

13.7 TREASURY BOND AND NOTE FUTURES 
Here we examine Treasury bond and Treasury note futures contracts. These futures 
contracts have complicated delivery features that are explained below. The delivery 
features make the T-bond and T-note futures contracts difficult to price and to hedge. 

lkeasury bond futures 
The basic trading unit is a Treasury bdnd with a face value of $100,000. The futures 
contract is written on any U.S. Treasury bond that, if callable, is not callable for at 
least 15 years from the fm day of the delivery month or, if not callable, has a &- 
rity of at least 15 years from the first business day of the delivery month. 

Because any one of many Treasury bonds can be used to satisfy the delivery re- 
quirements of the fitures contract, the chicago Board of Trade has developed a pro- 
cedure for adjusting the price of the deliverable bond so that it is equivalent to a bond 
trading with a nominal coupon of 8 percent. We will explain this in more detail later. 

Treasury bond futum contract delivery months are March, June, September, and 
December. The last trading day in the futures contract is the seventh business day 
preceding the last business day of the delivery month. The last delivery day is the last 
business day of the delivery month. 

Price quotes are in terms of dollars and 32nds of a dollar for a $100 par value. 
For example, a quote of 1 14-26 means $1 1426/3, or $1 14.8125 per $100 par value. Six 
Table 13.10 for price quotes on T-bond futures contracts on the Chicago Board of 
Trade (CBT). These are listed in the flrst five rows of this table. The settlement price 
for the September contract trading on the CBT is 121-09. The open interest for this 
contract is 394,564 contracts. 

10-Year U.S. lkeasury note futures 
The basic trading unit is a U.S. Treasury note with a face value of $100,000. The fu- 
tures contract is written on any U.S. Treasury note maturing in at least 6'1, years, 
but not more than 10 years from the first business day of the delivery month. 
Details about the contract delivery month, the last trading day, and last delivery day 
are similar to those of Treasury bond futures. Table 13.10 contains price quotes on 
these Treasury note futures. For example, the settlement price for the June contract 
is 112-29. 

5-Year U.S. measury note futures 
The basic trading unit is a U.S. Treasury note with a face value of $100,000. The fu- 
tures contract is written on any of the four most recently auctioned 5-year U.S. 





106-235 means 106 (23.50132) = 106.734375 
106-237 means 106 (23.75/32) = 106.742188. 

Table 13.10 contains price quotes for the 2-year Treasury note futures. The June con- 
tract has a settlement price of 104-0 1. 

The Delivery Process 
We now discuss the delivery process of Treasury bond and Treasury note futures con- 
tracts. This is a particular example of the process descnid in Chapter 1. Delivery for 
these futures contracts is a three-day process. This provides the three partieethe 
buyer or long, the seller or short, and the clearing corporatiox+time to make the nec- 
essary notifications, delivery, and payment arrangements. 

The short can initiate the threeday sequence any time during a period that begins 
two business days prior to the first business day of the delivery month and ends two 
business days before the last business day of the month. Trading in the deliverable fu- 
tures con&t stops on the seventh business day preceding the fast business day of the 
delivery month. 

The three-day delivery sequence begins when the short notifies the clearing 
corporation of the intention to deliver. This day is called the Position Day. On the 
second day of the delivery sequence, the clearing corporation matches the oldest 
long to the delivering short. The corporation notifies both parties to the trade. 

TABLE I 3.1 1 The Deliuery Process in Futures Markets 

The short infonns the clearing corporation of the intent to make delivery. 

DAY 2: NOTICE OF INTENTION DAY 

The clearing corporation matches the oldest long to the delivering short and then noti- 
fies both parties. 

The short invoices the long. 

DAY 3: DELWRY DAY 

The short delivers the financial instruments to the long. 

The long makes payment to the short. 

TITLE PASSES 

1 The long assumes all ownership rights and responsibilities. 
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After receiving this information, the short invoices the long. The second day is 
called the Notice of Intention Day. On the third day, the long takes possession of 
the instrument and the short receives the invoice amount. The third day is called 
the Delivery Day. For future reference, we summarize the delivery process in 
Table 13.11. 

13.8 TREASURY BOND mPmTRES 
Now we return to the Treasury bond futures contract to discuss its delivery fea- 
tures in more detail. Recall that the Treasury bond futures contract is a cornrnit- 
ment to deliver a nominal 8 percent, $100,000 face value U.S. Treasury bond with 
at least fifteen years to maturity or to the first call date, whichever comes'first. 
The seller of the futures contract has a choice of eligible bonds that can be used for 

Conversion Factors 

Basically, conversion factors provide a means of equating bonds with different 
coupons and maturities so as to allow the seller of the futures contract a choice of eli- 
gible bonds to use for delivery, thus mhimkhg the possibility of price distortions, 
illiquidities, and manipulation. 

The CBT system adjusts the T-bond futures price based on an 8percenf fifteen- 
year Treasury bond with a semiannual coupon. The amount the short invoices the 
long is computed as follows: 

Conversion Factor for the 

For example, suppose the quoted T-bond futures price is 95-19. Remember that this is 
quoted in units of 32nds, so the actual price is 95 (19132) or 95.59375 per $100 face 
value. Suppose that for the particular Treasury bond the short picks to deliver, the 
conversion factor is 1.0514, and the accrued interest is $2.85 per $100 face value. 
Each T-bond futures contract is for delivery of $100,000 face value of bonds. 
Therefore, the total dollar amount that the short invoices the long is 

= 103,357.27. 



The conversion factor for the Treasury bond delivered by the short is given by a 
formula, explained in the following text, as described by the Chicago Board ofTrade. 
The maturity of the bond is rounded down to the nearest three months for the purpose 
of the calculation. If the maturity of the bond is an exact number of half years after 
the rounding, the first coupon is assumed to be paid in six months. If the maturity of 
the bond after rounding is not an exact number of half years-lhere is an extra three 
months-the first coupon is assumed to be paid after three months. We will use two 
examples to show how to calculate the conversion factor. 

Example One (conversion Factor Calculation) 
Consider an 8'/,0/oTreasury bond with a maturity of 22 years and 2 months. For 
the purposes of calculating the conversion factor, the bond is assumed to have 
a maturity of 22 years. The f m t  coupon payment of 4.25 is assumed to be paid 
after six months. The value of the bond is defined to be 

assuming semiannual coupon payments and a face of 100. The conversion fac- 
tor is defined to be 1 -05 14, using fourdecimal-place accuracy. m 

. - Example Two (Conversion Factor Calculation) 

This example illustrates the conversion factor calculation for a more difficult 
situation. Consider an 8'4% Treasury bond with a maturity of 22 years and 1 1 
months. The semiannual coupon payment is4.25. For the purpose of calculat- 
ing the conversion factor, the bond is assumed to have a maturity of 22 y&' 
and 9 months. The value of this bbnd in three months' time, the maturity being 
22 yeais aind 6 months, is defined to be . . 

Recall that the coupon is assumed to be paid in three months' time. This 
value is discounted back for the we-month period. The discount rate is 
- 1 = 0.0198. The bond's value today is 

For purposes of consistency, the accrued interest, 2.125, is subtracted from the : 

price of the bond to give 105.1799. The conversion factor is 1.0518. 
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The Chicago Board of Trade publishes tables of conversion factors (see Table 
13.12). Check the conversion factors calculated in the above two examples to see that 
they match those in Table 13.12. 

Cheapest to Deliver 

This section discusses an embedded option within the Treasury bond futures contract 
known as the cheapest to deliver option, or the quality option. For contracts traded 
on the Exchange of the Chicago Board off&, the investor who is short at any given 
time has a choice of bonds that satisfi. the conditions of the futures contract. The 
short invoices the long for the amount: 

(Quoted Futures Price X Conversion Factor) + Accnaed Interest. 

.9998 1.0129 1.0260 1.0391 1.0522 1.0653 1.0784 1.0915 
23-6 1.0000 1.0132 1.0263 1.0395 1.0526 1.0658 1.0789 1.0921 

.9998 1.0130 1.0262 1.0394 1.0526 1.0658 1.0790 1.0922 

-9998 1.0131 1.0264 1.0397 1.0530 1.0663 1.0795 1.0928 
24-6 1.0000 1.0133 1.0267 1.0400 1.0534 1.0667 1.0800 1.0934 

.9998 1.0132 1.0266 1.0399 1.0533 1.0667 1.0801 1.0935 
25-0 1.0000 1.0134 1.0269 1.0403 1.0537 1.0671 1.0806 1.0940 

.9998 1.0133 1.0267 1.0402 1.0537 1.0671 1.0806 1.0941 

.9998 1.0134 1.0269 1.0405 1.0540 1.0675 1.0811 1.0946 
26-0 1.0000 1.0136 1.0272 1.0408 1.0544 1.0680 1.0816 1.0951 

.9998 1.0134 1.0271 1.0407 1.0543 1.0679 1.0816 1.0952 
26-6 1.0000 1.0137 1.0273 1.0410 1.0547 1.0684 1.0820 1.0957 

.9998 1.0135 1.0272 1.0409 1.0546 1.0683 1.0820 1.0957 
27-0 1.0000 ,1.0137 1.0275 1.0412 1.0550 1.0687 1.0825 1.0962 



The cost to the short of purchasing the bond to deliver is 

Quoted Bond Price + Accrued Interest. 

Therefore, the net return to the short is 

Quoted Futures hice X Conversion Factor - Quoted Bond F'rice. 

It is in the interest of the short to pick the bond that maximizes this difference. 
For enample, suppose that the quoted fi~hms price is 94-2, or 94.0625.There are 

three bonds with the following prices and conversion factors: 

Bond hice conversion Factor 
1 94.25 1.0820 
2 126.00 1.4245 
3 142.125 1.5938. 

The net return to the short is 

Bond 1 94.0625 X 1.0820 - 94.25 = 7.53 
Bond 2 94.0625 X 1.4245 - 126.00 = 7.99 
Bond 3 94.0625 X 1.5938 - 142.125 = 7.79. 

It would be in the interest of the short to deliver Bond 2, as it is the cheapest bond to 
deliver. 

Over time, the identity of the cheapest-to-deliver Treasury bond changes. The 
conversion factor system tends to favor the delivery of relatively lowcoupon, long- 
maturity bonds when yields are in excess of 8 percent. When yields are less than 8 
percent, the conversion factor system favors high-coupon, short-maturity bonds. The 
shape of the term structure affects the outcome. For an upward sloping curve, a pos- 
itive relationship exists between maturity and yield, implying a negative relationship 
between maturity and price. This causes a tendency for long maturity bonds to be the 
cheapest to deliver. 

Wild Card Option 

There is another embedded option within the Treasury Bond futures option kaown 
as the wild card option. The Chicago Board of Trade interest rate futures markets 
stop trading at 2:00 P.M. (C.S.T.), while the cash market for Treasury bonds continues 
to trade past this time. The deadline for notifying the clearing corporation of an intent 
to deliver is 8:00 P.M. (C.S.T.). This difference of six hours creates a window each day 
within the delivery period during which the short may potentially take advantage of 
a decline in the cash market prices. This window generates the "wild card option." 
The futures price reflects the value of this option: the greater the value of the option, 
the lower the futures price. 
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The third embedded option within the Treasury bond futures contract is known as the 
timing option. The deliverable contract will stop trading on the seventh business day 
preceding the last business day of the delivery month. During this seven-business-day 
period, all open positions must be settled by delivery. The short has the flexibility of 
detmmhing when to deliver during this period and can take advantage of any decline 
in the cash market. This timing option is valuable to the short, and the greater the 
value, the lower the Treasury bond futures price will be prior to the time the future 

In this chapter, we discussed the basic instruments underlying the term structure of 
interest rates: Treasury bills, Treasury notes, and Treasury bonds. We d&bed how 
Treasury.bills are quoted in tenns of discount rates. We also gave d e f ~ t i o n s  for 
simple interest rates, money market rates, and continuously compounded rates. We 
described market yields on Treasury bonds and notes, and the valuation of floating 
rate notes. 

Duration has a long history as a tool for hedging interest rate risk. We introduced ' 

duration for bonds and explained some of its properties. As a hedging tool, duration 
assumes that the term structure of interest rates shifts by small parallel amounts. In 

suing risk that avoids these limitations. 
We also examined additional instruments related to the term structure of interest 

rates, including Eurodollar deposits, FRAs, Eurodollar futures contracts, and Trea- 
sury bill, note, and bond'futwes contracts. 

In-Treasury bond and Treasury note futures contracts, the writ& of the futures 
contract has three embedded aptions: 

1. quality o p t i o d e  choice of the cheapest-todeliver bond; 
2. ' wild card o p t i o ~ n  any day during the delivery month, deadline for the notice 

- of intention to deliver is 8:00 P.M., six hours after the futures market stops trad- 

livery month at a price based on the last settlement price at the end of trading. 

These options all tend to reduce the Treasury futures price and make futures contract 
pricing difficult. 
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Question 6 

Let the quote on the 15 July 1999 63/,%Treasury note be Bid 105i26 Ask 105:28. If 
you purchased this bond on May 25, 1994 at the ask price, what would be the total 
cost? The total number of days in the current coupon period is 182. 

Question 7 

Consider a 12'/,% Treasury bond with a maturity of 20 years. Show that the conver- 
sion factor is 1.4452. 

- .  :! i 
'Ii! 1 

Question 8 [I i.j i/:. 
The quoted futures price is 1 14-26. Which of the folloviring three bonds is cheapest to ,. i . , . (ij' 
deliver? L. 

$ .  
Bond Price Converiion Factor /! ', 

1 162:20 1.3987 !,Ii 

2 138:3 1 1.2870 :$i&ml{...l 

Question 9 

Consider a Treasury note witha maturity of 5 years and a coupon of 10 percent per 
annum. The coupon is paid semiannually. You are given the following information 
about the term structure of interest rates: 

Maturity 3.0 3.5 4.0 4.5 5.0 
T-bill Price 0.8470 0.8216 0.7965 0.771 7 0.7472 

a) What is the market price of the Treasury note? 
b) What is the annual yield-to-maturity? 
c) What is the modified duration of the Treasury note? 

Question 10 

Use the information in Ouestion 9 to answei the following auestions. 

c) Plot the term structure of zero-coupon yields and the term structure of forward rates. . , i  : .  ... !ll/j - 



APPENDIX: DURATION AND CONVEXITY CORRECTION I 
FOR A SEMIANNUAL COUPON BOND 

Let y denote the semiannual yield-to-maturity defined by Expression (1 3.6). The def- 
inition of modified duration is 

Modified Duration 
Consider a 2'1,-year bond with a semiannual coupon of $4.00. The semiannual 
yield-to-maturity is 8.12 percent and the bond is $99.6733.TableAl shows 
the calculations necessary to determine the modified duration of the bond Using 
the figures in Table A1 and substituting into Expression (1 3.1 6)'gi\;es 

AB, = -99.6733 X 2.2251 X A y 
= -221.78A y. 

If the semiannual yield-to-maturity increases by one basis point to 8.13 
percent, the bond price is 

TABLE A 1 Calculating M o w d  Duration of a Bond with Semiannual 
Coupon Pdyments 

230*7893 - 2.3 155 Classical Duration = - - 
99.6733 

2 35155 
Modified Duration = - = 2.225 1 

1.0406 

I ? h e  semiannual yield-f~-maturity is 1.06 percent. 






