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Abstract

When there are few treated clusters in a pure treatment or di�erence-in-di�erences

setting, t tests based on a cluster-robust variance estimator (CRVE) can severely over-

reject. Although procedures based on the wild cluster bootstrap often work well when

the number of treated clusters is not too small, they can either over-reject or under-

reject seriously when it is. In a previous paper, we showed that procedures based on

randomization inference (RI) can work well in such cases. However, RI can be imprac-

tical when the number of possible randomizations is small. We propose a bootstrap-

based alternative to randomization inference, which mitigates the discrete nature of RI

P values in the few-clusters case. We also compare it to two other procedures. None

of them works perfectly when the number of clusters is very small, but they can work

surprisingly well.

Keywords: CRVE, grouped data, clustered data, panel data, wild cluster bootstrap,
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1 Introduction

During the past decade or two, it has become common for empirical work in many areas
of economics to involve models where the error terms are allowed to be correlated within
clusters. Much of this work employs di�erence-in-di�erences (DiD) estimators, where the
dataset has both a time and a cross-section dimension, and clustering is typically at the
cross-section level (say, by state or province). Cameron and Miller (2015) provides a recent
and comprehensive survey of econometric methods for cluster-robust inference.

Despite considerable progress in the development of suitable econometric methods over
the past decade, it can still be a challenge to make reliable inferences. Doing so is particularly
challenging in the DiD context when there are very few treated clusters. Past research,
including Conley and Taber (2011), has shown that inference based on cluster-robust test
statistics can greatly over-reject in this case. MacKinnon and Webb (2017b) explains why
this happens and why the wild cluster bootstrap of Cameron, Gelbach and Miller (2008) does
not solve the problem; for a less technical discussion, see also MacKinnon and Webb (2017a).
When there are very few treated clusters, the restricted wild cluster bootstrap often severely
under-rejects, and the unrestricted wild cluster bootstrap often severely over-rejects.

One potentially attractive way to obtain tests with accurate size when there are few
treated clusters is to use randomization inference (RI). This approach involves comparing
estimates based on the clusters that were actually treated with estimates based on control
clusters that were not treated. Several authors have recently investigated this approach; see
Conley and Taber (2011), Canay, Romano and Shaikh (2017), Ferman and Pinto (2017),
and MacKinnon and Webb (2018a).

Randomization inference procedures necessarily rely on strong assumptions about how
similar the control clusters are to the treated clusters. MacKinnon and Webb (2018a) shows
that, for RI procedures which use coe�cient estimates, like the one of Conley and Taber
(2011), these assumptions almost always fail to hold when the treated clusters have either
more or fewer observations than the control clusters. As a consequence, the procedure
may over-reject or under-reject quite noticeably when the treated clusters are substantially
smaller or larger than the controls. MacKinnon and Webb (2018a) suggests that more
reliable inferences can often be obtained by basing randomization inference on t statistics
rather than coe�cient estimates. However, such procedures can involve noticeable power
loss relative to ones based on coe�cient estimates.

In Section 2, we brie�y discuss conventional asymptotic procedures for inference with
clustered errors. In Subsection 2.1, we then explain how the wild cluster bootstrap works.
In Section 3, we introduce randomization inference and discuss two variants of it, one based
on coe�cient estimates which is essentially what was proposed in Conley and Taber (2011),
and one based on t statistics proposed in MacKinnon and Webb (2018a).

All RI procedures encounter a serious practical problem when the number of controls
is small. Since there are not many ways to compare the treated clusters with the control
clusters, the RI P value can take on only a small number of values in such cases. We
discuss this problem in Subsection 3.1. Section 4 then introduces a modi�ed RI procedure,
which we call �wild bootstrap randomization inference,� or WBRI, that combines RI with
the wild cluster bootstrap. There are two variants, one based on t statistics and one based
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on coe�cient estimates. The WBRI procedure is the main contribution of the paper.
In Section 5, we brie�y discuss two alternative procedures. One of them is to use P

values obtained by kernel smoothing; see Racine and MacKinnon (2007b). The second,
which makes much stronger assumptions about the error terms, is to estimate the model at
the cluster level, with just one observation per cluster; see Donald and Lang (2007). We do
not discuss the �synthetic controls� method of Abadie, Diamond and Hainmueller (2010),
because it is, in our view, fundamentally di�erent from WBRI and the other procedures
that we consider. It involves �matching� the treated clusters with untreated ones according
to their characteristics.

In Section 6, we show that both WBRI and the other procedures we discuss can substan-
tially improve inference in cases where the only problem is an insu�cient number of control
clusters. All these methods can work surprisingly well even when the number of treated
clusters is very small.

Finally, in Section 7, we present an empirical example from Decarolis (2014). This
example involves just one treated cluster. Section 8 concludes.

2 Cluster-Robust Inference

A linear regression model with clustered errors may be written as

y ≡


y1
y2
...
yG

 = Xβ + ε ≡


X1

X2
...
XG

β +


ε1
ε2
...
εG

, (1)

where each of the G clusters, indexed by g, has Ng observations. The matrix X and the

vectors y and ε have N =
∑G

g=1Ng rows, X has k columns, and the parameter vector β has
k rows. Each subvector εg is assumed to have covariance matrix Ωg and to be uncorrelated
with every other subvector. The covariance matrix Ω of the entire error vector is block
diagonal with diagonal blocks the Ωg. OLS estimation of equation (1) yields estimates β̂
and residuals ε̂.

Because the elements of the εg are in general neither independent nor identically dis-
tributed, both classical OLS and heteroskedasticity-robust standard errors for β̂ are invalid.
As a result, conventional inference can be severely unreliable. The true covariance matrix
for the model (1) is

(X ′X)−1

(
G∑

g=1

X ′gΩgXg

)
(X ′X)−1. (2)

This can be estimated by using a cluster-robust variance estimator, or CRVE. The most
popular CRVE is:

G(N − 1)

(G− 1)(N − k)
(X ′X)−1

(
G∑

g=1

X ′gε̂gε̂
′
gXg

)
(X ′X)−1, (3)

where ε̂g is the subvector of ε̂ that corresponds to cluster g. This is the estimator that is
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used when the cluster command is invoked in Stata.1 Consistent with the results of Bester,
Conley and Hansen (2011), it is common to assume that the t statistics follow a t(G − 1)
distribution; this is what Stata does by default.

It is not obvious that using t statistics based on the CRVE (3) is valid asymptotically. The
proof requires technical assumptions about the distributions of the errors and the regressors
and how the number of clusters and their sizes change as the sample size tends to in�nity; see
Djogbenou, MacKinnon and Nielsen (2018). Nevertheless, test statistics based on (3) seem
to yield reliable inferences when the number of clusters is large and there is not too much
heterogeneity across clusters. In particular, the number of observations per cluster must
not vary too much; see Carter, Schnepel and Steigerwald (2017) and MacKinnon and Webb
(2017b). However, t statistics based on (3) tend to over-reject severely when the parameter
of interest is the coe�cient on a treatment dummy and there are very few treated clusters;
see Conley and Taber (2011) and MacKinnon and Webb (2017b). Rejection frequencies can
be over 75% when all the treated observations belong to the same cluster.

In this paper, we are primarily concerned with the di�erence-in-di�erences (DiD) model,
which is often appropriate for studies that use individual data in which there is variation in
treatment across both clusters (or groups) and time periods. We can write such a model as

yigt = β1 + β2GTg + β3PTt + β4TREATgt + εigt, (4)

i = 1, . . . , Ng, g = 1, . . . , G, t = 1, . . . , T,

where i indexes individuals, g indexes groups, and t indexes time periods. Here GTg is
a �group treated� dummy that equals 1 if group g is treated in any time period, PTt is a
�period treated� dummy that equals 1 if any group is treated in time period t, and TREATgt

is a dummy that equals 1 if an observation is actually treated.
The coe�cient of most interest, on which we focus in this paper, is β4, which measures

the e�ect on treated groups in periods when there is treatment. In many cases, of course,
regression (4) would also contain additional regressors, such as group and/or time dummies,
which might make it necessary to drop GTg, PTt, or both. Following the literature, we
divide the G groups into G0 control groups, for which GTg = 0, and G1 treated groups, for
which GTg = 1, so that G = G0 +G1.

We are concerned with the case in which G1 is small. In this case, as previously noted,
CRVE-based inference fails. It also fails when G0 is small in a pure treatment model where
every cluster is either entirely treated or entirely not treated. However, in a DiD model where
treatment only takes place in some time periods, it is possible for CRVE-based inference to
perform well even when G0 = 0; see MacKinnon and Webb (2017a, b). In the remainder of
the paper, since we are focusing on the DiD case, we assume that only G1 may be small.

The reason for the failure of CRVE-based inference when G1 is small is explained in de-
tail in MacKinnon and Webb (2017b, Section 6). Essentially, the problem is that the least
squares residuals must be orthogonal to the treatment dummy variable. This implies that
they sum to zero over all the treated observations. When those treated observations are
spread over many clusters, there is no problem. But when they are concentrated in just a

1One of the earliest CRVEs was suggested in Liang and Zeger (1986). Alternatives to (3) have been
proposed in Bell and McCa�rey (2002) and Imbens and Kolesár (2016), among others.
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few clusters, some of the terms that are summed in the middle matrix of (3) severely under-
estimate the corresponding quantities in the matrices X ′ΩgX.2 This causes the standard

error of β̂4 to be seriously underestimated.

2.1 The Wild Cluster Bootstrap

The wild cluster bootstrap (WCB) was proposed in Cameron, Gelbach and Miller (2008)
as a method for reliable inference in cases with a small number of clusters, and its asymp-
totic validity is proved in Djogbenou, MacKinnon and Nielsen (2018). A di�erent, but less
e�ective, bootstrap procedure for cluster-robust inference, often referred to as the �pairs
cluster bootstrap,� was previously suggested in Bertrand, Du�o and Mullainathan (2004);
see MacKinnon and Webb (2017a). The WCB was studied extensively in MacKinnon and
Webb (2017b) for the cases of unbalanced clusters and/or few treated clusters. Because we
will be proposing a new procedure that is closely related to the wild cluster bootstrap in
Section 4, we review how the latter works.

Without loss of generality, we consider how to test the hypothesis that β4, the DiD
coe�cient in equation (4), is zero. Then the (restricted) wild cluster bootstrap works as
follows:

1. Estimate equation (4) by OLS.

2. Calculate t̂4, the t statistic for β4 = 0, using the square root of the 4th diagonal element
of (3) as a cluster-robust standard error.

3. Re-estimate the model (4) subject to the restriction that β4 = 0, so as to obtain
restricted residuals ε̃ and restricted estimates β̃.

4. For each of B bootstrap replications, indexed by b, generate a new set of bootstrap
dependent variables y∗big using the bootstrap DGP

yigt = β̃1 + β̃2GTg + β̃3PTt + ε̃igtv
∗b
g , (5)

i = 1, . . . , Ng, g = 1, . . . , G, t = 1, . . . , T,

Here y∗bigt is an element of the vector y∗b of observations on the bootstrap dependent
variable, GTg,PTt are the corresponding row of X, and v∗bg is an auxiliary random
variable that follows the Rademacher distribution; see Davidson and Flachaire (2008).
It takes the values 1 and −1 with equal probability.3

5. For each bootstrap replication, estimate regression (4) using y∗b as the regressand.
Calculate t∗b4 , the bootstrap t statistic for β4 = 0, using the square root of the 4th

diagonal element of (3), with bootstrap residuals replacing the OLS residuals, as the
standard error.

2Of course, even when G1 is not small, the matrices N−1g X ′g ε̂g ε̂
′
gXg in (3) do not estimate the corre-

sponding matrices N−1g X ′ΩgX in (2) consistently, because the former matrices necessarily have rank 1.
But the summation in the middle of expression (3), appropriately normalized, does consistently estimate
the matrix X ′ΩX, appropriately normalized. See Djogbenou, MacKinnon and Nielsen (2018) for details.

3Because v∗bg takes the same value for all observations within each group, we would not want to use the
Rademacher distribution if G were smaller than about 12; see Webb (2014), which proposes an alternative
for such cases.

5



6. Calculate the symmetric bootstrap P value as

p̂∗s =
1

B

B∑
b=1

I
(
|t∗b4 | > |t4|

)
, (6)

where I(·) denotes the indicator function. Equation (6) assumes that, under the null
hypothesis, the distribution of t4 is symmetric around zero. Alternatively, one can use
a slightly more complicated formula to calculate an equal-tail bootstrap P value.

The procedure just described is known as the restricted wild cluster, or WCR, bootstrap,
because the bootstrap DGP (5) uses restricted parameter estimates and restricted residuals.4

We could instead use unrestricted estimates and residuals in step 4 and calculate bootstrap t
statistics for the hypothesis that β4 = β̂4 in step 5. This yields the unrestricted wild cluster,
or WCU, bootstrap.

MacKinnon and Webb (2017b) explains why the wild cluster bootstrap fails when the
number of treated clusters is small. The WCR bootstrap, which imposes the null hypothesis,
leads to severe under-rejection. In contrast, the WCU bootstrap, which does not impose
the null hypothesis, leads to severe over-rejection. When just one cluster is treated, it over-
rejects at almost the same rate as using CRVE t statistics with the t(G− 1) distribution.

The poor performance of WCR and WCU when there are few treated clusters is a
consequence of the fact that the bootstrap DGP attempts to replicate the within-cluster
correlations of the errors using residuals that have very odd properties. MacKinnon and
Webb (2018b) therefore suggests using the ordinary wild bootstrap instead, and Djogbenou,
MacKinnon and Nielsen (2018) proves that combining the ordinary wild bootstrap for the
model (1) with the CRVE (3) leads to asymptotically valid inference. When clusters are
su�ciently homogeneous, this procedure can work well even when the number of treated
clusters is small.

3 Randomization Inference

Randomization inference, �rst proposed in Fisher (1935), is a procedure for performing exact
tests in the context of experiments. The idea is to compare an observed test statistic τ̂ with
an empirical distribution of test statistics τ ∗j for j = 1, . . . , S generated by re-randomizing
the assignment of treatment across experimental units. To compute each of the τ ∗j , we
use the actual outcomes while pretending that certain non-treated experimental units were
treated. If τ̂ is in the tails of the empirical distribution of the τ ∗j , then this is evidence
against the null hypothesis of no treatment e�ect.

Randomization tests are valid only when the distribution of the test statistic is invariant
to the realization of the re-randomizations across permutations of assigned treatments; see
Lehmann and Romano (2008) and Imbens and Rubin (2015). Whether this key assumption
is true in the context of policy changes such as those typically studied in the DiD literature
is debatable. Any endogeneity in the way policies are implemented over jurisdictions and
time would presumably cast doubt on the assumption.

4For more details on how to implement the wild cluster bootstrap in Stata at minimal computational
cost, see Roodman, MacKinnon, Nielsen and Webb (2018).
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When treatment is randomly assigned at the individual level, the invariance of the dis-
tribution of the test statistic to re-randomization follows naturally. However, if treatment
assignment is instead at the group level, as is always the case for DiD models like (4), then
the extent of unbalancedness can determine how close the distribution is to being invariant.

It is obvious that the proportion of treated observations matters for β̂4 in (4) and its
cluster-robust standard error. Let d̄ =

(∑G1

g=1Ng

)
/N denote this proportion. When clusters

are balanced, the value of d̄ will be constant across re-randomizations. However, when
clusters are unbalanced, d̄ may vary considerably across re-randomizations. This implies
that the distributions of β̂4 may also vary substantially. Randomization inference may not
work well in such cases.

MacKinnon and Webb (2018a) studies two types of RI procedure. One uses β̂4 in (4)
as τ̂ , and the other uses the cluster-robust t statistic that corresponds to β̂4. The former
procedure, which we refer to as RI-β, is quite similar to a procedure proposed in Conley and
Taber (2011). It is only valid, even in large samples, if re-randomizing does not change the
distribution of the β̂∗4j. The latter procedure, which we refer to as RI-t, is evidently valid
in large samples whenever the cluster-robust t statistics follow an asymptotic distribution
that is invariant to d̄ and to any other features of the individual clusters. However, as Mac-
Kinnon and Webb (2018a) shows, it is generally not valid in �nite samples when d̄ varies
across re-randomizations, especially when G1 is small. Nevertheless, the RI-t procedure
typically works better than the RI-β procedure, especially when G1 is not too small.

When there is just one treated group, it is natural to compare τ̂ to the empirical dis-
tribution of G0 di�erent τ

∗
j statistics. However, when there are two or more treated groups

and G0 is not quite small, the number of potential τ ∗j to compare with can be very large. In
such cases, we may pick S of them at random. To avoid ties, we never include the actual τ̂
among the τ ∗j . Some RI procedures do in fact include τ̂ , however. Provided S is large, this
is inconsequential.

The randomization inference procedures discussed in MacKinnon and Webb (2018a) for
the model (4) work as follows. Here τ̂ denotes either β̂4 or its cluster-robust t statistic, and
τ ∗j denotes the corresponding quantity for the j th re-randomization.

1. Estimate the regression model and calculate τ̂ .

2. Generate a number of τ ∗j statistics, S, to compare τ̂ with.

• When G1 = 1, assign a group from the G0 control groups as the �treated� group
g∗ for each repetition, re-estimate the model using the observations from all
G groups, and calculate a new statistic, τ ∗j , indicating randomized treatment.
Repeat this process for all G0 control groups. Thus the empirical distribution of
the τ ∗j will have G0 elements.

• When G1 > 1, sequentially treat every set of G1 groups except the set actually
treated, re-estimate equation (4), and calculate a new τ ∗j . There are potentially

GCG1 − 1 sets of groups to compare with, where nCk denotes �n choose k.� When
this number is not too large, obtain all of the τ ∗j by enumeration. When it exceeds
B (picked on the basis of computational cost), choose the comparators randomly,
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without replacement, from the set of potential comparators. Thus the empirical
distribution will have S = min(GCG1 − 1, B) elements.

3. Sort the vector of τ ∗j statistics.

4. Determine the location of τ̂ within the sorted vector of the τ ∗j , and compute a P value.
This may be done in more than one way, as we discuss in the next subsection.

In the above procedures, we need to assign a starting period for �treatment� in each
re-randomization if we are dealing with a DiD model like (4). The method used in the
simulation experiments in MacKinnon and Webb (2018a) and in Subsection 6 below is to
make the treatment period(s) the same for each re-randomization as for the actual sample.
Thus if, for example, G1 = 1 and treatment began in 1978, the single �treated� group in all
re-randomizations would start treatment in 1978. If G1 = 2 and treatment began in 1978
and 1982, then, for each re-randomization, one group would begin treatment in 1978 and
the other in 1982. In our simulations, we ordered both the actually treated groups and the
controls by size. Thus if, for example, treatment began in 1978 for group 3 and in 1982 for
group 11, and N3 > N11, then treatment would begin in 1978 for the larger control group
and in 1982 for the smaller one. We also experimented with assigning treatment years at
random and found that doing so made very little di�erence.

3.1 The Problem of Interval P Values

The most natural way to calculate an RI P value is probably to use the equivalent of equation
(6). As before, S denotes the number of repetitions, which would be G0 when G1 = 1 and
the minimum of GCG1 − 1 and B when G1 > 1, where B is a user-speci�ed target number
of replications. Then the analog of equation (6) is

p̂∗1 =
1

S

S∑
j=1

I
(
|τ ∗j | > |τ̂ |

)
. (7)

This makes sense if we are testing the null hypothesis that β4 = 0 and expect the τ ∗j to
be symmetrically distributed around zero. If we were instead testing the one-sided null
hypothesis that β4 ≤ 0, we would want to remove the absolute value signs.

Equation (7) is not the only way to compute an RI P value for a point null hypothesis,
however. A widely-used alternative is

p̂∗2 =
1

S + 1

(
1 +

S∑
j=1

I
(
|τ ∗j | > |τ̂ |

))
. (8)

It is easy to see that the di�erence between p̂∗1 and p̂
∗
2 is O(1/S), so that they tend to the

same value as S → ∞. There is evidently no problem if S is large, but the two P values
can yield quite di�erent inferences when S is small. The analogous issue should rarely arise
for bootstrap tests, because the investigator can almost always choose B (the number of
bootstrap samples, which plays the same role as S here) in such a way that equations (7)
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Figure 1: Rejection Frequencies and Number of Simulations
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and (8) yield the same inferences. This will happen whenever α(B + 1) is an integer, where
α is the level of the test. That is why it is common to see B = 99, B = 999, and so on.

With randomization inference, however, we generally cannot choose S such that α(S+1)
is an integer. In every other case, we could in principle use any P value between p̂∗1 and
p̂∗2. Thus P values based on a �nite number of simulations are generally interval-identi�ed
rather than point-identi�ed, where the interval is [p̂∗1, p̂

∗
2]; see Webb (2014).

For small values of S, the con�ict between inferences based on p̂∗1 and p̂∗2 can be sub-
stantial. Figure 1 shows analytical rejection frequencies for tests at the .05 level based on
equations (7) and (8), respectively. The tests would reject exactly 5% of the time if S
were in�nite, but the �gure is drawn for values of S between 7 and 103. In the �gure,
R denotes the number of times that t is more extreme than t∗j , so that p̂∗1 = R/S and
p̂∗2 = (R + 1)/(S + 1). It is evident that p̂∗1 always rejects more often than p̂∗2, except when
(for tests at the .05 level) S = 19, 39, 59, and so on. Even for fairly large values of S, the
di�erence between the two rejection frequencies can be substantial.

Suppose the data come from Canada, which has just ten provinces. If one province is
treated, then G1 = 1, G0 = 9, and the P value can lie in only one of nine intervals: 0 to
1/10, 1/9 to 2/10, 2/9 to 3/10, and so on. Even if R = 0, it would never be reasonable to
reject at the .01 or .05 levels.

One way to eliminate the interval and obtain a single P value is to use a random number
generator. Such a procedure is described, in the context of the bootstrap, in Racine and
MacKinnon (2007b). The idea is simply to replace the 1 after the large left parenthesis
in (8) with a draw from the U[0, 1] distribution. Similar procedures have been used for

9



many years in the RI literature; see Young (2015). However, these procedures have the
unfortunate property that the outcome of the test depends on the realization of a single
random variable drawn by the investigator. The gap between p̂1 and p̂2 still remains. We
have simply chosen a number between the two by, in e�ect, �ipping a coin. This means that
two di�erent researchers using the same dataset will randomly obtain di�erent P values.

4 Wild Bootstrap Randomization Inference

In this section, we suggest a novel way to overcome the problem of interval P values. We
propose a procedure that we refer to as wild bootstrap randomization inference, or WBRI.
The WBRI procedure essentially combines the wild cluster bootstrap of Subsection 2.1 with
either the RI-t or RI-β procedures of Section 3. We focus on RI-t, because, at least under
the null hypothesis, it seems to be better to use t statistics rather than coe�cients for
randomization inference.

The key idea of the WBRI procedure is to augment the small number (S) of test statistics
obtained by randomization with a much larger number generated by a restricted wild cluster
bootstrap DGP like (5). All the bootstrap samples are generated in the same way. However,
they are used to test S + 1 di�erent null hypotheses, corresponding to the actual treatment
and the S re-randomized ones.

Why should this procedure work? Under the (fairly strict) conditions for randomization
inference to be valid (Imbens and Rubin 2015), the RI-t procedure would work perfectly if it
were not for the interval P value problem. Provided the clusters are reasonably homogeneous
and S is not too small, it generally seems to work very well; see MacKinnon and Webb
(2018a). The idea of WBRI is to keep the good properties of RI-t for large S even when S is
not large by generating a large number of bootstrap statistics that resemble the t∗j obtained
by re-randomization.

Of course, we could obtain as many bootstrap statistics t∗b as we desire simply by using
the wild cluster bootstrap. But, when G1 is small, the |t∗b | tend to be positively correlated
with |t|. This is the reason for the failure of the WCR bootstrap with few treated clusters;
see MacKinnon and Webb (2017b). When G1 = 1, the correlation tends to be very high,
and this often leads to extreme under-rejection.

With the WBRI procedure, the bootstrap statistics |t∗bj| that correspond to the jth re-
randomization will undoubtedly be correlated with |tj| when G1 is small. But only the ones
that correspond to the actual null hypothesis should be strongly correlated with |t|. Thus
WBRI should not encounter anything like the sort of extreme failure that WCR routinely
does when G1 is small. Of course, we do not expect that WBRI will ever work perfectly,
especially when the number of clusters is very small. But it seems plausible that it should
yield P values which are reasonably accurate and much more precise than the interval [p̂1, p̂2].
We provide evidence on this point in Section 6.

We make no e�ort to prove the asymptotic validity of WBRI, because any proof would
require that G tend to in�nity; see Djogbenou, MacKinnon and Nielsen (2018). But when
G is large, S = G−1 for G1 = 1 and S >> G for G1 > 1, so that there would be no problem
of interval P values and no reason to employ WBRI.

Formally, the WBRI procedure for generating the t∗b and t
∗
bj statistics is as follows:

1. Estimate equation (4) by OLS and calculate t for the coe�cient of interest using CRVE
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standard errors.

2. Obtain S test statistics t∗j by re-randomization, as in Section 3.

3. Estimate a restricted version of equation (4) with β4 = 0, and retain the restricted
estimates β̃ and residuals ε̃.

4. For the original test statistic and each of the S possible re-randomizations, indexed by
j = 0, . . . , S, construct B bootstrap samples indexed by b, say y∗jb, using the restricted
wild cluster bootstrap procedure discussed in Subsection 2.1. For each bootstrap
sample, estimate equation (4) using y∗jb and calculate a bootstrap t statistic t∗jb based
on CRVE standard errors.5

5. Use one of equations (7) or (8) to calculate a P value for t based on the (B+1)(S+1)−1
bootstrap and randomized test statistics.

Since every possible set ofG1 clusters is �treated� in the bootstrap samples, the number of
bootstrap test statistics isB×GCG1 = B(S+1). In addition, there are GCG1−1 = S statistics
based on the original sample. Thus the total number of test statistics is B(S + 1) + S =
(B + 1)(S + 1)− 1. We suggest choosing B so that this number is at least 1000.

The number of possible bootstrap DGPs is only 2G if one uses the Rademacher distri-
bution. Therefore, when G is small, it is better to use an alternative bootstrap distribution
such as the 6-point distribution suggested in Webb (2014). In the case of the latter, the
number of possible bootstrap DGPs is 6G.

In general, it makes sense to use the WBRI procedure only when the RI-t procedure
does not provide enough t∗j for the interval P value problem to be negligible. As a rule of
thumb, we suggest using WBRI when G1 = 1 and G < 300, or G1 = 2 and G < 30, or
G1 = 3 and G < 15. Code for this procedure is available from the authors.6

5 Alternative Procedures

In this section, we brie�y discuss two very di�erent procedures that can be used instead
of WBRI. Their performance will be compared with that of the latter in the simulation
experiments of Section 6.

Racine and MacKinnon (2007a) suggested a way to solve the interval P value problem
in the context of bootstrap tests. For those tests, the problem only arises if computation is
so expensive that making α(B + 1) an integer for all test levels α of interest is infeasible.
But since the problem arises quite frequently for randomization tests, their procedure may
be useful in this context.

Recall the example of Canadian provinces given in Section 3.1. Suppose the treated
province has a more extreme outcome than any of the others, so that R = 0. In the strict
context of randomization inference, all we can say is that the P value is between 0, according

5Note that, in this procedure, B denotes the number of bootstrap samples per re-randomization. The
total number of bootstrap samples is B(S+1). It might seem tempting to use the same B bootstrap samples
for every re-randomization. However, this would create dependence among the S di�erent test statistics
that depend on each bootstrap sample. This sort of dependence should be avoided.

6Code for the WBRI procedure can be found at https://sites.google.com/site/matthewdwebb/code
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to equation (7), and 0.10, according to equation (8). In saying this, however, we have made
no use of the actual values of t and the t∗j . Only the location of |t| in the sorted list a�ects
either P value. If the outcome for the treated province di�ered a lot from the outcomes
for the other nine provinces, that is, if |t| were much larger than any of the |t∗j |, then the
evidence against the null hypothesis would seem to be quite strong. On the other hand, if
|t| were just slightly larger than the largest of the |t∗j |, the evidence against the null would
seem to be rather weak. But neither of the RI P values takes this into account.

The procedure of Racine and MacKinnon (2007a) does take the values of the actual and
re-randomized test statistics into account. It is based on the smoothed P value

p̂h = 1− F̂h(t) = 1− 1

S

S∑
j=1

K(t∗j , t, h), (9)

where F̂h(t) is a kernel-smoothed CDF of the t∗j evaluated at the actual test statistic t.
When t is much more extreme than any of the t∗j , it will surely lie in the far tail of the CDF,
and p̂h will be very small. On the other hand, when t is near one or more of the t∗j , p̂h is
unlikely to be very small.

This procedure requires the choice of a kernel function K(·) and a bandwidth h. Because
p̂h is an estimated probability rather than an estimated density, K(·) must be a cumulative
kernel. A natural choice is the cumulative standard normal CDF. The choice of h is more
di�cult, and it matters a lot when S is small. Based largely on simulation evidence, Racine
and MacKinnon (2007a) suggested choosing h = scS−4/9, where s is the standard deviation
of the t∗j , and the values of c are 2.418, 1.575, and 1.3167 for α = .01, α = .05, and α = .10,
respectively.7 Thus the bandwidth h should be larger the more variable are the t∗j and the
smaller is the level of the test. The latter makes sense, because values of t∗j will be scarcer
near more extreme values of t.

The kernel smoothing procedure of Racine and MacKinnon (2007a) can evidently be used
with coe�cients as well as t statistics, and we consider both methods in the next section.
Note that we estimate s from the t∗j but then apply the procedure to |t| and the |t∗j |, whereas
Racine and MacKinnon (2007a) considered upper-tail tests. Despite this di�erence, their
smoothing procedure generally performed best for tests at the .05 level when using the value
of c recommended for that level, namely, 1.575. All of the results reported in Section 6 use
that value.

A radically di�erent approach, which was studied in Donald and Lang (2007), is to
collapse the original, individual data to the cluster level. Instead of N observations, the
regression uses just G of them. Precisely how this works depends on the model. Consider
the simple case in which

yg = γιNg + βxg + ug, g = 1, . . . , G, (10)

where each of the subscripted vectors corresponds to a single cluster and hasNg observations,
and the vector ιNg contains Ng ones. If we take the averages of each of the vectors here, we

7There is a typo on page 5955 of Racine and MacKinnon (2007a) which causes the optimal values of
α = .01 and α = .10 to be reversed. That this is incorrect can be seen from Figure 6 of the paper.

12



obtain ȳg = ι′Ng
yg/Ng, x̄g = ι′Ng

xg/Ng, and ūg = ι′Ng
ug/Ng. This allows us to write

ȳ = γιG + βx̄+ ū, (11)

where the G-vectors ȳ, x̄, and ū have typical elements ȳg, x̄g, and ūg, respectively. Since
all the variables in regression (11) are cluster means, we refer to it as a �cluster-means
regression,� or CMR.

Donald and Lang (2007) argues that the ordinary t statistic for β = 0 in the cluster-
means regression (11) will be approximately distributed as t(G−2) if two restrictive but not
unreasonable assumptions are satis�ed. The �rst is that all clusters are the same size, so
that Ng = m for all g, with all of the ug having the same covariance matrices. The second
is either that the original error terms are normally distributed or that m is su�cient large
so that a central limit theorem applies to the elements of ū.

The advantage of collapsing individual data to the cluster level, as in (11), is that we
no longer have to estimate a CRVE. Because of the �rst assumption, we do not even have
to use heteroskedasticity-robust standard errors. This allows us to make inferences about
β when just one cluster is treated. In that case, only one element of x̄ is non-zero, but we
can still make valid inferences because all G observations are used to estimate the variance
of the error terms.

6 Simulation Experiments

In this section, we report the results of some simulation experiments designed to assess
the performance of WBRI and the procedures discussed in Section 5. The model is very
simple. It is essentially equation (4), but without any group dummies. This model can also
be thought of as equation (10) with time dummies instead of the constant term. To make
inference a bit more di�cult, the error terms follow a lognormal distribution. The group
dummies are omitted because the error terms have constant intra-cluster correlations of 0.05
(prior to being exponentiated), and group dummies would soak up all of this correlation.

In the experiments that we report, there are G clusters, each with 100 observations
divided evenly among 10 time periods. When a cluster is treated, treatment is always for
5 of the 10 periods. Because all clusters are the same size, and the number of treated
observations per treated cluster is always the same, randomization inference would work
perfectly if it were not for the interval P value problem. If we relaxed either of these
assumptions, of course, it would not work perfectly, even when G is large; see MacKinnon
and Webb (2018a).

Figure 2 shows rejection frequencies for tests at the .05 level for three procedures (RI-t
using p̂1, RI-t using p̂2, and WBRI-t using p̂2) for 56 di�erent experiments, each with 400,000
replications.8 The number of clusters varies from 5 to 60, and only one cluster is treated.
For any value of G, this is the case for which the interval P value problem is most severe,
because S = G − 1 is small unless there are many clusters. The number of bootstraps per
randomization is always chosen so that (B + 1)(S + 1) ≥ 1000.

One striking feature of Figure 2 is that rejection frequencies for the two RI procedures
are almost exactly what theory predicts; see Figure 1. When G = 20, 40, and 60, the two

8WBRI would have rejected slightly more often if we had used p̂1 instead of p̂2; the di�erence in rejection
frequencies was almost always less than 0.001.
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Figure 2: WBRI and RI Rejection Frequencies
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RI P values yield precisely the same outcomes, as they must. In every other case, however,
p̂∗1 = R/S rejects more often than p̂∗2 = (R + 1)/(S + 1).

In Figure 2, the WBRI rejection frequencies are almost always between the two RI
rejection frequencies (although this is not true for G = 19 and G = 20), and they are always
quite close to 5% except when G is very small. This is what we would like to see. However,
it must be remembered that the �gure deals with a very special case in which all clusters
are the same size and the error terms are homoskedastic. The WBRI procedure cannot be
expected to work any better than the RI-t procedure when the treated clusters are smaller
or larger than the untreated clusters, or when their error terms have di�erent variances.

In the experiments of Figure 2, we used the Rademacher distribution for G ≥ 19 and
the 6-point distribution for G ≤ 18. This accounts for the sharp jump between 18 and 19.
Rejection frequencies for small values of G would have been much larger if we had used
Rademacher, while those for large values of G would have been noticeably smaller if we had
used 6-point. It is not clear why WBRI tends to under-reject for tests with G1 = 1 (but
not for tests with G1 = 2; see below) when the 6-point distribution is used. As MacKinnon
and Webb (2017b, 2018b) showed, OLS residuals have strange properties when just one
cluster is treated. We speculate that these cause the choice of the wild bootstrap auxiliary
distribution to be unusually important in this case.

Figure 3 shows rejection frequencies for tests at the .05 level for �ve procedures. For
readability, the vertical axis has been subjected to a square root transformation, and the
conventional RI procedures have been dropped. The results for WBRI-t are the same ones

14



Figure 3: WBRI, Smoothed RI, and CMR Rejection Frequencies, G1 = 1
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shown in Figure 2. Results for WBRI-β are also shown, and it is evident that WBRI-β
always rejects more often than WBRI-t. The di�erence is quite substantial for small values
of G, and WBRI-t is clearly preferred.

In Figure 3, the two tests based on kernel-smoothed P values work remarkably well
for larger values of G (say G > 25), but they over-reject quite severely for really small
values. The over-rejection is more severe for RI-t than for RI-β. All reported results are for
c = 1.575, the value suggested in Racine and MacKinnon (2007a) for tests at the .05 level.
When the larger value of 2.418 (suggested for tests at the .01 level) was used instead, all
rejection frequencies were noticeably lower.

The test based on the CMR (11) and the t(G−2) distribution works remarkably well even
for very small values of G. It over-rejects slightly when G is small and under-rejects slightly
when G is large. It would have performed even better if the errors had been normally rather
than lognormally distributed. Since this test is very easy to perform (it requires neither
randomization nor the bootstrap), one might well feel, on the basis of these results, that
there is no point worrying about the more complicated procedures based on individual data.
However, this test does have one serious limitation. As we will see below, it can be seriously
lacking in power.

All the experiments reported so far have just one treated group. This is generally the
most di�cult case. In Figure 4, we show results for several tests with G1 = 2. For these
tests, the values of G vary from 5 to 20, and the values of S consequently vary from 9 to 189.
The CMR works extremely well for all values of G. WBRI-t (using the 6-point distribution
for G ≤ 13 and the Rademacher distribution for G ≥ 14) under-rejects slightly for very
small values of G but works very well whenever G ≥ 11. Smoothed RI-t over-rejects for
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Figure 4: WBRI, Smoothed RI, and CMR Rejection Frequencies, G1 = 2
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very small values of G but works very well for G ≥ 9. However, the two procedures that are
based on coe�cients instead of t statistics do not work particularly well.

The results presented so far may seem to suggest that the cluster-means regression is the
most reliable, as well as the easiest, way to make inferences. However, this approach has
one serious shortcoming. When the value of the treatment variable is not constant within
groups, aggregation to the group level can seriously reduce power.

Figure 5 presents results for a case with G = 10, G1 = 2, and S = 44, where the
value of β varies from 0 (the null hypothesis) to 1. The most striking result is that tests
based on the CMR (11) are much less powerful than the other tests. As noted earlier, in
all of our experiments there are 10 �years,� only 5 of which are treated. Every cluster has
100 observations, 10 for each �year.� Therefore, the regressor x̄g either takes the value 0
(when cluster g is not treated) or the value 0.5 (when half the observations in cluster g
are treated). Not surprisingly, this results in very substantial power loss.9 Of course, if
all the observations in every treated cluster were treated, this power loss would not occur.
Additional experiments suggest that, when all �years� are treated, tests based on regression
(11) have excellent power.

Some of the other results in Figure 5 are also interesting. The two procedures based on
t statistics, WBRI-t and smoothed RI-t, have power functions that are essentially identical.
In contrast, the two procedures based on coe�cients are noticeably more powerful than the

9We note that Donald and Lang (2007) did not suggest using equation (11) for DiD models in the way
that we have used it here.
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Figure 5: Power for Several Procedures
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ones based on t statistics. This is consistent with results for RI tests in MacKinnon and
Webb (2018a), and it makes sense, because the tests based on coe�cients do not have to
estimate standard errors. The somewhat higher power of WBRI-β relative to smoothed
RI-β can probably be attributed to its somewhat larger size (it rejects 5.92% of the time at
the 5% level, versus 4.49%).

It is important to remember that all the procedures we have discussed are very sensitive
to the assumption that the clusters are homogeneous. When that assumption is violated,
no randomization inference procedure can be expected to perform well, even when G and
G1 are large. Since MacKinnon and Webb (2018a) documents the mediocre performance of
RI tests for a number of cases where cluster sizes vary, there is no need to perform similar
experiments here. In general, RI tests tend to over-reject when the treated clusters are
relatively small and under-reject when they are relatively large.

In Figure 6, we investigate the e�ects of a particular type of heteroskedasticity which was
not studied in MacKinnon and Webb (2018a). Instead of the error terms being homoskedas-
tic, their standard deviation is twice as large for treated observations as for untreated ones.
Whether this is a realistic speci�cation is debatable, although it does not seem unreasonable
that some treatments could a�ect the second moment of the outcome as well as the �rst.

In both panels of Figure 6, G varies between 5 and 20, as in Figures 3 and 4. In the left
panel, G1 = 1, and in the right panel, G1 = 2. It is evident that no method yields reliable
inferences. The results for G1 = 2 are generally better than for G1 = 1, but they are far
from satisfactory. Moreover, the performance of the cluster-means regression and of the two
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Figure 6: Rejection Frequencies with Heteroskedasticity
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a) G1 = 1
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b) G1 = 2

methods based on RI-β actually deteriorates as G increases when G1 = 2.

7 Empirical Example

In this section, we consider an empirical example from Decarolis (2014). Part of the analysis
deals with how the introduction of �rst price auctions (FPA) in Italy a�ected winning
discounts in public works procurement. From January 2000 to June 2006, the use of average
bid auctions (ABA) was required for all contracts with reserve prices below e5 million.
However, after a case of collusion in ABAs was discovered, the Municipality of Turin and
the County of Turin switched from ABAs to FPAs in early 2003. The central government
mounted a legal challenge against these reforms that essentially prevented all other public
administrations (PA) from making a similar switch.

The timing and exclusivity of the switch in Turin is exploited to estimate a regression
analogous to di�erence-in-di�erences. Each of the two treated PAs (the county and the
municipality) is considered separately in the following model:

W.Discountist = as + bt + cXist + βFPAst + εist. (12)

The outcome of interest, W.Discountist, is the winning discount o�ered in auction i of PA s

in year t. FPA is a binary indicator equal to 1 for an FPA and 0 otherwise. The coe�cient
of interest, β, is the e�ect of using an FPA on the winning discount conditional on �xed
e�ects for PA (as), time (bt), and other covariates (Xist). Analysis is restricted to public
works auctions with reserve prices between e300,000 and e5 million, consisting of simple
work types such as roadwork construction and repair jobs.

Table 7 presents our results. We �rst recreate the �rst two columns of Table 5 in Decarolis
(2014). That paper implements a matching strategy, based on similarities in total number
of auctions held in each PA during the sample period, to de�ne control groups from other
jurisdictions for each of the two treated PAs. This results in 14 control groups for the
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Municipality of Turin and 17 control groups for the County of Turin. Thus, G = 15 for the
Municipality of Turin, and G = 18 for the County of Turin, with G1 = 1 in both cases. In
the municipality regression, Turin is the largest cluster with 200 observations out of 1,262;
the smallest cluster has 28. In the county regression, Turin is again the largest cluster
with 147 observations out of 1,355; the smallest cluster has 27. Results in MacKinnon and
Webb (2018a) suggest that the RI tests should be conservative when the largest clusters are
treated, as is the case in both samples here.

The model above is used to estimate 95% con�dence intervals for β under two speci�ca-
tions. Both speci�cations control for year, PA, a municipality dummy, type of public work
dummies, and reserve price. The �rst speci�cation, which we call Model 1 and is called �W.
Discount (1)� in the paper, controls for �scal e�ciency, the ratio of total yearly realized
revenue to estimated revenue of the PA. The second speci�cation, which we call Model 2,
and is called �W. Discount (2)� in the paper, controls for time trends and PA-speci�c time
trends, but not �scal e�ciency. For each panel, the �rst and second rows provide estimates
when standard errors are clustered at the PA-Year and PA levels, while the third row uses
the method of constructing con�dence intervals proposed in Conley and Taber (2011).10

In addition to reproducing the original results, we compute RI-β and RI-t P values using
both formulae, as well as smoothed P values and both types of WBRI P value using the
same two samples and two models. We do this clustering only by PA. As expected, the RI-β
P values are identical to the RI-t P values for Model 1, because there is only one treated
cluster; see MacKinnon and Webb (2018a) for details.11 The four RI P value intervals for
Model 1 contain .05, while the four RI P value intervals for Model 2 contain .10. In the
former case, this makes it impossible to tell whether we should reject or not reject at the
.05 level. In the latter case, we evidently cannot reject at the .05 level, but it is impossible
to tell whether we should reject or not reject at the .10 level.

The WBRI-t P values shown in the table are obtained with B = 700 for Panel A and
B = 600 for Panel B. This means that there are 701×15C1−1 = 10,514 and 601×18C1−1 =
10,817 bootstrap/randomization t statistics, respectively. Under Model 1, we �nd WBRI-t
P values that are very close to p̂∗1 and highly signi�cant. Under Model 2, we again �nd that
the WBRI-t P value is very close to p̂∗1 for the municipality sample, but below p̂∗1 for the
county sample. Except for Model 2 using the county sample, the smoothed RI-t P values
are very similar to the WBRI-t ones. The WBRI-β P values are in general similar to both
the WBRI-t values and the smoothed RI-β P values. Interestingly, for Model 2 using both
samples, the WBRI-β P values are below p̂∗1.

We also consider an aggregation procedure, which we call cluster-means regression, or
CMR, that is similar to one suggested in Donald and Lang (2007). This procedure yields
sensible results for Model 1 for both samples. However, for Model 2, it yields much larger
P values than any of the other procedures. This is probably a consequence of the fact that
Model 2 contains both a DiD term for just one cluster in addition to a time trend for only
that cluster, which does not �t easily into the aggregation framework of equation (11).

10 Following the original paper, con�dence intervals for the CT procedure are rounded to the nearest
integer values.

11We should not expect them to be the same for Model 2, however, because there are two variables that
need to be randomized, the DiD variable and the trend-treatment variable.
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The evidence against the null hypothesis is probably even stronger than these results
suggest. In MacKinnon and Webb (2018a), we showed that RI procedures tend to under-
reject when the treated clusters are unusually large. Since the only treated cluster is either
the Municipality or the County of Turin, and each of those is the largest cluster in its
sample, we would expect all forms of RI P value to be biased upwards. Thus the fact that
the WBRI-t test rejects at the .001 level for Model 1 for both datasets and at either the
.05 or .10 level for Model 2 suggests that there is quite strong evidence against the null
hypothesis.

8 Conclusion

We introduce a bootstrap-based modi�cation of randomization inference which can solve the
problem of interval P values when there are few possible randomizations, a problem that
often arises when there are very few treated groups. This procedure, which we call WBRI for
�wild bootstrap randomization inference,� is easiest to understand as a modi�ed version of
the wild cluster bootstrap. Like the WCB, it generates a large number of bootstrap samples
and uses them to compute bootstrap test statistics. However, unlike the WCB, only some of
the bootstrap test statistics are testing the actual null hypothesis. Most of them are testing
�ctional null hypotheses obtained by re-randomizing the treatment.

The WBRI procedure can be used to generate as many bootstrap test statistics as desired
by making B large enough. Thus it can solve the problem of interval P values. However, it
shares some of the properties of RI procedures, which perform conventional randomization
inference based on either coe�cients or cluster-robust t statistics; see MacKinnon and Webb
(2018a). In particular, like RI-β and RI-t, WBRI-β and WBRI-t can be expected to over-
reject (or under-reject) when the treated clusters are smaller (or larger) than the control
clusters. This tendency is greater for WBRI-β than for WBRI-t. Thus we cannot expect
WBRI procedures to yield reliable inferences in every case.

We also consider two other procedures. One of them applies the kernel-smoothed P
value approach of Racine and MacKinnon (2007a) to randomization inference. This method
seems to perform very similarly to WBRI in many cases. The other, based on Donald and
Lang (2007), aggregates individual data to the cluster level and uses the t distribution with
degrees of freedom equal to the number of clusters minus 2. This cluster-means regression
approach can work remarkably well in some cases, but it can be seriously lacking in power
when not all observations within treated clusters are treated.
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Table 1: 95% Con�dence Intervals and P values for FPA coe�cient
Model 1 Model 2

Panel A: Municipality of Turin

β̂ 12.18 6.14
t statistic 14.86 7.82
PA-Year Clustering (CI) (9.54, 14.81) (3.55, 8.72)
PA Clustering (CI) (10.42, 13.94) (4.45, 7.82)
CMR P value 0.0203 0.6698
Conley-Taber (CI) (10, 16) (5, 8)
RI-β P values (0.000, 0.063) (0.133, 0.188)
Smoothed RI-β P value 0.0000 0.0885
RI-t P values (0.000, 0.063) (0.067, 0.125)
Smoothed RI-t P value 0.0000 0.0716
WBRI-t P value 0.0000 0.0799
WBRI-β P value 0.0000 0.0595
N 1,262 1,262
G 15 15
Panel B: County of Turin

β̂ 8.71 5.69
t statistic 19.22 8.34
PA-Year Clustering (CI) (6.55, 10.85) (3.19, 8.18)
PA Clustering (CI) (7.75, 9.66) (4.25, 7.12)
CMR P value 0.0041 0.4684
Conley-Taber (CI) (7, 14) (4, 8)
RI-β P values (0.000, 0.056) (0.118, 0.187)
Smoothed RI-β P value 0.0004 0.1046
RI-t P values (0.000, 0.056) (0.058, 0.111)
Smoothed RI-t P value 0.0000 0.0570
WBRI-t P value 0.0014 0.0181
WBRI-β P value 0.0000 0.0446
N 1,355 1,355
G 18 18
Regressors

Fiscal E�ciency Yes No
PA Speci�c Time Trends No Yes

Notes: Entries of the form (0.000, 0.067) represent the P value pairs (p̂∗1, p̂
∗
2). WBRI P

values are obtained with B = 700 for Panel A and B = 600 for Panel B, ensuring that
B×GC1 > 10, 000 for both panels.
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