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INFERENCE VIA KERNEL SMOOTHING OF BOOTSTRAP P
VALUES

JEFF RACINE AND JAMES G. MACKINNON

Abstract. Resampling methods such as the bootstrap are routinely used to esti-
mate the finite-sample null distributions of a range of test statistics. We present a
simple and tractable way to perform classical hypothesis tests based upon a kernel
estimate of the CDF of the bootstrap statistics. This approach has a number of
appealing features: i) it can perform well when the number of bootstraps is ex-
tremely small, ii) it is approximately exact, and iii) it can yield substantial power
gains relative to the conventional approach. The proposed approach is likely to be
useful when the statistic being bootstrapped is computationally expensive.

1. Introduction

The use of bootstrap methods for inference in finite samples is by now well estab-

lished. In many cases, these methods yield more accurate inferences than methods

based on asymptotic theory; see Hall [10] and Mammen [14], among many others.

Moreover, they may be more robust to departures from distributional assumptions;

for an example, see Bickel and Freedman [3].

The simplest bootstrap methods often do not work any better than asymptotic

ones, in the sense that the mistakes made by both methods are of the same order

in the sample size n. However, more sophisticated bootstrap methods often do work

better than asymptotic methods. In particular, methods based on quantities that are

asymptotically pivotal, such as percentile-t methods, work well in theory and often

(but not always) work well in practice; see Hall [9] and Beran [2]. A statistic is (asymp-

totically) pivotal if its (limiting) distribution does not depend on unknown quantities

(Hall, [10] page 83). For example, suppose we are interested in a parameter θ. The
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estimator θ̂ is almost never asymptotically pivotal. However, the studentized statis-

tic, τ̂ = (θ̂ − θ)/s(θ̂), where s(θ̂) is a consistent estimate of the standard error of θ̂,

will be asymptotically pivotal in most cases.

In this paper, we will be concerned with hypothesis tests based on asymptotically

pivotal test statistics. The latter may be likelihood ratio statistics, Lagrange Multi-

plier statistics, Wald statistics, or indeed any sort of test statistic that is asymptoti-

cally pivotal. In most cases, these statistics will have known asymptotic distributions,

although this is not essential. We will let τ̂ ≡ τ̂n denote a test statistic computed from

a sample of size n, and we will let τ ∗j ≡ τ ∗n,j denote a bootstrap statistic computed

from the j th bootstrap sample, which is generated under the null hypothesis, where

j = 1, . . . , B. Since all samples are of size n, the “n” subscripts will often be omitted

for simplicity.

We assume that the limiting distribution of the τ ∗n,j is the same as the limiting

distribution of the τ̂n under the null hypothesis. Showing that this is so for any

particular method of generating bootstrap samples in any specific case may require

considerable effort, and the details of how the bootstrap samples are constructed can

be extremely important. However, we abstract from these issues in this paper.

If computing the τ ∗j is not expensive, so that we can afford to make B a reasonably

large number (for example, 999), then there is no need for the methods introduced

in this paper. However, despite the astonishing advances in computing power over

the past two decades, there are many cases in which calculating τ̂ and the τ ∗j is com-

putationally demanding. For example, simulation-based methods may be required to

estimate the model; see van Dijk and Monfort [20] and Gouriéroux and Monfort [8]

for introductions to simulation-based methods in econometrics.

Even when simulation is not needed to compute parameter estimates, it may be

required to compute standard errors, or, more generally, covariance matrices. As

Efron and Tibshirani ([7], page 162) note, “standard error formulae exist for very few

statistics.” Thus, in order to calculate the τ ∗j , it may first be necessary to compute

a bootstrap estimate of the standard error for each bootstrap sample. This can be

computationally demanding. Even when standard errors can be calculated without

simulation, they may not be reliable. In such cases, the double bootstrap proposed

by Beran [2] can be used to obtain more accurate inferences. As its name implies,

this method involves two levels of bootstrap. Formally, our analysis applies to the
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double bootstrap, since we can think of τ̂ as being a first-level bootstrap P value and

the τ ∗j as being second-level bootstrap P values.

We propose a simple and tractable approach that computes a P value based on a

kernel estimate of the CDF of the bootstrap statistics. This approach requires fewer

bootstrap replications than the conventional approach to attain any level of accuracy.

It can yield reasonably accurate inferences even with fewer than 20 bootstrap replica-

tions. Existing bandwidth selection rules do not yield an exact test, though for many

users the size distortions may be perfectly acceptable and be more than offset by the

power gains. Data-driven bandwidth selection rules that deliver an exact test remain

a topic for future research.

2. Conventional Approaches

The usual method for computing bootstrap P values is simply to find the proportion

of the bootstrap statistics τ ∗j that are more extreme than the actual statistic τ̂ . Call

this proportion P ∗
B. Then one rejects the null hypothesis if P ∗

B is less than α, the level

of the test. When B is chosen so that α(B + 1) is an integer, and the test statistic is

pivotal, this procedure yields an exact test. Such a test is sometimes called a “Monte

Carlo test.” The reason why Monte Carlo tests are exact is easy to see. If τ̂ and

the τ ∗j all follow the same distribution, then the probability that τ̂ will be among

the α(B + 1) most extreme values by chance is precisely α. But this is precisely the

situation in which P ∗
B is less than α.

Formally, for a test that rejects in the upper tail,

(1) P ∗
B = 1− F̂ (τ̂) = 1− 1

B

B∑
j=1

I(τ ∗j ≤ τ̂) =
1

B

B∑
j=1

I(τ ∗j > τ̂),

where I(·) is the indicator function, and F̂ (τ̂) is the empirical distribution function

(EDF) of the bootstrap statistics. Thus this procedure effectively uses the EDF F̂ (τ̂)

to estimate a critical value. For a test at level α that rejects when the test statistic

is in the right-hand tail, the appropriate critical value is the 1 − α quantile. When

α(B+1) is an integer, rejecting whenever τ̂ exceeds observation (1−α)(B+1) in the

list of the τ̂ ∗j sorted from smallest to largest yields exactly the same test as rejecting

when P ∗
B is less than α.
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There are at least two problems with this approach. First, it works very badly if

B is small and α(B + 1) is not an integer. To appreciate the size distortions in such

instances, Figure 1 plots the empirical rejection frequencies for the EDF approach.

These are very large for some (small) values of B. It is possible to avoid this problem

by using a method proposed in Racine and MacKinnon [17], but it involves drawing

an additional random number on which the outcome of the test may depend.

Second, the randomness introduced by simulation causes the test to lose power.

This loss of power is proportional to 1/B. For discussions of power loss in Monte

Carlo and bootstrap tests, see Jöckel [13], Hall and Titterington [11], and Davidson

and MacKinnon [6]. Because the EDF-based test ignores a great deal of information

about the shape of the distribution that the τ ∗j potentially convey, it loses more power

than it needs to lose. Consider a change in the value of one of the τ ∗j . Such a change

will have no effect on P ∗
B unless the sign of τ ∗j − τ̂ changes. When the sign does

change, P ∗
B rises or falls by precisely 1/B, regardless of how much τ ∗j changed.
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19 39 59 79 99 119 139 159 179 199
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B

Figure 1. Empirical rejection frequencies for the conventional EDF
test at the .05 level. For small B where α(B + 1) is not an integer, the
size distortions are upwards of 100%.

As an example, consider the situation in which B = 19 and τ̂ is more extreme than

all 19 of the τ ∗j . This situation might often arise if the null hypothesis were false.
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Formally, even though P ∗
19 = 0 in this case, we can only reject the null hypothesis

at the .05 level. If several of the τ ∗j are very close to τ̂ , even that conclusion may

seem dubious. On the other hand, if τ̂ is much more extreme than all of the τ ∗j , it

would seem reasonable to reject the null hypothesis quite decisively. The EDF-based

estimator makes no distinction between these two cases. In contrast, the kernel-based

procedures that we are about to describe would yield very different, and much more

informative, P values.

Some authors use a modified version of the EDF approach in which

(2) P ∗
B =

1

B + 1
+

1

B + 1

B∑
j=1

I(τ ∗j > τ̂),

and reject whenever PB∗ ≤ α. This biased EDF approach leads to precisely the

same inferences as the usual EDF approach whenever α(B + 1) is an integer, but

it prevents overrejection caused by a poor choice of B when that condition is not

satisfied. However, it can cause severe loss of power when B is small and badly

chosen. Notice that a test based on (2) can never reject when B is less than the

smallest value for which α(B+1) is an integer. Figure 2 plots the empirical rejection

frequencies for the biased EDF approach.

We now propose a new approach that does not suffer from the size distortions

associated with the conventional EDF and biased EDF approaches, one that is also

capable of recapturing the loss in power associated with Monte Carlo and bootstrap

tests. We do so by constructing smooth estimates of the distribution function, a

subject going back to the pioneering work of Nadaraya [15].

3. Kernel estimation of P values

The kernel estimator of the cumulative distribution function (CDF) of X ∈ R at

the point x ∈ R, using a sample of B observations xj, is given by

(3) F̂h(x) =
1

B

B∑
j=1

K(xj, x, h),

whereK(xj, x, h) is a cumulative kernel, for example, the cumulative Epanechnikov or

Gaussian kernel, and h is the bandwidth. Properties of this estimator were originally

examined by Nadaraya [15], who demonstrated that this kernel estimator has the

same asymptotic mean and variance as the EDF F̂ . Azzalini [1], Reiss [18], and
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Figure 2. Empirical rejection frequencies for the conventional biased
EDF test at the .05 level. For small B where α(B+1) is not an integer,
the size distortions are downwards of 100%.

others have demonstrated how kernel smoothing reduces the variance but introduces

bias.

By way of comparison, Figure 3 presents empirical and kernel estimates of a distri-

bution function for a random sample of size B = 25 drawn from a N(0, 1) distribution.

For the empirical approach, the distribution is set equal to 1 for all values x > xmax,

where xmax = 2.71 in this case. In contrast, the kernel estimator assigns values be-

tween xmax and roughly 3.7 a CDF value less than 1. For instance, for X = 2.72, the

empirical probability of obtaining a draw this large is 1− F̂ (2.72) = 0.000, while that

based upon the kernel estimate is 1− F̂h(2.72) = 0.021. Clearly, the kernel estimate

is much better than the estimate based on the EDF.

Our proposal is to replace P ∗
B defined in equation (1) by the smoothed bootstrap

P value

(4) P̂ h
B = 1− F̂h(τ̂) = 1− 1

B

B∑
j=1

K(τ̂ ∗j , τ̂ , h),
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Figure 3. Empirical and smooth kernel estimates of a distribution
function for B = 25 (h = 1.587σ̂B−1/3).

where F̂h(τ̂) is the smoothed CDF. We call this the “smoothed P value approach.”

Although both approaches yield identical results in the limit as B → ∞, their per-

formance will differ when B is finite. When computing the bootstrap test statistics

is computationally burdensome, so that it is not feasible to make B a large number,

there can be substantial gains in power from using the smoothed P value approach.

As is always the case with kernel estimation, the choice of h is extremely important,

but the choice of kernel does not seem to matter very much. For what follows, we

restrict attention to the cumulative Gaussian kernel, that is, the standard normal

CDF.

3.1. Bandwidth selection for CDFs. Data-driven methods of bandwidth selection

for kernel estimators of CDFs have been studied by a number of authors, notably

Sarda [19] and Bowman, Hall, and Prvan [4], who studied cross-validation methods,

and Polansky and Baker [16], who examined plug-in methods. These methods produce

IMSE-optimal bandwidths, that is, bandwidths which globally minimize the MSE of

the resulting estimator. It can readily be shown that the globally-optimal reference

bandwidth assuming an underlying normal distribution when using a Gaussian kernel
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is h = 1.587σ(x)B−1/3. This often differs substantially from the reference bandwidth

that is optimal for kernel estimation of a PDF, which is h = 1.059σ(x)B−1/5.

Alternatively, if one is interested in obtaining a pointwise optimal estimate (that is,

an estimate of F (x) at a particular point x rather than over its entire support), one

would instead select a bandwidth that is MSE-optimal. Azzalini [1] has demonstrated

that the MSE-optimal bandwidth is again of the form h = cσ(x)B−1/3, similar to the

IMSE-optimal bandwidth, and that the value of c appropriate for estimating the tails

of F (x) is roughly 1.30 for a range of distributions.

Both the pointwise (MSE-optimal) and the globally optimal bandwidths (that is,

1.587σ(x)B−1/3 or 1.30σ(x)B−1/3) deliver kernel estimators of P̂ h
B = 1 − F̂h(τ̂) that

have desirable squared error properties.
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Figure 4. Empirical rejection frequencies for the kernel-based test
using IMSE and MSE optimal bandwidths.

The performance of conventional bandwidth selection rules is shown graphically in

Figure 4, which plots rejection frequencies for tests at the .05 level against B. It is

based on two million replications. Both the actual test statistic and the “bootstrap”

statistics are N(0, 1); note that a different choice of distribution would have led to

different results. There are two choices of bandwidth, one which is IMSE-optimal

and one which is MSE-optimal. We use an estimate of the standard deviation of the
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bootstrap statistics to compute the optimal bandwidths. In both cases, the smoothed

bootstrap tests underreject for most values of B and overreject for very small values.

For instance, the MSE optimal rule yields an empirical size of .059 for B = 9, .050

for B = 15, .048 for B = 25, and .047 for B = 50, while the IMSE optimal rule yields

an empirical size of .048 for B = 9, .043 for B = 15, .042 for B = 25, and .043 for

B = 50. For comparison, the conventional EDF approach yields empirical sizes of

.100 for B = 9, .062 for B = 15, .077 for B = 25, and .059 for B = 50, but it yields

exact tests when B = 19, B = 39, and so on.

One could reasonably argue that these size distortions are quite acceptable, par-

ticularly when compared with the distortions associated with many bootstrap tests

even when B = ∞ and with the distortions for the conventional approach when B

is chosen poorly. Furthermore, when coupled with the power gains associated with

smoothing that we investigate later in this paper, a reasonable researcher may well be

convinced of the overall advantages of using the proposed approach based upon exist-

ing bandwidth selection rules, especially in light of established data-driven methods

that approximate the IMSE optimal rules used above. We now investigate whether

or not a bandwidth selection rule exists that is capable of yielding an exact test.

3.2. Existence of an optimal bandwidth. A bandwidth selection rule for smooth

bootstrap P values ought to yield an approximately exact test if the test statistic

is a pivot. It is evident that the existing MSE and IMSE optimal bandwidth rules

outlined above are not optimal for the task at hand.

The tests we are proposing will reject the null hypothesis whenever P̂ h
B < α. Let α̂

denote the empirical rejection frequency of such a test. The expectation of α̂ is

E(α̂) = E
(
I(P̂ h

B < α)
)

= Pr(P̂ h
B < α) = Pr

(
F̂h(τ̂) > 1− α

)
.

(5)

In order for our test to be exact, therefore, the bandwidth h must be chosen to ensure

that Pr
(
F̂h(τ̂) > 1 − α

)
= α. That is, we must select an h such that, when we

conduct a test at level α, the expected rejection frequency of the test is equal to

the nominal level at which we conduct the test. This is a major departure from the

squared error bandwidth selection rules that are commonly used, and this departure

has two implications. First, h is a function of the nominal level of the test. Therefore,

when conducting a test at, say, the .05 level, one would use a different h than when
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conducting the same test at the .10 level. Second, it will be seen that h is no longer

proportional to B−1/3.

There must exist a value of h such that E(α̂) = α if the test statistic is a pivot.

To show this, we demonstrate that a smoothed P value test will overreject when h is

sufficiently small and underreject when h is sufficiently large. The continuity in h of

the kernel function then ensures that it will reject the correct proportion of the time

for some value of h.

The cumulative kernel used for the estimation of a CDF is given by K(z) =∫ z

−∞ k(Z) dZ, where k(Z) is a symmetric function that integrates to unity, and where

z = (τ̂ − τ ∗j )/h. In practice, k(Z) is often taken to be the standard Gaussian, and

K(z) is then the cumulative standard Gaussian. Such kernel functions therefore pos-

sess the following properties: i) K(z) → 0 when z → −∞; ii) K(z) → 1 when z → ∞;

and iii) K(0) = 0.5.

First, consider the behavior of a right-tailed test based upon P̂ h
B for large h. When

h → ∞, z = (τ̂−τ ∗j )/h → 0, and thereforeK(z) → 0.5. This implies that F̂h(τ̂) → 0.5

and P̂ h
B → 0.5. Therefore, E

(
I(P̂ h

B < α)
)
tends to zero for conventional levels of α.

In consequence, tests based on P̂ h
B must underreject when h is sufficiently large.

Next, consider the behavior of the test for small h. As h → 0, F̂h(τ̂) tends to the

EDF, F̂ (τ̂). There are three cases, depending on how B is related to α. When neither

α(B + 1) nor αB is an integer, a test based on the EDF will overreject. However,

when α(B + 1) is an integer, such a test is exact, and when αB is an integer, it

underrejects. Nevertheless, it appears that, for h somewhat larger than 0, the test

always overrejects.

Figure 5 shows rejection frequencies as a function of c for bandwidths of the form

h = cB−4/9 for three values of B, namely, 19, 20, and 21. Once again, the test statistic

is distributed as N(0, 1). When B = 19, the EDF-based test is exact, when B = 20

it underrejects, and when B = 21 it overrejects. We used B−4/9 rather than B−1/3

based on extensive simulation evidence. However, we have no theoretical justification

for this choice. For all three values of B, it is clear that there exists an optimal

bandwidth such that the test rejects precisely 5% of the time.

Ideally, bandwidth selection would be data-driven. As mentioned above, we require

a bandwidth selection rule that depends on i) the sample size, ii) the underlying data

generating process, and iii) the nominal rejection frequency of the test, α, when the
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Figure 5. Empirical rejection frequencies for tests at the .05 level as
a function of the bandwidth.

test statistic is a pivot. Existing CDF bandwidth selection rules such as those of

Bowman, Hall, and Prvan [4] and Polansky and Baker [16] satisfy i) and ii) but not

iii). The last of these requirements introduces an additional level of complexity. We

need to find neither a globally optimal bandwidth nor a pointwise optimal one, but

rather one that is tailored to the tail of the distribution, where the tail probability

is α. At this point, it is unclear to us how to modify existing methods of data-driven

bandwidth selection to incorporate this additional requirement. We remain optimistic

that a solution to this problem can be obtained, and we hope that the simulations

below may provide inspiration for the interested reader.

3.3. Finding the optimal bandwidth. In order to find the optimal bandwidths

corresponding to α = .01, α = .05, and α = .10, we performed another set of experi-

ments. Once again, there were two million replications. We also used control variates

based on the known distribution of the test statistic to further reduce experimental

error; see Davidson and MacKinnon [5]. For each replication and each choice of B,

we generated B “bootstrap” statistics. We then chose the bandwidth to minimize the

squared difference between the estimated rejection frequency and the nominal level
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of the test. The bandwidths we obtained in this way were accurate to at least 5, and

usually 6, decimal digits.
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c
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α = 0.01
α = 0.05
α = 0.10

Figure 6. Optimal bandwidths for smoothed bootstrap P values (h = cσ̂B−4/9).

Despite the very large number of replications, the optimal bandwidths, when plot-

ted against B, displayed a good deal of apparently random variation, especially for

larger values of B. This reflects the fact that the smoothed bootstrap P values become

less sensitive to h as B increases. Therefore, the function that is being minimized

to find the optimal value of h becomes less curved near its minimum. We therefore

estimated response surface regressions, in which the optimal bandwidths (expressed

in terms of the factor c, where h = cB−4/9) were regressed on a constant, several

powers of 1/B, and the variable

(6)
|B −B′|

B2
,

where B′ is the closest value of B for which α(B′ +1) is an integer. The fitted values

from these regressions are shown in Figure 6. It is evident that the optimal value of

c is nearly constant for tests at the .05 and .10 levels, but it is not at all constant for

tests at the .01 level. As B → ∞, the optimal values of c tend to 2.418, 1.575, and

1.3167 for α = .01, α = .05, and α = .10, respectively.
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4. Performance of the Smoothed Bootstrap Approach

4.1. Size. Figure 7 presents empirical rejection frequency results for two forms of

smoothed bootstrap test at the .05 level. One form uses the fully optimal values of h

implied by the values of c that are plotted in Figure 6 for α = .05. A second, simpler,

form uses h = 1.575B−4/9; recall that 1.575 is the value to which c tends as B → ∞.

It can be seen that the smoothed bootstrap approach works perfectly, except for

experimental error, when optimal bandwidths are used, and it works almost perfectly

when h = 1.575B−4/9.

Of course, one cannot expect to obtain quite such superlative results in practice.

The optimal bandwidths inevitably depend on the actual distribution of the test

statistic. The ones that we have used are based on the standard normal distribu-

tion. When the actual distribution differs substantially from the latter, the optimal

bandwidths might be quite different. In experiments that are not reported here, we

obtained rejection frequencies as high as .0596 for B = 10 with h = 1.575B−4/9 when

the test statistic actually followed the χ2(2) distribution. But these rejection frequen-

cies declined towards .05 fairly rapidly as B increased. Moreover, if an investigator

knew that a test statistic was asymptotically χ2(2), he or she could choose an optimal

bandwidth based on that distribution instead of one based on the standard normal

distribution. Of course, if one wishes to avoid overrejection, then the safest course is

to err in the direction of making h too large. This is evident from Figure 5.

4.2. Power. The main reason to use the smoothed bootstrap approach is that it

should yield higher power when B is small. Our experimental results strongly support

this conjecture. Figure 8 shows power loss for bootstrap tests at the .05 level as a

function of δ, the parameter that is zero under the null. There is a substantial gain

from using the smoothed bootstrap approach when B = 19 and a modest gain when

B = 99. For tests at the .01 level (not shown in the figure), there is a substantial gain

when B = 99. Smoothed bootstrap tests using B = 50, a value that is too small to

use for EDF-based tests, are somewhat more powerful than the latter with B = 99.

5. Summary

We propose a new method for the nonparametric estimation of bootstrap P values

which are then used to perform a classical test. The proposed approach has a number
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Figure 7. Empirical rejection frequencies for two forms of smoothed
bootstrap test at the .05 level.
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Figure 8. Power loss for the conventional EDF and proposed tests at
the .05 level.

of advantages relative to the usual procedure of constructing a bootstrap P value

based on the EDF of the bootstrap statistics. First, it can validly be used for any

14



number of bootstrap replications. There is no restriction that α(B + 1) must be

an integer. When calculating the test statistic is very expensive, this restriction

can be problematical, especially for tests at the .01 level. Second, because it uses the

information in the bootstrap statistics more efficiently than the conventional approach

based on the EDF, it yields noticeable gains in power relative to the latter, especially

for tests at the .01 level. Finally, it can yield quite accurate tests even when B is very

small. However, these tests will rarely be exact, even if the underlying test statistic

is pivotal. We do not regard this as a major drawback, because test statistics that

are extremely expensive to compute are almost never pivotal.

For the small numbers of bootstrap repetitions for which the proposed approach

is intended, existing bandwidth selection rules may be perfectly acceptable. MSE

optimal rules seem to work better the IMSE optimal ones, and we have proposed

distribution-dependent rules that work even better in some cases. The smoothed

bootstrap tests yield reasonable size and deliver solid improvements in power, par-

ticularly when compared with the size distortions and power loss associated with the

conventional approach. Ideally, we would like to find optimal data-driven bandwidth

selection rules capable of yielding exact tests when the underlying test statistic is

pivotal. This remains a subject for future research.

The procedure we propose is easy to use. Once the bootstrap sampling has been

completed, it can be applied in a matter of microseconds on a modern desktop com-

puter. Code written in the R language (Ihaka and Gentleman [12]) based upon

existing data-driven bandwidth selection rules is available from the authors upon

request.
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