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Abstract

In many �elds of economics, and also in other disciplines, it is hard to justify the

assumption that the random error terms in regression models are uncorrelated. It seems

more plausible to assume that they are correlated within clusters, such as geographical

areas or time periods, but uncorrelated across clusters. It has therefore become very

popular to use �clustered� standard errors, which are robust against arbitrary patterns

of within-cluster variation and covariation. Conventional methods for inference using

clustered standard errors work very well when the model is correct and the data satisfy

certain conditions, but they can produce very misleading results in other cases. This

paper discusses some of the issues that users of these methods need to be aware of.

Keywords: CRVE, grouped data, clustered data, panel data, wild cluster bootstrap,
di�erence-in-di�erences, treatment model, �xed e�ects

∗This research was supported, in part, by grant number 435-2016-0871 from the Social Sciences and
Humanities Research Council of Canada. The paper was �rst presented, under a slightly di�erent title, at
the 2018 Joint Statistical Meetings in Vancouver. It was published in the Canadian Journal of Economics,
2019, 52(3), 851�881. I am grateful to Arthur Sweetman, Steve Lehrer, Richard Startz, several anonymous
referees, and seminar participants at Queen's University, Binghamton University, the University of Toronto,
and York University for comments and suggestions. I am particularly grateful to Matt Webb and Morten
Nielsen for joint work that made this paper possible, and for their comments and feedback, as well as to
Stas Kolenikov for comments and for inviting me to write this paper and present it at the JSM.

1



1 Introduction

The assumption that the disturbances (random error terms) in regression models are un-
correlated across observations is a very strong one. Econometricians have long been aware
of the potential for serial correlation when using time-series data, and methods for dealing
with it have been a major focus of econometric research. But for data at the individual
level, it was traditionally assumed that the disturbances are uncorrelated, perhaps after
time and/or group �xed e�ects have been included among the regressors. The idea was that
any correlation across observations could be accounted for by the �xed e�ects.

Beginning in the mid 1990s, the assumption of uncorrelated disturbances became less
acceptable in empirical work with cross-section data. After the popular econometrics pack-
age Stata o�ered the option of cluster-robust, or �clustered,� standard errors, it became
common to allow for arbitrary patterns of within-cluster correlation for clusters de�ned in
various ways. In the education literature, for example, the disturbances for models of student
performance might be clustered by classroom, by teacher, by school, or perhaps by school
district. In the health literature, the disturbances for models of health outcomes might be
clustered by doctor, by hospital, or by hospital chain. In the development literature, the
disturbances for various outcomes might be clustered by village, by province, or by country,
depending on the nature of the model and dataset. In experimental economics, the dis-
turbances for choices made by experimental subjects might be clustered by subject. There
are examples in many other �elds. With panel data, clustering by time periods and/or by
cross-sectional units sometimes replaces more traditional approaches, such as random e�ects
models. Whenever the observations can plausibly be grouped into a set of clusters, it has
become customary, indeed often mandatory, in many areas of applied econometrics to use
clustered standard errors.

Nevertheless, whether and how to account for clustered disturbances is still somewhat
controversial; see Section 6. In some cases, it is impossible to include cluster �xed e�ects,
because they would be perfectly collinear with one or more explanatory variables. In such
cases, it seems to be essential to allow for clustered disturbances. But residuals often show
evidence of clustering even when cluster �xed e�ects are included, and failing to take this
into account can lead to standard errors that are seriously misleading because they are far
too small; see the empirical example in Section 5.

Cameron and Miller (2015) provides a comprehensive survey of cluster-robust inference in
econometrics, but there have been a number of developments since it was written. This paper
does not attempt to be comprehensive. Instead, it focuses on a few key concepts and issues,
and it discusses some recent developments. Section 2 brie�y reviews the literature on cluster-
robust covariance matrices. Section 3 discusses the consequences of clustered disturbances
for statistical inference. Section 4 discusses some of the issues that can make �nite-sample
cluster-robust inference problematic. It also deals with bootstrap methods, notably the
wild cluster bootstrap, that are designed to make it more reliable. Section 5 presents an
empirical example which illustrates how, in a large sample, inferences can be very sensitive
to assumptions about how the disturbances are clustered. Section 6 discusses some of the
reasons why residuals may display intra-cluster correlation, and how investigators should
respond. Section 7 discusses the di�cult issues that arise when estimating treatment e�ects,
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where cluster-robust inference can be dangerously unreliable. Section 8 brie�y deals with
instrumental variables estimation of a linear regression model where at least one regressor
is endogenous. Section 9 deals with two important issues where more research is needed,
and Section 10 concludes.

2 Cluster-Robust Covariance Matrices

For simplicity and concreteness, consider the linear regression model

y = Xβ + u, E(uu′) = Ω, (1)

where y and u are N×1 vectors of observations and disturbances, X is an N×K matrix of
exogenous covariates, and β is a K × 1 parameter vector. With one-way clustering, which
is currently the most common case, there are G clusters, indexed by g, where the gth cluster
has Ng observations. The N × N covariance matrix Ω is block-diagonal, with G diagonal
blocks that correspond to the G clusters:

Ω =


Ω1 O . . . O
O Ω2 . . . O
...

...
...

O O . . . ΩG

. (2)

Here Ωg is the Ng ×Ng covariance matrix for the observations belonging to the gth cluster,
which is assumed to be positive de�nite but unknown. For notational convenience, the
observations here are ordered by cluster, although this is not necessary in practice. What
is essential is that every observation be known to belong to one and only one cluster.

In writing the model (1), I am making the (arguably very strong) assumptions that each
observation belongs to one and only one cluster, that the investigator knows which cluster
it belongs to, and that any correlation across observations occurs only within clusters. It is
up to the investigator to decide whether these assumptions are reasonable.

The covariance matrix of the OLS estimator β̂ = (X ′X)−1X ′y in the model (1) is

Var(β̂) = (X ′X)−1X ′ΩX(X ′X)−1 = (X ′X)−1

(
G∑
g=1

X ′gΩgXg

)
(X ′X)−1, (3)

where the Ng ×K matrix Xg contains the rows of X that belong to the gth cluster. The

fact that Var(β̂) has this form has important consequences for inference; see Section 3.

In order to estimate (3), the K × K matrices X ′gΩgXg are replaced by their sample
analogs, where each of the Ωg is estimated by the outer product of the residual vector ûg
with itself. This yields a cluster-robust variance estimator, or CRVE, of which the most
widely-used version is

CV1 : V̂ ≡ G(N − 1)

(G− 1)(N −K)
(X ′X)−1

(
G∑
g=1

X ′gûgû
′
gXg

)
(X ′X)−1. (4)
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The �rst factor here is asymptotically negligible, but it makes CV1 larger when G and N are
�nite. It is analogous to the factor N/(N −K) used in the well-known heteroskedasticity-
consistent covariance matrix estimator HC1 (MacKinnon and White 1985) that is robust
only to heteroskedasticity of unknown form. Note that CV1 reduces to HC1 when each
cluster contains just one observation, so that G = N .

Covariance matrix estimators like (4) are often referred to as �sandwich estimators.�
There are two identical pieces of �bread� on the outside and a ��lling� in the middle. The
�lling in the sandwich in (4) is supposed to estimate the corresponding matrix in (3). In
both cases, the �lling involves a sum of G matrices. In the case of (4) and other CRVEs,
these matrices have rank 1, even though they are of dimension K × K. In contrast, the
matrices X ′gΩgXg in (3) typically have rank K unless Ng < K. This makes it clear that
the individual components of the �lling in (4) cannot possibly provide consistent estimators
of the corresponding components of the �lling in (3).

Since each of the matrices in the �lling of (4) has rank 1, CV1 can have rank at most G.
In some cases, it will have rank G−1. This makes it impossible to test hypotheses involving
more than G, or perhaps G − 1, restrictions using Wald tests based on (4). Moreover, for
hypotheses that involve numbers of restrictions not much smaller than G, the �nite-sample
properties of Wald tests based on (4) are likely to be very poor; see Section 4.

Although CV1 is by far the most commonly employed CRVE, it is not the only one.
A more complicated estimator, which is the analog of the HC2 estimator studied in Mac-
Kinnon and White (1985), was proposed in Bell and McCa�rey (2002) and has recently
been advocated by Imbens and Kolesár (2016); see also Pustejovsky and Tipton (2018).
This estimator is

CV2 : (X ′X)−1

(
G∑
g=1

X ′gM
−1/2
gg ûgû

′
gM

−1/2
gg Xg

)
(X ′X)−1, (5)

whereM
−1/2
gg is the inverse symmetric square root of the matrixMgg ≡ INg−Xg(X

′X)−1X ′g ,
which is the gth diagonal block of MX ≡ I−X(X ′X)−1X ′, the N ×N projection matrix
that yields OLS residuals. Thus CV2 omits the scalar factor in CV1 and replaces the residual
subvectors ûg by rescaled subvectors M

−1/2
gg ûg.

Ordinary least squares shrinks the disturbance vector u di�erentially when it creates the
residual vector û. Because the rescaling in (5) tends to undo the shrinkage, CV2 typically
yields larger and more accurate standard errors than CV1. However, CV2 is considerably
more expensive to compute than CV1 when the clusters are large, because it requires �nding
the inverse symmetric square root of the Ng × Ng matrix Mgg for each cluster. In fact, it
seems to be numerically di�cult to compute CV2 once any of the Ng exceeds 5000 or so; see
MacKinnon and Webb (2018). Nevertheless, CV2 should certainly be considered for samples
of moderate size.

Using a di�erent CRVE is not the only way to obtain inferences that are more accurate
than the ones from Wald tests based on CV1. A large number of methods is available, some
of which, notably ones based on the wild cluster bootstrap, will be discussed in Section 4.

4



The true covariance matrix (3) and its estimators (4) and (5) allow for one-way clustering.
However, there are models and datasets for which it is plausible that there may be multi-way
clustering. For example, with individual data gathered at di�erent times in di�erent places,
there may be clustering by both time period and location. This led Cameron, Gelbach and
Miller (2011) and Thompson (2011) to propose CRVEs that allow for clustering in two or
more dimensions; see MacKinnon, Nielsen and Webb (2020b).

In the two-dimensional case, the �lling in the true covariance matrix (3) becomes

G∑
g=1

X ′gΩgXg +
H∑
h=1

X ′hΩhXh −
G∑
g=1

H∑
h=1

X ′ghΩghXgh. (6)

Here there are G clusters in the �rst dimension and H in the second, Xg contains the rows
of X that belong to cluster g in the �rst dimension, and Xh contains the rows of X that
belong to cluster h in the second dimension. Similarly, Ωg is the covariance matrix for
cluster g in the �rst dimension, and Ωh is the covariance matrix for cluster h in the second
dimension. The matrixXgh contains the rows ofX that belong both to cluster g in the �rst
dimension and to cluster h in the second, and the matrix Ωgh is the covariance matrix for
observations that belong to both clusters g and h. Notice the minus sign in (6). Without
it, there would be double counting, because observations that belong to both Xg and Xh

contribute to both of the �rst two terms in (6).

The �lling in the two-way CRVE analogous to (4) that corresponds to (6) is

G∑
g=1

X ′gûgû
′
gXg +

H∑
h=1

X ′hûhû
′
hXh −

G∑
g=1

H∑
h=1

X ′ghûghû
′
ghXgh, (7)

where the notation should be obvious. Because the last term is subtracted, this matrix
may not be positive de�nite in �nite samples. Also, the number of terms in the double
summation may be less than GH, perhaps much less, because there may be no observations
associated with some gh pairs.

The two-way CRVE based on (7) can be extended to multi-way clustering in three or
even more dimensions, although the algebra rapidly gets complicated; see Cameron et al.
(2011). In practice, it is often not at all obvious whether to use one-way clustering or two-
way clustering, and the choice can be important for inference, as the empirical example in
Section 5 illustrates.

3 Consequences of Clustered Disturbances

Allowing the disturbances to be correlated fundamentally changes the nature of statistical
inference, especially for large samples. This is most easily seen in the context of estimating
a population mean. Suppose we have a sample of N uncorrelated observations, yi, each with
variance Var(yi) that is bounded from below and above. Then the usual formula for the
variance of the sample mean ȳ is

Var(ȳ) =
1

N2

N∑
i=1

Var(yi) =
1

N
σ2, (8)
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where σ2 is the limiting value of the average of the Var(yi). The result (8) is obvious when
the disturbances are homoskedastic, since Var(yi) = σ2 for all i. But it also holds under
heteroskedasticity of unknown form, provided the limiting value σ2 exists and is �nite. The
sandwich has disappeared in this case, because the only regressor is a constant term, and
the product of the two (X ′X)−1 matrices is just 1/N2.

From (8) it is easy to see that Var(ȳ)→ 0 as N →∞. But this result depends crucially
on the assumption that the yi are uncorrelated. Without such an assumption, the variance
of the sample mean would be

Var(ȳ) =
1

N2

N∑
i=1

Var(yi) +
2

N2

N∑
i=1

N∑
j=i+1

Cov(yi, yj). (9)

The �rst term on the right-hand side is the middle expression in (8). It is O(1/N), as we
would expect.1 But the second term is O(1), because it is 2/N2 times a double summation
involving O(N2) elements. Thus, even if the Cov(yi, yj) are very small, the variance of ȳ
will never converge to zero as N →∞. Instead, it will ultimately converge to whatever the
second term converges to. Therefore, ȳ cannot estimate the population mean consistently.
For a more detailed discussion of this type of inconsistency, see Andrews (2005).

Expression (9) is the true variance of ȳ. Under the usual assumption of uncorrelated
disturbances, we would use s2/N to estimate it, where s2 is the conventional estimate of
σ2. Unless N is quite small, the quantity s2/N generally estimates the �rst term in (9) very
well, but it completely ignores the second term. Unfortunately, because the �rst term is
O(1/N) and the second term is O(1), the ratio of the latter to the former increases without
bound as N increases. Thus s2/N massively underestimates Var(ȳ) when N is large.

The variance given in (9) is the variance of the sample mean when there is just one
cluster, since every observation may be correlated with every other observation. When
there is one-way clustering, the variance is instead

Var(ȳ) =
1

N2

G∑
g=1

Ng∑
i=1

Var(ygi) +
2

N2

G∑
g=1

Ng∑
i=1

Ng∑
j=i+1

Cov(ygi, ygj), (10)

where ygi is the i
th observation in cluster g. The second term here now involves a triple

summation, the number of elements in which is of order G(maxNg)
2. For ȳ to be consistent,

G(maxNg)
2/N2 must tend to 0 as N →∞. The easiest way to ensure that this happens is

to let G increase at the same rate as N, while not letting the Ng change systematically as
N increases. In that case, ȳ will converge to the population mean at rate G−1/2, which is
proportional to N−1/2. However, it is also possible for G to increase more slowly than N and
the Ng to increase without bound, provided they do not do so too fast. When that happens,
ȳ will converge at a rate slower than G−1/2. For a detailed discussion of the conditions that
must be imposed on the number of clusters and their sizes for β̂ to be consistent in the
regression case, see Djogbenou, MacKinnon and Nielsen (2019).

1Here we have used the �same-order� or �big O� notation, which is a convenient way to indicate how a
quantity changes with the sample size N. The argument of O(·) is N raised to some power. If something
does not change with the sample size, then we write that it is O(1) = O(N0).
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Equation (10) makes it clear that inference with clustered disturbances can be very
di�erent from inference with uncorrelated ones. When G is �xed, or increases less rapidly
than N, the information contained in a sample grows more slowly than the sample size.
As the sample gets larger, the �rst term in (10) shrinks at rate N−1, while the second
term either stays roughly constant (when G is �xed) or shrinks at a rate slower than N−1

(when G increases more slowly than N). Thus, for large samples, the second term must
dominate the �rst term unless G is proportional to N. This implies that the amount of
information about the parameters of interest contained in extremely large samples (such as
the ones increasingly encountered in empirical microeconomics) may be very much less than
intuition would suggest. We will encounter an example of this in Section 5.

4 Inference in Finite Samples

Much of the work on cluster-robust inference in recent years has focused on inference in �nite
samples. The meaning of ��nite� is not the usual one, however. What matters for reliable
inference is not the number of observations, N, but the number of clusters, G. In addition,
both the way in which observations are distributed across clusters and the characteristics
of the Xg matrices can greatly a�ect the reliability of �nite-sample inference. Simple rules
about how many clusters are needed for reliable inference have been proposed; for example,
Angrist and Pischke (2008) suggests (partly in jest) that 42 clusters is generally su�cient.
Unfortunately, this type of rule of thumb can be extremely misleading.

Suppose we are interested in one element of β, say βj. Then cluster-robust inference is
typically based on the t statistic

tj =
β̂j − βj0√

V̂jj

, (11)

where βj0 is the value under the null hypothesis, and V̂jj is the j
th diagonal element of the

CV1 matrix (4). The statistic tj is generally assumed to follow the Student's t distribution
with G − 1 degrees of freedom. This approximation makes sense, because the �lling of
the sandwich in (4) is the sum of G matrices that are not independent since the residuals
(normally) sum to zero. Thus we are using G − 1 pieces of (approximately) independent
information to estimate the variance of β̂j. Bester, Conley and Hansen (2011) proves that
the distribution of tj actually tends to t(G− 1) as N becomes large when G is �xed and the
limiting matrices for both X ′gXg/N and X ′gΩgXg/N are the same for all g.

As the result of Bester et al. (2011) suggests, inference based on (11) and the t(G − 1)
distribution can sometimes work very well. It generally does so when there are at least 50
clusters and they are reasonably homogeneous, that is, similar in size and with reasonably
similar X ′gXg and X

′
gΩgXg matrices. Note that investigators can observe cluster sizes and

the X ′gXg matrices, so two of these conditions can be checked. Unfortunately, severe over-
rejection can occur when these conditions are not satis�ed; see, among others, MacKinnon
and Webb (2017b) and Djogbenou et al. (2019). The latter paper considers a case in which
one cluster is much bigger than any of the others and �nds that the test based on (11)
over-rejects severely when there are over 200 clusters. This is true even when the largest
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cluster is becoming a smaller fraction of the sample as G increases at a rate fast enough for
asymptotic theory to be valid.

One way to check whether inference is likely to be reliable is to compute the �e�ective
number of clusters,� G∗, as de�ned in Carter, Schnepel and Steigerwald (2017). This quantity
depends onG, theNg, and the entireX matrix, and it requires assumptions about the extent
of intra-cluster correlation. When G∗ is substantially less than G, and especially when it
is small (say, less than 20), tests based on the t(G − 1) distribution are almost certain to
over-reject. Computing G∗ using the entire sample can be costly or even infeasible when
N is large, but it is often possible to compute a very good estimate using a subsample.
Inference can be based on the t(G∗) distribution, if desired, although this does not seem to
be as reliable as inference based on several other approaches.

As was discussed in Section 2, the test statistic (11) can be modi�ed by using the CV2

covariance matrix given in (5) instead of CV1. Bell and McCa�rey (2002) and Imbens and
Kolesár (2016) further suggest ways of computing a degrees-of-freedom parameter to be
used instead of G − 1. Young (2016) proposes a di�erent way of accomplishing essentially
the same thing. His method �rst corrects the bias of the CV1 standard error, thus avoiding
the computational di�culties of calculating CV2, and then calculates a degrees-of-freedom
parameter. These methods are discussed and compared in MacKinnon and Webb (2018).

Yet another approach is to run a regression that uses cluster averages instead of individual
data, as suggested in Donald and Lang (2007). Thus there would be G observations instead
of N. This can work well when the regressors of interest do not vary within clusters, but it
can result in serious loss of power in other cases; see MacKinnon and Webb (2019). Using
cluster averages would not make sense for the example of Section 5, where the key regressors
(measures of educational attainment) vary mainly at the individual level.

When there are two or more restrictions to be tested, we need to use a Wald test instead
of a t test. Suppose we wish to test the hypothesis that Rβ = r, where R is an r×k matrix
and r is an r × 1 vector. We can test these r restrictions jointly using the cluster-robust
Wald statistic

W (β̂) = (Rβ̂ − r)′(RV̂ R′)−1(Rβ̂ − r), (12)

where V̂ would usually be CV1 given in (4). We require that r ≤ G, because the rank
of V̂ is at most G. Asymptotically, as G gets large, W (β̂) would be distributed as χ2(r).
However, this is likely to provide a very poor approximation in �nite samples, especially
when r is not much smaller than G.

In most cases, the best way to perform tests of restrictions on the linear regression model
(1) seems to be to use a particular version of the wild bootstrap. We �rst compute either a t
statistic like tj or a Wald statistic likeW (β̂), then compute a large number of bootstrap test
statistics, and �nally calculate a bootstrap P value that measures how extreme the actual
test statistic is relative to the distribution of the bootstrap test statistics. For example,
if 26 out of 999 bootstrap statistics were more extreme than the actual test statistic, the
bootstrap P value would be 27/999 = 0.027.

The key issue for bootstrap testing is how to generate the bootstrap samples. In the case
of (1), there are several plausible ways to do so. The best approach usually seems to be to
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use the restricted wild cluster bootstrap (WCR) proposed in Cameron, Gelbach and Miller
(2008), which I now discuss. MacKinnon and Webb (2017b) studies this method in detail,
and Djogbenou et al. (2019) proves that it is asymptotically valid and can provide what is
called an �asymptotic re�nement� in some circumstances.2 The basic idea is to generate the
vector of bootstrap disturbances for each cluster using the vector of residuals for that cluster,
so as to retain the intra-cluster covariances of the latter. The method is called �restricted�
because the parameters and disturbances of the bootstrap data generating process (DGP)
are based on estimates that satisfy the null hypothesis.

Suppose the objective is to test the restriction a′β = 0, where a is a known vector of
length K. Then the WCR bootstrap works as follows:

1. Obtain OLS estimates β̂ and the CRVE V̂ using (1) and (4). Also, re-estimate (1)
subject to the restriction a′β = 0 to obtain restricted estimates β̃ and residuals ũ.

2. Calculate the cluster-robust t statistic, ta = a′β̂/
√
a′V̂ a .

3. For each of B bootstrap replications, indexed by b,

(a) generate a set of bootstrap disturbances u∗b, where the subvector corresponding
to cluster g is equal to u∗bg = v∗bg ũg, and the v∗bg are independent realizations of
an auxiliary random variable v∗ with zero mean and unit variance;

(b) generate the bootstrap dependent variables according to y∗b = Xβ̃ + u∗b ;

(c) obtain the bootstrap estimate β̂∗b = (X ′X)−1X ′y∗b, the bootstrap residuals û∗b,
and the bootstrap covariance matrix

V̂ ∗b =
G(N − 1)

(G− 1)(N −K)
(X ′X)−1

(
G∑
g=1

X ′gû
∗b
g (û∗bg )′Xg

)
(X ′X)−1; (13)

(d) calculate the bootstrap t statistic

t∗ba =
a′β̂∗b√
a′V̂ ∗b a

.

4. If the alternative hypothesis is a′β 6= 0 and there is no reason to expect the test
statistic to have a non-zero mean under the null hypothesis, compute the symmetric
bootstrap P value

P̂ ∗S =
1

B

B∑
b=1

I
(
|t∗ba | > |ta|

)
, (14)

where I(·) denotes the indicator function. If the test statistic may have a non-zero
mean, as in the case of a regression estimated by instrumental variables, it would be
better to compute an equal-tail P value, which is twice the minimum of the upper-tail
and lower-tail bootstrap P values; see Section 8.

2When a bootstrap test provides an asymptotic re�nement, its performance improves faster as N (or in
this case G) increases than does the asymptotic test on which it is based.
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For the Wald test based on W (β̂), we would compute the bootstrap statistic W (β̂∗b)
instead of t∗ba in step 3(d), and we would compute an upper-tail P value in step 4.

The WCR bootstrap has two key features. The �rst is that the same realization of
the auxiliary random variable, v∗bg , multiplies every residual within cluster g for bootstrap
sample b. This ensures that the bootstrap DGP retains the intra-cluster covariances of the
residuals, which, on average, should look like the intra-cluster covariances of the distur-
bances. The second is that the bootstrap DGP imposes the null hypothesis. In this case
and many others, bootstrap tests perform better when the bootstrap samples impose the
null hypothesis; see Davidson and MacKinnon (1999). Notice that, unlike the familiar pairs
bootstrap, the wild cluster bootstrap does not involve resampling the data. TheX matrix is
identical for every bootstrap sample; only the y∗b vectors vary. The pairs bootstrap cannot
be used for models like (1) because resampling by observation would destroy the clustered
structure of the data. However, the pairs cluster bootstrap, in which entire clusters are
resampled, can be used; see the end of this section and Section 9.

In principle, the v∗ could follow any distribution with mean 0 and variance 1. However,
in most cases, it seems to be best to employ the Rademacher distribution, for which v∗ = 1
or v∗ = −1, each with probability 0.5; see MacKinnon (2015). Why the Rademacher
distribution is particularly attractive is discussed in Djogbenou et al. (2019). It is not a
good idea to use a 2-point distribution like the Rademacher when G is very small, however,
because the number of distinct bootstrap samples is just 2G; see Webb (2014), which suggests
a 6-point distribution for use in such cases.

Provided the number of clusters is not too large, it is possible to generate a large number
of wild cluster bootstrap test statistics very e�ciently. This is what the Stata routine
boottest does; see Roodman, MacKinnon, Nielsen and Webb (2019). The algorithm it
uses actually computes the t∗ba without explicitly calculating either the bootstrap residuals
û∗b or the bootstrap CRVE (13). All of the computations that are O(N) are done just
once, rather than for every bootstrap sample. Therefore, for large B, the computational
cost of computing a WCR bootstrap P value is approximately O(G2B) instead of O(NB).
In consequence, when G << N , as is the case for the empirical example of Section 5, using
the WCR bootstrap can be remarkably inexpensive. Even though this example involves well
over a million observations and 57 coe�cients, it takes less than 30 seconds to calculate a
bootstrap P value based on 99,999 bootstraps for either 36 or 51 clusters.

Because using boottest is so inexpensive in most cases, it probably makes sense to
employ the restricted wild cluster bootstrap by default whenever making cluster-robust
inferences using Stata. If the WCR bootstrap P value is similar to the one based on the
t(G − 1) distribution, then we can be fairly con�dent that it is reliable. If they di�er
substantially, however, it is very likely that the former is more accurate than the latter, but
it is by no means certain that it is su�ciently accurate. Unfortunately, the WCR bootstrap
can be seriously unreliable in certain cases; see Section 7.

Con�dence intervals can easily be obtained by inverting a bootstrap test, and boottest

does this by default. A 95% bootstrap con�dence interval is simply the set of parameter
values for which the bootstrap P value is greater than 0.05. Finding such an interval requires
iteration, with the bootstrap P value computed for a number of potential upper and lower
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limits. MacKinnon (2015) provides simulation evidence which suggests that con�dence
intervals based on inverting WCR bootstrap tests work better than several alternatives.

Even though the disturbances for bootstrap samples generated by the wild cluster boot-
strap are clustered in only one dimension, it can also be used in conjunction with two-way
clustered standard errors. MacKinnon et al. (2020b) shows that the WCR bootstrap often
works well in this case, and boottest makes it easy to do this.

Other bootstrap methods can also be used. MacKinnon and Webb (2018) argues that
the ordinary wild bootstrap can sometimes work better than the wild cluster bootstrap when
interest focuses on a treatment dummy; see Section 7.3 Bertrand, Du�o and Mullainathan
(2004) suggests using the pairs cluster bootstrap, in which the data are resampled by cluster.
This typically does not work as well as the wild cluster bootstrap; see Cameron et al. (2008)
and MacKinnon and Webb (2017a). However, it has the advantage that it can be used for
nonlinear models like the probit model. The pairs cluster bootstrap will be discussed brie�y
in that context in Section 9.

5 An Empirical Example

The impact of alternative assumptions about how the disturbances are clustered can be
striking. In this section, I illustrate this in the context of a simple earnings equation. The
dependent variable is the logarithm of weekly earnings for men aged 25 to 65, conditional on
earnings being greater than $20 (not adjusted for in�ation). The key regressors are age, age
squared, and four education dummies. Ed2 is a dummy for completing high school, Ed3 is
a dummy for completing two years of college or university, Ed4 is a dummy for obtaining a
university degree, and Ed5 is a dummy for obtaining a postgraduate degree. The data come
from the U.S. Current Population Survey (CPS) for the years 1979 through 2015 (37 years).
There are 1,156,597 observations from 51 states (including the District of Columbia). On
average, there are about 31,259 observations per year. The largest state (California) has
87,427 observations, and the smallest (Hawaii) has only 4,068.

The equation that I estimate, using ordinary least squares, is

ygti = β1 +
5∑
j=2

βj EDjgti + β6Agegti + β7Age
2
gti +

36∑
s=1

γsYear
s
t +

50∑
k=1

ηkState
k
g + ugti, (15)

where g denotes the state, t denotes the year, and i denotes the individual. In equation (15),
Yearst is a dummy that equals 1 when s = t, and Statekg is a dummy that equals 1 when
g = k. One year dummy and one state dummy are omitted to avoid perfect collinearity,
and the year dummy variables are �absorbed� to save computer time, leaving 57 coe�-
cients to estimate. This equation could be used to answer various economic questions. For
concreteness, I focus on the value of obtaining a postgraduate degree.4

3Unfortunately, the tricks that boottest uses to save computer time are not e�ective for the ordinary
wild bootstrap.

4This equation was previously estimated, using the same dataset, in MacKinnon (2016), which contains
a number of results not reported here, but no results for clustering by year or two-way clustering.
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Figure 1: Con�dence Intervals for δ̂
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The coe�cients on Ed4 and Ed5 are β̂4 = 0.67762 and β̂5 = 0.78727. Thus the estimated
percentage increase in earnings associated with having obtained the higher degree is

δ̂ = 100
(
exp(β̂5 − β̂4)− 1

)
= 100

(
exp(0.78727− 0.67762)− 1

)
= 11.589%. (16)

Of course, since people make choices about how much education to obtain, we cannot naively
interpret this number as an estimate of how much more someone who chose to obtain only
an undergraduate degree would earn if they had chosen to obtain a postgraduate degree as
well. At best, it is simply an empirical regularity.

In order to compute a con�dence interval for δ, the population equivalent of δ̂ de�ned
in (16), we need a standard error. The traditional approach would be to argue that, since
the �xed e�ects account for any within-cluster correlation, we can just use a conventional
heteroskedasticity-robust standard error. The HC1 standard error is 0.2215, which suggests
that we have estimated δ with great accuracy.

However, including state and year �xed e�ects does not in fact eliminate all within-cluster
correlation. It would only do so if the ugti in (15) followed a random-e�ects model, where
ugti is the sum of a random state e�ect, a random year e�ect, and an individual e�ect. If
there were instead random e�ects at the state-year level, or at a lower level, or perhaps some
more complicated pattern of correlated disturbances, the �xed e�ects would not eliminate
all within-cluster correlation. Thus it seems plausible that there may be within-cluster
correlations among the disturbances.
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Figure 1 shows six di�erent 95% con�dence intervals for δ. These are based on �ve
di�erent assumptions about how the disturbances are clustered. It is evident that, for this
model and dataset, the assumptions we make about clustering have an enormous impact on
the intervals we obtain.

The topmost interval in the �gure, of which the lower and upper limits are 11.156 and
12.024, respectively, is based on the HC1 standard error given above and the critical value
1.96, which is the 0.975 quantile of the standard normal distribution. This is probably the
interval that most investigators would have used until about the year 2000.

The second interval shown in Figure 1 is based on clustering by the intersection of state
and year, which in the �gure is denoted CV1(S∩Y). There are 37 × 51 = 1887 clusters, so
the 0.975 quantile of the t(1886) distribution is used to obtain the limits of the interval,
which are 10.968 and 12.214. This interval is wider than the �rst one, but not dramatically
so. Some investigators still use intervals like this one, although they have little theoretical
or empirical justi�cation; see below.

The next two intervals also use one-way clustering, but at a much higher level. For
the third interval, clustering is by state, and for the fourth, it is by year. Each horizontal
line here actually shows two intervals. The narrower one is based on the standard normal
distribution, and the wider ones are based on the t(50) and t(36) distributions for clustering
by state and year, respectively. The numbers of clusters are now small enough that the
di�erences between the standard normal and Student's t distributions are important.5

It is not surprising that clustering by state yields a considerably wider interval than
clustering by the intersection of state and year. The number of o�-diagonal elements of Ω
that are allowed to be non-zero is very much greater with 51 big clusters than with 1887
small ones. However, it may be surprising that clustering by year yields a much wider
interval than clustering by state. It appears to be widely believed that, in the context of
data with both a time and a cross-section component, clustering by the latter (in this case
states) is the right thing to do, because it allows for general patterns of serial correlation
within states. Clustering by time period seems to be much less common. An exception is
the �nance literature (Thompson 2011), where two-way clustering by �rm (or asset) and
time period is not uncommon.

The belief that clustering by state is safer than clustering by the intersection of state
and year appears to have originated with simulation results in Bertrand et al. (2004). This
paper was the �rst to employ �placebo-law� experiments, in which every replication uses the
same data for the regressand and all but one of the regressors. The only thing that di�ers
across replications is the regressor of interest, a treatment dummy that a�ects certain states
in certain years. Since the treatment dummies are generated randomly, we would expect
valid statistical procedures to reject the null hypothesis about as often as the level of the
test. Instead, when the standard errors are either heteroskedasticity-robust or robust only
to state-year clustering, the tests over-reject very severely.

5Sharp-eyed readers may notice that the intervals in Figure 1 appear to be slightly asymmetric. That
is because they were computed by forming symmetric intervals for β5 − β4 and then converting those into
asymmetric intervals for δ by applying the function 100

(
exp(·)− 1

)
to the upper and lower limits.
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MacKinnon (2016) performs placebo-law experiments using the dataset of this paper,
based on equation (15) augmented by a random treatment dummy. These experiments
con�rm the �ndings of Bertrand et al. (2004) that there is very severe over-rejection when
standard errors account only for heteroskedasticity or only for clustering at the state-year
level. They also suggest that the extent of over-rejection depends strongly on the sample
size. The larger the sample, the more the tests over-reject. Unfortunately, the experiments
in MacKinnon (2016) do not consider clustering by year or two-way clustering.

To allow for both serial correlation within states and contemporaneous correlation across
states, the �fth and sixth intervals use two-way clustering by state and year, where the
middle matrix in the CRVE is (7). The �fth one is a conventional con�dence interval based
on the t(36) distribution, while the sixth is a bootstrap interval using the restricted wild
cluster bootstrap with bootstrap clustering by year; this is denoted WCR(Y) in the �gure.
Clustering the bootstrap samples by state yields extremely similar results that are not
reported.6 In this case, the impact of bootstrapping is quite modest, because the numbers
of clusters in both dimensions are not all that small.

The bootstrap interval in Figure 1 is based on 99,999 bootstrap samples, so that there is
very little simulation error. This may seem like an extraordinarily large number for a sample
of over a million observations, but it was not computationally demanding to compute this
interval using boottest, even though it involved numerically inverting a bootstrap test; see
Roodman et al. (2019) and the discussion in Section 4.

It may seem that we have to choose among the six intervals in Figure 1 somewhat arbi-
trarily. However, as I discuss below, there appears to be strong, albeit informal, evidence
that the top three intervals are too narrow. Whether we need to use two-way clustering or
one-way clustering by year is not so clear, however. Bootstrapping the interval based on
the latter makes it slightly wider, as expected, but still somewhat narrower than the boot-
strapped two-way interval. These bootstrap intervals are [9.187, 14.088] and [8.971, 14.328],
respectively. Considering the sample size, these seem remarkably wide, a point that will be
discussed at the end of this section.

Ideally, we could perform a statistical test to determine which level of clustering, and
therefore which con�dence interval, is appropriate. How to perform such a test is an area of
active research. Ibragimov and Müller (2016) proposes a test between one-way clustering at
a low level (or no clustering at all) against one-way clustering at a higher level, but it is not
applicable to two-way clustering and requires that the key parameter(s) be identi�able using
the data for each cluster. More widely applicable tests are being developed in MacKinnon,
Nielsen and Webb (2020a).

The top interval in Figure 1, the one based on HC1, would be appropriate if there were
actually no intra-cluster correlation. In that case, the matrix Ω would be diagonal, and all
the intervals would be valid. In the special case of the sample mean, which was discussed in
Section 3, HC1 would estimate only the �rst term in equation (9), setting the entire second
term to zero. The various cluster-robust estimators would instead estimate both the �rst
term and some of the covariances in the second term, setting others to zero. The two-way

6Although the bootstrap samples exhibit one-way clustering by either year or state, the CRVE that is
computed for both the actual and bootstrap samples has two-way clustering.
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CRVE would estimate the largest number of covariances, but even it would set most of them
to zero.

If Ω were actually diagonal, we would expect the estimated covariances to be, on average,
zero. But it is clear from Figure 1 that they are actually positive, on average, because the
cluster-robust standard errors are getting larger and larger as we estimate more and more
covariances. For clustering by state, by year, and by both state and year, there are a great
many of these covariances. It seems highly unlikely that the true covariances could be zero,
on average, when the estimates of their average are so large.

As noted above, the con�dence intervals that seem most plausible are surprisingly wide.
This is because the sample actually contains much less information than it initially appears
to. The numbers in the upper right of Figure 1 attempt to quantify this information loss.
Each of them corresponds to one of the displayed intervals, in the same order from top to
bottom. The number for a given interval is the ratio of the sample size that would be needed
to obtain an interval of that length if the disturbances really were uncorrelated to the actual
sample size. The smallest number here, 0.0240, tells us that the length of the bootstrap
interval with two-way clustering is what we would expect to obtain using a sample of only
0.0240× 1,156,597 = 27,758 observations with uncorrelated disturbances.

To investigate this issue further, I reduced the sample size from 1,156,597 to 72,288 by
randomly throwing away 15 out of every 16 observations without attempting to preserve the
relative sample sizes for each state-year combination. The HC1 standard error increased by
a factor of 3.95. This is just about what we would expect when the sample size is reduced
by a factor of 16. However, the various clustered standard errors increased by much less.
For example, the standard error based on state-level clustering increased by a factor of just
1.81. Even more surprisingly, the standard error based on two-way clustering increased by a
factor of only 1.098. Thus throwing away 15/16 of the sample increased the standard error
by just under 10%.

This implies that, for equation (15) with two-way clustering (and also with one-way
clustering by year), the extra information we gain when we increase the sample size by a
factor of 16 is very modest. But recall expression (10) for the variance of a sample mean
when there is clustering. When we increase N and all the Ng by a factor of 16, the �rst
term shrinks by a factor of 16, but the second term remains essentially the same size. This
is also true when there is two-way clustering. Thus, if the second term is already fairly large
relative to the �rst term, the net e�ect of increasing the sample size, even by a large factor,
may be only a modest reduction in the sampling variance of an estimator.

6 Why Is There Intra-Cluster Correlation?

Precisely why residuals appear to be correlated within clusters in a great many econometric
applications is not entirely clear. The reasons probably vary across models and datasets.
In many cases, it seems reasonable to believe that there are unobserved quantities which
a�ect some or all observations within each cluster. For data on educational outcomes, as
an example, there may be unobserved random e�ects at the teacher and/or school and/or
district levels; see Koedel, Parsons, Podgursky and Ehlert (2015).
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For many years, applied econometricians believed that including cluster �xed e�ects
would eliminate the source of intra-cluster correlation. However, as the example of Section 5
illustrates, cluster �xed e�ects often explain only part of any intra-cluster correlation. There
are many ways in which this could happen. For example, perhaps each cluster contains many
unobserved subclusters, each with its own unobserved e�ect. The cluster �xed e�ect would
account for the average of the subcluster e�ects, but not for variation around that average.
The remaining correlation within subclusters would show up as within-cluster correlation.
For related discussion, see Cameron and Miller (2015).

More generally, all sorts of model misspeci�cation might cause residuals to be correlated
within clusters. There is, of course, a risk that misspeci�cation might also cause residuals
to be correlated across clusters. However, especially when the clusters are large, it seems
plausible that the parts of any omitted variables which cannot be explained by cluster �xed
e�ects and other regressors should be more highly correlated within than across clusters.

In the case of the empirical example, the design of the Current Population Survey prob-
ably accounts for some of the state-level intra-cluster correlation. The CPS is a complex
survey. It uses various sampling techniques such as clustering, strati�cation, multiple stages
of selection, and unequal probabilities of selection, in order to achieve a reasonable balance
between the cost and statistical accuracy of the survey. However, the design of the CPS also
ensures that the observations are not entirely independent within states. The basic unit
of sample selection is the census tract, not the household. Once a tract has been selected,
it typically contributes a number of households to the surveys that are done over several
adjacent years. Any sort of dependence within census tracts will then lead to residuals that
are correlated within states both within and across years.

In principle, it may be possible to take account of the features of the design of a particular
survey; see, among others, Binder (1983) and Rao and Wu (1988). Kolenikov (2010) provides
an accessible introduction to this literature along with Stata code for bootstrap inference
when the survey design is known. When the survey design is very complex, however, it would
be extremely di�cult to implement this sort of procedure. When the design is unknown
to the investigator, it would be impossible. In many cases, the best we can do is to use a
CRVE clustered at the appropriate level. A widely recommended rule of thumb is to cluster
at the highest feasible geographic level (for example, by state in the empirical example of
Section 5), because survey design issues would typically manifest themselves within but not
across large geographic areas.

The other type of intra-cluster correlation observed in the empirical example, namely,
correlation of observations for the same year, is almost certainly a consequence of misspeci-
�cation. Because business cycles at the state or industry levels are not perfectly correlated
with the national business cycle, the year �xed e�ects included in equation (15) cannot
possibly explain all the e�ects of business cycles on earnings. This surely accounts for much
of the clustering by year that we observe. The magnitude of the e�ect, and its consequences
for the accuracy of parameter estimates, are strikingly large.

There is one important issue that this paper has not discussed, and will not discuss in
any depth. All of the analysis has implicitly assumed that the data are actually generated
by the regression model (1), and that the sample is very small relative to the population
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being studied. Thus the population contains a very large number of clusters, and the sample
is obtained by choosing a small proportion of them at random. These assumptions seem
quite reasonable in the education context, for example, where we are clustering by school,
because in a country of any size there will be a great many schools, and most samples will
contain only a small fraction of them. The assumptions also seem reasonable for villages or
hospitals. Conditional on the chosen clusters, the sample may contain all the observations
for each cluster, or just some subset of them.

However, the empirical example of Section 5 does not really satisfy the assumptions
discussed in the previous paragraph. If we think of the �population� as all employed men
aged 25 to 65 in the United States between 1979 and 2015, then the number of clusters
in the population (37 years or 51 states) is the same as the number of clusters in the
sample. Implicitly, for the methods I have discussed to make sense, we must be trying to
make inferences about a meta-population of states and a meta-population of years, from
which actual states and actual years have been drawn at random. Whether or not this is a
reasonable thing to do is a matter of opinion. Of course, econometricians do it all the time
when they analyze aggregate time-series and panel data.

Abadie, Athey, Imbens and Wooldridge (2017) has recently argued that many economic
datasets do not satisfy the assumption that the sample is small relative to the population
being studied. In the context of cross-section studies of treatment e�ects, which may vary
across units, they analyze cases in which the sample is large relative to the population and
contains a large proportion of the clusters. The sample may contain all the observations
in the included clusters, or only some of them. They �nd that, unless the number of
clusters in the sample is very small relative to the number in the population, or there is
no heterogeneity in treatment e�ects, cluster-robust standard errors tend to be too large,
perhaps much too large. In some cases, heteroskedasticity-robust standard errors lead to
more accurate inferences, even though there is considerable intra-cluster correlation.

Whether the conclusions of Abadie et al. (2017) apply to any given case is not at all
clear, however. In the empirical example of Section 5, for example, all clusters are included
in the sample, but the observations presumably come from a very small fraction of the
neighborhoods within those clusters, and I have speculated that much of the within-cluster
correlation that we observe arises from within-neighborhood correlation. Moreover, the
example does not concern treatment e�ects. Therefore, even if we are interested in the
actual 51 states instead of a meta-population of states, the results of Abadie et al. (2017)
do not imply that methods for cluster-robust inference should necessarily be avoided. This
is clearly an area where more work is needed.

7 Inference about Treatment E�ects

Reliable inference is particularly challenging when the parameter of interest is the coe�cient
on a treatment dummy variable, treatment is assigned at the cluster level, and there are
very few treated clusters. This includes the case of di�erence-in-di�erences (DiD) regressions
when all the treated observations belong to just a few clusters. It has been known for some
time that using cluster-robust t statistics leads to serious over-rejection in such cases; see,
among others, Abadie, Diamond and Hainmueller (2010) and Conley and Taber (2011).
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Precisely why this happens is explained in MacKinnon and Webb (2017b, Section 6). Here
I provide a somewhat simpler argument.

The reason why cluster-robust inference about treatment e�ects can sometimes fail may
be seen in the context of the simple regression model

ygi = β + δdgi + ugi, g = 1, . . . , G, i = 1, . . . , Ng, (17)

where dgi is a dummy variable that equals 1 for treated observations and 0 otherwise.
Suppose initially that every observation belongs to its own cluster, so that N = G. Then if
dii = 0 for G0 observations and dii = 1 for G1 = G − G0 observations, and neither G0 nor
G1 is small, there is no problem. We can use the OLS estimate δ̂ and its heteroskedasticity-
robust standard error to make inferences.

Suppose, however, thatG1 = 1, where (without loss of generality) the treated observation
is number 1. Then û11 = 0, which implies that the heteroskedasticity-robust covariance
matrix is singular. In fact, because of the singularity, it can be shown that V̂ar(δ̂) = V̂ar(β̂).

It is clear that this estimator of Var(δ̂) must typically be much too small, because V̂ar(β̂) is
consistent, and β will usually be estimated with much greater precision than δ. Thus t tests
based on V̂ar(δ̂) are sure to over-reject very severely. Of course, it should come as no surprise
that we cannot test the hypothesis δ = 0 with G1 = 1 when we allow for heteroskedasticity
of unknown form. There is simply no way to distinguish between δ being non-zero and u11
being large.

Now suppose that the data are divided into clusters, with N1 observations in the �rst
one. It is no longer the case that û11 = 0. Instead,

∑N1

j=1 û1j = 0, because the dummy
variable must be orthogonal to the residuals. For heteroskedasticity-robust inference, this
would not be much of a problem unless N1 were very small. But for cluster-robust inference,
it is. The CRVE is singular, and V̂ar(δ̂) is once again equal to V̂ar(β̂). In the usual case in

which N1 is small relative to N, this implies that V̂ar(δ̂) is much too small. Thus, as before,

t tests based on V̂ar(δ̂) are sure to over-reject severely.

It is natural to hope that the bootstrap would solve the problem. Unfortunately, as
MacKinnon and Webb (2017b) shows, it does not do so. In fact, the WCR bootstrap tends
to under-reject, usually very severely, whenever there are few treated clusters. Just how
much it under-rejects depends on the sizes of the treated and untreated clusters. The WCU
bootstrap, in which unrestricted instead of restricted residuals are used in the bootstrap
DGP, has the opposite problem. For just one treated cluster, it over-rejects about as severely
as comparing the cluster-robust t statistic to the t(G− 1) distribution.

MacKinnon and Webb (2018) discusses various methods that can work better than the
WCR bootstrap. In particular, that paper suggests employing the ordinary wild bootstrap.
Djogbenou et al. (2019) proves that combining the ordinary wild bootstrap with cluster-
robust standard errors is asymptotically valid. There are cases in which doing so can yield
quite reliable inferences, even with just one or two treated clusters. However, there are also
cases in which inferences are not very reliable at all.

Another approach, pioneered in Conley and Taber (2011) and studied in more detail in
MacKinnon and Webb (n.d., 2019), is to use randomization inference, or RI. The idea is to

18



compare the actual test statistic (or actual parameter estimate) with the distribution of a
(preferably large) number of test statistics (or parameter estimates) computed by randomly
assigning treatment to clusters that were not actually treated. These procedures can work
very well, especially when there are at least two treated clusters and the clusters are not too
dissimilar in size. Even when they do not perform particularly well, RI procedures seem not
to over-reject as severely as comparing cluster-robust t statistics to the t(G−1) distribution
or under-reject as severely as using the WCR bootstrap.

The papers by Matthew Webb and myself cited above contain Monte Carlo simulations
and/or placebo-law experiments that show just how badly standard methods can perform
when there are very few treated clusters. Additional simulation results may be found in
MacKinnon and Webb (2017a), which provides a reasonably accessible discussion of why t
tests and bootstrap tests fail in this case. It also contains simulation results for the pairs
cluster bootstrap mentioned in Sections 4 and 9. I therefore do not present any simulation
results in this section. Instead, I brie�y discuss an empirical example which illustrates
how inference about treatment e�ects can be extremely sensitive to assumptions about the
appropriate level of clustering.

The example uses a model estimated in Decarolis (2014). The treatment is a change
from average-bid auctions (ABA) to �rst-price auctions (FPA) for public works contracts in
Italian cities. Only one municipality made this change during the sample period, namely,
Turin. There are 1262 observations, but only 15 municipalities. Turin used ABA in the
years 2000�2002 and FPA in 2003�2006. Other municipalities used ABA in all periods.
Thus the FPA treatment dummy is equal to 1 only for Turin in the years 2003�2006. The
dependent variable is the �discount� over the reserve price. A positive coe�cient on the
treatment dummy indicates lower bids.

Decarolis (2014) reports a coe�cient of 6.136 on the FPA dummy. Whether or not this
is signi�cant depends on how the disturbances are assumed to be clustered. The paper
clusters them by the intersection of city and year, so that there are 105 clusters, of which 4
are treated. This leads to a standard error of 1.305 and a t statistic of 4.703. If instead we
allow for heteroskedasticity but do not cluster at all, the standard error is 2.277, and the
t statistic is 2.695. On the other hand, if we cluster at the city level, so that there are 15
clusters of which just one is treated, the standard error is 0.785, and the t statistic is 7.817.

These results and P values computed in various ways are reported in Table 1. They are
quite worrying. The theory of Section 3 suggests that standard errors should become larger
when we cluster more coarsely, unless the additional correlations that are estimated with
coarser clustering are actually zero. The empirical example of Section 5 displays precisely
this pattern. But in Table 1, the standard error is smaller for clustering at the city-year
level than for no clustering, and smaller still for city-level clustering. This is not a surprise
for the city-level case, because one treated cluster out of 15 is an extreme example of the
few-treated problem. However, the fact that the standard error drops from 2.277 to 1.305
when we move from no clustering to city-year clustering provides strong evidence that 4
treated clusters out of 105 is too few for making reliable inferences.

What can we conclude? Unless we believe that there is actually no clustering, which
seems very unlikely, we evidently cannot rely on the �rst set of results. The assumptions
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Table 1: P values for FPA coe�cient

Clustering Std. Error t Statistic P Value Method
None 2.277 2.695 0.0070 N(0, 1)

0.0089 WR
City/Year 1.305 4.703 0.0000 t(104)

0.1765 WCR
0.0000 WCU
0.0206 WR

City 0.785 7.817 0.0000 t(14)
0.1305 WCR
0.0000 WCU
0.0574 WR

Notes: WCR is the restricted wild cluster bootstrap discussed in Section 4. WCU is the
unrestricted wild cluster bootstrap, which uses unrestricted residuals in step 3(a) of the
algorithm given there. WR is the ordinary wild restricted bootstrap, in which there is
one realization of the auxiliary random variable per observation instead of one per cluster.
Bootstrap P values are based on 99,999 bootstrap samples.

behind the second and third sets seem more plausible, but, based on the theory in Mac-
Kinnon and Webb (2017b, 2018), we clearly cannot rely on either the t(G− 1) distribution
or the WCU bootstrap, both of which tell us to reject the null hypothesis. The same theory
implies that we also cannot rely on the WCR bootstrap, which tells us not to reject it. The
only results that might be reliable are the ones from the WR bootstrap, which are somewhat
ambiguous. I tentatively conclude that there is modest, but far from compelling, evidence
that the switch to FPA increased bidding discounts. Results from some other methods that
use city-level clustering, presented in MacKinnon and Webb (2019), suggest that we can
reject the null hypothesis at the 10% level, but not at the 5% level.

8 Simultaneous Equations

Most of the work on cluster-robust inference has assumed that all regressors are exogenous.
When, in addition, some of the regressors are endogenous, investigators have to deal with
two issues instead of one. Instrumental variables (IV) estimation, and other methods that
allow simultaneous equations models to be estimated consistently, can yield seriously biased
estimates and extremely unreliable con�dence intervals when the instruments are weak.

There is an enormous literature on inference with weak instruments, which began with
Nelson and Startz (1990a, b). Particularly in�uential papers include Staiger and Stock
(1997), Kleibergen (2002), Moreira (2003), and Andrews, Moreira and Stock (2006). How-
ever, these papers and most others in this literature do not even allow for heteroskedasticity,
let alone clustering. One bootstrap procedure that allows for heteroskedasticity of unknown
form is a variant of the wild bootstrap proposed in Davidson and MacKinnon (2010). This
procedure was extended to allow for clustering in Finlay and Magnusson (2019).
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For concreteness, consider the two-equation model

y1 = βy2 +Z1γ + u1 (18)

y2 = Z1π1 +Z2π2 + u2 = Zπ + u2, (19)

in which there are two endogenous variables, the observations on which are contained in
the N -vectors y1 and y2. Here (18) is the structural equation in which we are interested,
and (19) is an unrestricted reduced form equation for the other endogenous variable. There
are N observations, and the matrices Z1 and Z2 have K − 1 and L − K + 1 columns,
respectively. Each column contains the data for one exogenous variable. Thus the total
number of exogenous variables in the matrix Z = [Z1 Z2] is L ≥ K. When L > K, the
model is overidenti�ed.

The OLS estimate of β is inconsistent whenever the disturbances u1 and u2 are cor-
related. Equations like (18) are therefore typically estimated by IV, or perhaps by some
asymptotically equivalent method, such as limited-information maximum likelihood (LIML).
This generally works �ne when the instruments are strong, which means that dropping Z2

from equation (19) would substantially reduce the explanatory power of that regression.
When the instruments are weak, however, conventional asymptotic theory typically pro-
vides a poor approximation to the �nite-sample properties of the IV estimate β̂ and its
standard error.

To obtain IV estimates, we replace y2 in equation (18) by PZy2, where PZ is the pro-
jection matrix Z(Z ′Z)−1Z ′, so that PZy2 is the vector of �tted values from regressing y2
on Z. Thus we use OLS to estimate the equation

y1 = βPZy2 +Z1γ + u1. (20)

Equation (20) could be written in the same form as equation (1) if we de�ned X to be the
N ×K matrix [PZy2 Z1]. If we interpret X in this way, the top left element of the CRVE
(4) gives us the square of the cluster-robust standard error of β̂.7 The cluster-robust IV
t statistic tβ is simply β̂ − β0 divided by this standard error.

The bootstrap method proposed in Davidson and MacKinnon (2010) is called the WRE
bootstrap (for �wild, restricted, e�cient�). When modi�ed to allow for clustered distur-
bances, it becomes the WCRE bootstrap, which works very much like the WCR bootstrap
described in Section 4. There are two key di�erences. The �rst is that the bootstrap DGP
needs estimates of the parameters of both equations. For the structural equation (18), it
uses the null value β0, restricted estimates γ̃ obtained by an OLS regression of y1−β0y2 on
Z1, and restricted residuals ỹ1 from that same regression. For the reduced-form equation
(19), it uses e�cient estimates π̃ = [π̃′1 π̃′2]

′ obtained by regressing y2 on Z and ũ1, and
residuals ũ2 = y2 − Zπ̃. Including the residuals ũ1 in the equation to estimate π̃ yields
more e�cient estimates than estimating (19) directly when u1 and u2 are correlated, which
they must be whenever OLS estimation of (18) is inconsistent. It is also possible to obtain

7Strictly speaking, the degrees-of-freedom correction should be di�erent, but this will not matter if we
use the bootstrap and apply the same correction to the bootstrap test statistics as to the actual one.
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e�cient estimates that are asymptotically equivalent to π̃ by estimating equations (18) and
(19) jointly by maximum likelihood, and this is what boottest does.

The second way in which the WCRE bootstrap di�ers from the WCR bootstrap is
that each realization of the auxiliary random variable v∗g multiplies the residuals from both
equations for cluster g. This ensures that the bootstrap DGP retains both the correlations
between the structural and reduced-form equations and the intra-cluster correlations. For
cluster g, steps 3(a) and 3(b) in the WCR bootstrap algorithm are replaced by

y∗2gi = Zgiπ̃ + v∗gũ2gi, (21)

y∗1gi = β0y
∗
2gi +Z1giγ̃ + v∗gũ1gi. (22)

The order of the two equations has been reversed here to emphasize the fact that we have
to generate y∗2gi before we can generate y∗1gi.

We can test the hypothesis β = β0 by generating one IV t statistic tβ and B bootstrap
t statistics, say t∗bβ , using bootstrap samples generated from equations (21) and (22). These
are used to calculate the equal-tail P value

P̂ ∗ET = min

(
2

B

B∑
b=1

I
(
t∗bβ > tβ

)
,

2

B

B∑
b=1

I
(
t∗bβ ≤ tβ

))
.

Because tβ does not have mean zero in �nite samples under the null hypothesis, this test will
have better properties than one based on the symmetric P value (14). In addition, con�dence
intervals obtained by inverting it will be asymmetric and should be more accurate.

The WCRE bootstrap can be used with other test statistics. In particular, Finlay
and Magnusson (2019) investigates its use with a cluster-robust version of the AR statistic
proposed in Anderson and Rubin (1949). The boottest package computes WCRE bootstrap
tests based on both AR statistics and IV t statistics, for the model (18) and (19) and also for
similar models with two or more right-hand-side endogenous variables.8 The computations
for the AR statistic can take advantage of the tricks that make the WCR bootstrap so
fast (see Section 4), but the ones for tβ cannot do so; see Roodman et al. (2019). Thus,
in large samples, it can be much faster to bootstrap the cluster-robust AR statistic than
the cluster-robust IV t statistic. The AR statistic is also una�ected by weak instruments.
Indeed, when the disturbances are homoskedastic and normally distributed, the original AR
statistic follows the F (L−K + 1, N − L) distribution in �nite samples.

The previous paragraph appears to suggest that it is preferable to use bootstrap AR
tests instead of bootstrap IV t tests. However, AR tests must be used with care. They are
implicitly testing two hypotheses, one that β = β0 and the other that Z2 does not appear
in equation (18). The latter hypothesis is that the overidentifying restriction(s) hold. This
implies that an AR test may reject the null hypothesis for the wrong reason. Moreover,
inverting an AR test, whether bootstrapped or not, can yield con�dence intervals that are
extremely misleading. They may be too long, too short, or even empty, depending on how
much evidence there is against the overidentifying restrictions. For a detailed discussion,

8
boottest can also compute WCRE bootstrap tests based on several other estimators, including LIML.
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see Davidson and MacKinnon (2014b). In contrast, con�dence intervals based on inverting
WCRE bootstrap t tests seem to work well unless the instruments are extremely weak; see
Davidson and MacKinnon (2014a).

9 Some Open Issues

Despite the large amount of work on cluster-robust inference in recent years, there are still
a number of issues where results are lacking. In this section, I brie�y discuss two of them.

Most surveys report sample weights, and it is very common to run weighted regressions
that employ them. If observation i has weight wi, then it represents wi observations, perhaps
because it was selected with probability proportional to 1/wi. Weighted least squares means
replacing yi andXi by y

◦
i =
√
wiyi andX

◦
i =
√
wiXi, respectively. Thus the weighted least

squares estimates are

β̂w = (X◦′X◦)−1X◦′y◦ = (X ′WX)−1X ′Wy, (23)

where W is an N ×N diagonal matrix with wi as the i
th diagonal element.

From the perspective of asymptotic theory, it is perfectly valid to treat y◦ and X◦ as if
they were the original data. The weighting will inevitably introduce heteroskedasticity, but
every CRVE already allows for heteroskedasticity. Thus, in principle, we can simply deal
with weighted regressions as if they were unweighted regressions. This is also true if we use
any version of the wild bootstrap, and the boottest package in Stata is designed to work
with regressions that explicitly use weights.

Although sample weights cause no problem asymptotically, they almost certainly make
�nite-sample inference less reliable. Unfortunately, I am not aware of any research that has
explicitly studied cluster-robust inference for weighted regressions. MacKinnon and Webb
(2018) provides some evidence that a particular form of heteroskedasticity can seriously
harm the �nite-sample properties of the WCR bootstrap in a model of treatment e�ects.
On the other hand, Djogbenou et al. (2019) provides evidence that a di�erent form of
heteroskedasticity has only a modest e�ect on those properties in a model with a continuous
regressor. These contradictory results are not very helpful.

What scholars who employ Canadian survey data really need is a study of the type of
heteroskedasticity caused by sample weights, for models with either 10 or 13 clusters that
vary in size like actual samples containing data for Canadian provinces (or provinces and
territories). In the absence of such a study, it would be wise for anyone using regressions
with sample weights to perform their own simulation study based on the actual sample they
are using, including the actual sample weights. This advice applies in particular to models
of treatment e�ects, including DiD models, where inference may also be problematic in the
Canadian context because there are likely to be few treated (or untreated) clusters and
because cluster sizes may vary greatly.

A second issue that needs more study is what to do when the dependent variable is binary.
One approach is simply to estimate a linear probability model (LPM) using least squares
and proceed in the usual way. This allows one to make cluster-robust inferences based on
(4) or some other CRVE and to employ the wild cluster bootstrap, if desired. A second
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approach, which is perhaps more appealing, is to estimate a binary response model that
constrains the �tted values to lie between 0 and 1. But this requires a CRVE designed for
the binary response model, along with an appropriate bootstrap method when the number
of clusters is not large.

A binary response model with a linear index function can be written as

Pi ≡ E(yi |Xi) = F (Xiβ), (24)

where yi equals either 0 or 1, Xi is a row vector of observations on explanatory variables,
and β is a vector of coe�cients to be estimated. The transformation function F (·) maps
from the real line to the [0-1] interval. In most applications, it is either the logistic function
or the cumulative standard normal distribution function; these yield the logit model and the
probit model, respectively. In practice, both of these models generally produce very similar
results, except for the scale of the parameter estimates.

WhenXi includes variables that can take on relatively extreme values, the function F (·)
in (24) plays a very important role by ensuring that 0 < Pi < 1. However, in many cases, the
(unknown) true values of the Pi are well away from both 0 and 1, and all of the regressors
are dummy variables. In such cases, least squares typically yields estimated probabilities
that lie in the [0-1] interval and are quite similar to the ones from a binary response model.
Thus it is common, and not very harmful, for investigators to estimate an LPM when the
nonlinear model (24) would be more appropriate.

If it is appropriate to use an LPM, and the conditions for CRVE-based inference to
perform well are satis�ed (see the discussion in Section 4), then cluster-robust t statistics
should be fairly reliable. If not, one possibility is to use the wild cluster bootstrap. For
any form of wild bootstrap that uses the Rademacher distribution, the bootstrap dependent
variable can take on only two values, each with probability 1

2
. If P̂i denotes the �tted value

from the LPM, these are

y∗i = P̂i + (yi − P̂i) = yi and y∗i = P̂i − (yi − P̂i) = 2P̂i − yi. (25)

The �rst value here is just the actual value of yi, which is 0 or 1. But the second is either
2P̂i or 2P̂i − 1. Thus the y∗i must look very di�erent from the yi and are sure to lie outside
the [0-1] interval in many cases. However, they do at least have the right expectation, since

1
2
E(yi) + 1

2

(
2P̂i − E(yi)

)
= 1

2
(2P̂i) = P̂i, (26)

where E(yi) = P̂i because the bootstrap DGP is conditional on the sample. At present,
unfortunately, it is unknown whether the wild cluster bootstrap yields reasonably reliable
inferences in the linear probability model, or even whether it yields less unreliable inferences
than comparing cluster-robust t statistics to the t(G− 1) distribution.

If we estimate a logit or probit model, a good way to obtain cluster-robust standard
errors for the elements of β̂ is to use the square roots of the diagonals of the matrix

V̂ar(β̂) =
(
X ′Υ(β̂)X

)−1( G∑
g=1

sg(β̂)s′g(β̂)

)(
X ′Υ(β̂)X

)−1
, (27)
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where sg is the score vector for cluster g, of which a typical element is

sgj =

Ng∑
i=1

(
ygi

F (Xgiβ̂)
+

ygi − 1

1− F (Xgiβ̂)

)
f(Xgiβ̂)Xgij, j = 1, . . . , k, (28)

and Υ(β) is an n× n diagonal matrix with typical diagonal element

Υi(β) ≡ f 2(Xiβ)

F (Xiβ)
(
1− F (Xiβ)

) . (29)

If there were no clustering, the covariance matrix would simply be
(
X ′Υ(β̂)X

)−1
. The

built-in routines for binary response models in Stata compute an estimated covariance matrix
that is asymptotically equivalent to (27). These routines replace X ′Υ(β̂)X by the Hessian
of the loglikelihood function. In my view, this is not the best thing to do, because the
Hessian is noisier than what it replaces, but using the Hessian is probably not very harmful
when the sample size is reasonably large.

When the number of clusters is large, both the matrix (27) and its counterpart in Stata
probably yield reasonably accurate inferences. However, they surely cannot do so in all
cases. Consider a sample where the dependent variable is continuous and inference based on
cluster-robust t statistics is unreliable. Then replacing the continuous dependent variable
by a binary one and using, say, a probit model instead of a linear regression model is not
going to improve the properties of cluster-robust t statistics. If we need to use the bootstrap
in the former case, we almost certainly need to use it in the latter case as well.

However, it is not entirely clear what sort of bootstrap to use. The wild cluster bootstrap
is not available, because binary response models do not have residuals that can be used to
generate bootstrap samples. The pairs cluster bootstrap is appealing, but it has some
de�ciencies. First, it is likely to be expensive, because we need to estimate a probit model
for every bootstrap sample. Second, if cluster sizes vary a lot, then so will the sizes of the
bootstrap samples. Some bootstrap samples will happen to include a lot of large clusters,
and others will happen to include a lot of small clusters. In neither of these cases will
the bootstrap samples look much like the actual sample. Finally, if the model concerns
treatment e�ects, the number of treated clusters will vary across bootstrap samples. When
there are few treated clusters in the actual sample, some of the bootstrap samples may
contain no treated clusters at all and will therefore have to be thrown out.

Another approach is to use the score cluster bootstrap of Kline and Santos (2012). This
method, which boottest implements, involves applying what is essentially the wild cluster
bootstrap to the score vectors that appear in expression (27). It has the advantage of
being inexpensive to compute, because the model is not re-estimated for each bootstrap
sample. However, this computational advantage is also a theoretical disadvantage, because
the bootstrap scores do not vary across the bootstrap samples in the same way that actual
scores would vary. The distribution of the bootstrap test statistics is essentially based on
a linear approximation. Limited simulation evidence in Kline and Santos (2012, Table 3)
suggests that the score cluster bootstrap is less reliable than the pairs cluster bootstrap in
all cases, especially when G = 10 and G = 20. However, because these simulations involve
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equal cluster sizes, the pairs cluster bootstrap probably performs better than it would have
if the cluster sizes varied a lot.

10 Conclusions

It has become extremely common in many areas of applied econometrics to divide the data
into G somewhat arbitrarily chosen clusters, compute �clustered� standard errors, and rely
on the t(G − 1) distribution for inference. When the disturbances are correlated within
clusters but uncorrelated across them, this can be a reasonable thing to do. Failing to allow
for intra-cluster correlation is often much worse. But this approach can also lead to seriously
misleading inferences in many cases, even when the appropriate level of clustering is known.

One often overlooked feature of clustered disturbances is that the relationship between
the sample size N and the accuracy of parameter estimates does not have its usual form.
When there is intra-cluster correlation, we saw in Section 3 that information accumulates
at a rate slower than

√
N unless the number of clusters increases at the same rate as the

sample size. Thus, as the empirical example of Section 5 illustrates, �big� datasets may
actually contain much less information than we might expect them to.

Standard methods for cluster-robust inference based on the t(G−1) distribution generally
work acceptably well when the number of clusters is quite large (at least 50) and the clusters
are fairly homogeneous in terms of the numbers of observations and the characteristics
of the regressors and disturbances. One situation in which inference based on cluster-
robust standard errors can be extremely misleading, however, is when interest focuses on a
treatment dummy variable and only a few clusters are treated; see Section 7 and MacKinnon
and Webb (2017b, 2018). In this case, of course, the key regressor is very heterogeneous
across clusters.

As discussed in Section 4, there is a large and rapidly growing literature aimed at im-
proving cluster-robust inference in �nite samples. A wide variety of methods is available,
and it would often make sense to try two or three of them and see whether they agree.
In many cases, but not all, the restricted wild cluster bootstrap works very well. Perhaps
surprisingly, it can often be computed remarkably quickly using the Stata routine boottest;
see Roodman et al. (2019).

As the empirical examples of Sections 5 and 7 illustrate, inference can be very sensitive to
how (and whether) the observations are clustered. In practice, investigators would therefore
be wise to put a lot of thought into this. When there is more than one natural way to
cluster, it generally makes sense to investigate all of them.
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