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ABSTRACT

It has been shown in previous work that bootstrapping the J test for
nonnested linear regression models dramatically improves its finite-sample
performance. We provide evidence that a more sophisticated bootstrap pro-
cedure, which we call the fast double bootstrap, produces a very substantial
further improvement in cases where the ordinary bootstrap does not work
as well as it might. This FDB procedure is only about twice as expensive as
the usual single bootstrap.
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1. INTRODUCTION

The J test proposed by Davidson and MacKinnon (1981) is the most
widely-used procedure for testing nonnested regression models; see McAleer
(1995). Its popularity stems from the fact that it is conceptually simple
and easy to compute. However, its finite-sample distribution can be very
far from the standard normal distribution that it follows asymptotically. As
a consequence, it often overrejects severely. A natural way to improve the
finite-sample properties of the test is to bootstrap it, as Fan and Li (1995)
and Godfrey (1998) were among the first to suggest.

In Davidson and MacKinnon (2002), we developed a theoretical ap-
proach which enabled us to show precisely what determines the finite-sample
distribution of the J test. By using our theoretical results to design simu-
lation experiments, we showed that, in most cases, the J test will perform
very reliably in finite samples if it is bootstrapped. However, there can still
be some cases in which the bootstrapped J test rejects noticeably more often
than it should.

In Davidson and MacKinnon (2001), we developed a simple and inex-
pensive technique for computing bootstrap P values, which we called the
“fast double bootstrap,” or FDB. Like the double bootstrap proposed by
Beran (1988), it leads to a theoretical improvement in the performance of
bootstrap tests. Unlike the double bootstrap, it requires only about twice as
much computation as the ordinary, or single, bootstrap. Although the FDB
is not as widely applicable as the double bootstrap, it can be applied to a
broad range of econometric tests, including the J test and other nonnested
tests. In this paper, we develop the FDB J test and demonstrate, by means
of simulations, that it works extraordinarily well.1

In the next section, we briefly describe the J test and discuss some
standard ways in which it can be bootstrapped. In Section 3, we describe
how the fast double bootstrap can be used to make the J test more reliable
than the ordinary, or single, bootstrap J test. Then, in Section 4, we present
some simulation results on the performance of the single bootstrap and FDB
J tests. Section 5 concludes the paper.

2. THE J TEST

Consider two nonnested, linear regression models with IID errors:

H1 : y = Xβ + u, u ∼ IID(0, σ2
1 I), and

H2 : y = Zγ + v, v ∼ IID(0, σ2
2 I),

1 Davidson and MacKinnon (2001) contains limited simulation results for FDB
tests on the mean of a lognormal distribution and tests for omitted variables in a
probit model. It does not discuss the application of the FDB to nonnested tests.
The FDB is not discussed at all in Davidson and MacKinnon (2002).
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where y, u, and v are n--vectors, X and Z are, respectively, n × k and
n × l matrices of regressors, and β and γ are, respectively, a k --vector and
an l --vector of unknown parameters. The J statistic for testing H1 is the
ordinary t statistic for α = 0 in the regression

y = Xb + αPZy + residuals, (1)

where PZ ≡ Z(Z>Z)−1Z>, so that PZy is the vector of fitted values from
OLS estimation of H2. Asymptotically, under regularity conditions that are
given in Davidson and MacKinnon (1981), the J statistic is distributed as
N(0, 1) under the null hypothesis H1. In practice, the t(n−k−1) distribution
is often used for finite-sample inference, although there is, in general, no
formal justification for doing so.

The J statistic for testing H1 can be written as

Ĵ =
y>PZMXy

ś2(y>PZMXPZy)1/2
, (2)

where ś is the usual estimated standard error from regression (1), and MX is
the projection matrix I−X(X>X)−1X>. Since Ĵ depends on the regressor
matrices only through the projections MX and PZ , it is invariant to any
changes in X and Z that do not change the subspaces spanned by the
columns of these matrices.

In order to bootstrap the J test, we need to generate B bootstrap sam-
ples from a DGP that approximates what H1 would be if it had actually
generated the data. The natural choice for β is the OLS estimator β̂. Then
the j th bootstrap sample will be

y∗j = Xβ̂ + u∗j , (3)

where the elements of u∗j can be simulated in various ways. One possibility
would be to draw them from the N(0, s2) distribution, where s is the standard
error of the regression H1 estimated by OLS. However, this approach is based
on the assumption that the error terms are normally distributed, which may
be uncomfortably strong. Since we are using the bootstrap, it is natural to
generate u∗ by resampling from the vector

ũ ≡
(

n

n− k

)1/2

û. (4)

Here we have rescaled the residuals so that the average squared residual has
expectation σ2

1. In many applications of the bootstrap, this step is omitted.
However, as we will see in Section 4, in the case of the J test it is very
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important to resample from the rescaled residuals (4) rather than from the
ordinary residuals û when k/n is not small. There are other, more compli-
cated, ways to rescale the residuals, which take into account the different
leverage of each observation, but we have not observed any advantage to
using them in this application.

In writing (3), we have implicitly assumed that all the regressors are
exogenous. If there are lagged dependent variables, it will be necessary to
generate the elements of the vector y∗j recursively, using the value of the
dependent variable in observation 0 to begin the recursion. In this case, the
regressor matrix X will be different for every bootstrap sample, as will the
regressor matrix Z if it too includes a lagged dependent variable. Of course,
when it is H1 that is being tested, the lagged dependent variable that appears
in Z for the bootstrap samples must be generated from H1.

Ideally, B should be a reasonably large number, and it should be chosen
so that α(B + 1) is an integer for all levels α of interest. One common
choice is B = 999, although for a test as easy to compute as the J test,
it might be reasonable to use an even larger number, such as 4999 or even
9999; see Davidson and MacKinnon (2000) for a practical way to choose B
endogenously so as to minimize simulation error.

For the j th bootstrap sample, j = 1, . . . , B, a bootstrap test statistic J∗j
is computed in exactly the same way as Ĵ was computed from the original
data. Then we can compute a bootstrap P value by the formula

p̂∗(Ĵ) =
1
B

B∑

j=1

I(J∗j ≥ Ĵ), (5)

where I(·) is an indicator function, equal to 1 if its argument is true and
equal to 0 otherwise. This assumes that the test is a one-tailed test which
rejects in the upper tail, as is usually the case with the J test and other
nonnested tests. For a two-tailed test, the indicator function in (5) would
become I(|J∗j | ≥ |Ĵ |).

Since the statistic Ĵ is not pivotal, a bootstrap test based upon it will not
be exact. The problem is that the true P value depends on the unknown true
distribution of Ĵ, while the bootstrap P value (5) is based on the distribution
of the bootstrap statistics J∗j , which depends on the bootstrap DGP. These
two distributions will differ whenever a test statistic is not pivotal and the
parameter estimates used in the bootstrap DGP differ from the true values
of the parameters. However, as Beran (1988) showed, provided the test
statistic is asymptotically pivotal, the bootstrap P value will converge to the
true P value, as the sample size increases, at a rate faster than the asymptotic
P value converges to it.

In Davidson and MacKinnon (2002), we derived an expression for Ĵ as
a function of various random variables and quantities that depend on X,
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Z, and the parameters of H1, under the assumptions that the error terms
are normally distributed and the regressor matrices are exogenous. This
expression is rather complicated, but a key determinant of the finite-sample
distribution of Ĵ turned out to be the quantity

‖θ‖2 ≡ ‖MXPZXβ‖2/σ2
1. (6)

The numerator of (6) is the squared length of the part of Xβ that is ex-
plained by Z, projected off X. The denominator is just the variance of the
error terms. Other things being equal, the larger is ‖θ‖2, the closer the
finite-sample distribution of Ĵ will be to the standard normal distribution.
Although this result depends on the normality assumption, simulation results
in Davidson and MacKinnon (2002) suggest that (6) affects the finite-sample
distribution of Ĵ in the same way even when this assumption does not hold.

3. THE FAST DOUBLE BOOTSTRAP

The fast double bootstrap of Davidson and MacKinnon (2001) can be
thought of as an approximation to the double bootstrap of Beran (1988).
It involves calculating two different bootstrap statistics for each replication.
These are based on two different bootstrap datasets drawn from two different
bootstrap DGPs. In the case of the J test, the first bootstrap DGP is the
one already described, in which, for the j th replication, a bootstrap sample
y∗j is drawn from (3), with the error terms obtained by resampling from the
vector ũ defined in (4). This vector is used to compute a statistic J∗j . For
the FDB procedure, these data are also used to compute estimates β̂∗j and
rescaled residuals ũ∗j , which characterize the second bootstrap DGP. A sec-
ond bootstrap sample y∗∗j is then drawn from this DGP in precisely the same
way as the first bootstrap sample was drawn from the DGP characterized
by β̂ and ũ, and this sample is used to compute a statistic J∗∗j .

The fast double bootstrap P value is easily calculated from the actual
test statistic Ĵ, the B first-level bootstrap test statistics J∗j , and the B second-
level bootstrap test statistics J∗∗j . We first calculate the single-bootstrap P
value p̂∗ using expression (5). Next, we calculate the 1 − p̂∗ quantile of the
J∗∗j , denoted by Q̂∗(1− p̂∗) and defined implicitly by the equation

1
B

B∑

j=1

I
(
J∗∗j > Q̂∗(1− p̂∗)

)
= p̂∗. (7)

Of course, for finite B, there will be a range of values of Q∗(1 − p̂∗) that
satisfy (7), and we will need to choose one of them in a somewhat arbitrary
manner. Then the FDB P value is

p̂∗∗ =
1
B

B∑

j=1

I
(
J∗j > Q̂∗(1− p̂∗)

)
. (8)

– 4 –



Thus, instead of seeing how often the bootstrap test statistics are more ex-
treme than the actual test statistic, we see how often they are more extreme
than the 1− p̂∗ quantile of the J∗∗j .

The intuition behind this procedure is as follows. Suppose, for concrete-
ness, that the J∗∗j tend to be less extreme than the J∗j . This suggests that
the J∗j will tend to be less extreme than they would be if they were drawn
from the true unknown DGP rather than from the bootstrap DGP. There-
fore, the ordinary bootstrap P value will be too small, and the bootstrap
test will overreject. In this situation, Q̂(1− p̂∗) will be less extreme than Ĵ
itself, and p̂∗∗ will consequently be larger than p̂∗. Thus it appears that using
p̂∗∗ instead of p̂∗ will be a step in the right direction.

The properties of p̂∗∗, not specialized to the J test, were studied in
Davidson and MacKinnon (2001). It is valid under quite weak conditions,
but it can be expected to be more accurate than p̂∗ only when the bootstrap
DGP is asymptotically independent of the test statistic. Since the quan-
tities on which the bootstrap DGP depends (namely, β̂ and ũ) are either
efficient estimates under the null hypothesis that α = 0 or functions of those
estimates, the J test statistic must be asymptotically independent of them;
see Davidson and MacKinnon (1999). Therefore, the theory suggests that,
for the J test, p̂∗∗ will be more accurate than p̂∗. Simulation results to be
presented in the next section strongly support this conjecture.

4. EVIDENCE FROM MONTE CARLO EXPERIMENTS

In this section, we present some simulation results for models deliber-
ately constructed to make the bootstrap J test work relatively poorly. Our
results should not be considered at all typical for J tests computed using
real data. We consider a pair of linear regression models of the form

H1 : yt = Xtβ + δ1yt−1 + ut (9)

H2 : yt = Ztγ + δ2yt−1 + vt, (10)

where the error terms for H1, which is assumed to have generated the data,
are t(5) rescaled to have variance σ2

1 . The first elements of Xt and Zt are
unity, and their dimensions are k − 1 and l − 1, respectively. In the first set
of experiments, the components of Xt, except for the constant term, were
distributed as N(0, 1). Each component of Zt was also normally distributed
and correlated with the corresponding component of Xt, with correlation ρ.
When k > l or l > k, any extra components of Xt or Zt were uncorrelated
with everything else. We experimented with the choice of δ1, σ1, ρ, k, and l.
We found that the values of δ1 and ρ had relatively little effect on the perfor-
mance of the bootstrap J test, and we settled on base-case values of δ1 = 0.8
and ρ = 0.5. Since the model is assumed to be stationary, it does not make
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sense to generate bootstrap samples using |δ̂1| ≥ 1. We therefore replaced δ̂1

by −0.99 when δ̂1 < −0.99 and by 0.99 when δ̂1 > 0.99.
In the main set of experiments, the results of which we report here,

k = l = 7, all the βi are equal to 1, and σ1 takes on the values 1, 2, 4,
and 8. Because there are five variables in each model that are not in the
other, and the sample sizes we investigate are small, the asymptotic J test
does not work particularly well. As σ1 increases, ‖θ‖ becomes smaller, and
the performance of both the asymptotic and bootstrap J tests deteriorates.
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FIG. 1 Rejection frequencies for asymptotic tests

In order to limit experimental randomness, which would make it hard to
detect small departures from the nominal level of the tests, each experiment
used 100,000 replications. This choice implies that, if the true rejection
frequency is .05, the standard error of the estimated rejection frequency will
be .00069. The number of bootstrap samples was always 999, which is the
smallest number that we would recommend using in practice.

Rejection frequencies for the asymptotic J test (based on the standard
normal distribution) at the nominal .05 level for eleven sample sizes (n =
10, 15, . . . , 55, 60) are shown in Figure 1. It is evident that the asymptotic
J test overrejects very severely indeed, especially for the larger values of σ1.

– 6 –



The larger is σ1, the less rapidly does the performance of the test improve as
the sample size increases. The figure suggests that, for the two largest values
of σ1, the sample size would have to be very large indeed for the asymptotic
J test to perform well.
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FIG. 2 Rejection frequencies for bootstrap tests

When σ1 = 1, the ordinary (or single) bootstrap test worked almost per-
fectly, and the FDB test worked even better. These results are therefore not
reported. Results for σ1 = 2 and σ1 = 8, which are much more interesting,
are shown in Figure 2. When σ1 = 2, the single bootstrap test overrejects
quite noticeably for small sample sizes, but its performance improves rapidly
as n increases. In contrast, the FDB test performs about as well as any test
could be expected to perform, given some experimental error, for all sample
sizes. When σ1 = 8, the single bootstrap test overrejects for all sample sizes.
The FDB test also overrejects, but very much less severely. The performance
of both tests, mirroring that of the asymptotic test, improves very slowly as n
increases beyond about 30.

We remarked in the previous section that it is very important to rescale
the residuals prior to resampling from them. The consequences of not do-
ing so are shown in Figure 3, which deals with the same cases, and uses
the same random numbers, as Figure 2. We see that the single bootstrap
performs dramatically worse, especially for smaller sample sizes, when the
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FIG. 3 Bootstrap rejection frequencies, ordinary residuals

residuals are not rescaled. In contrast, the FDB procedure performs only a
little worse for the smaller sample sizes, and its performance is almost un-
changed for the larger ones. Thus it appears that the correction implicit in
the FDB procedure can compensate for flaws in the underlying method of
bootstrapping.

In the experiments discussed so far, both the regressors and the error
terms were symmetrically distributed. It seems likely that the bootstrap
will perform less well when this is not the case; see Hall (1992). To inves-
tigate this possibility, we conducted a second set of experiments in which
the components of Xt, except the first, were χ2(2) variates, recentered to
have mean zero and rescaled to have variance unity. In these experiments,
the second through (k − 1)th components of Zt were linear combinations
of the corresponding components of Xt and of independent recentered and
rescaled χ2(2) variates. These components of Zt were constructed in such a
way that they had mean zero, variance unity, and correlation 0.5 with the
corresponding components of Xt. As before, the final components of Xt and
Zt were lagged dependent variables, the coefficients on which were 0.8.

Figure 4 shows the results of three sets of experiments in which the re-
gressors were as just described and σ1 = 4. In the first set of experiments,
described as “highly skewed errors” in the figure, the error terms were χ2(2)
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FIG. 4 Bootstrap rejection frequencies, skewed regressors

variates, recentered to have mean zero and rescaled to have variance unity.
In the second set, described as “moderately skewed errors,” they were χ2(8)
variates, similarly recentered and rescaled. In the third set, they were nor-
mally distributed. It is evident that the performance of both the single
bootstrap and the FDB deteriorates somewhat as the error terms become
more skewed. However, the FDB continues to perform remarkably well. The
worst performance by the FDB, in the “highly skewed” case, is much better
than the best performance by the single bootstrap, in the normal case.

In one final set of experiments, we made the experimental design even
more extreme, making the situation very unfavorable for the finite-sample
performance of the J test. We used the same skewed regressors as in the
experiments just discussed, and the error terms were recentered and rescaled
χ2(2) variates. We set k = 8 and l = 9 (the largest values that allow calcu-
lation of the J test for n = 10), and we set σ1 = 16. In these experiments,
the values of ‖θ‖2 ranged from 0.0038 (for n = 10) to 0.2624 (for n = 60),
and the rejection frequencies for the asymptotic tests at the .05 level ranged
from 0.81 to 0.73. Results for the single bootstrap and FDB tests, with both
rescaled and ordinary residuals, are shown in Figure 5. The FDB procedures
do not perform perfectly, but they always work very much better than the
corresponding single bootstrap procedures. Curiously, except when n = 10,
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FIG. 5 Bootstrap rejection frequencies, extreme case

the FDB procedure that uses ordinary residuals always performs slightly
better than the FDB procedure that uses rescaled residuals.

5. CONCLUSION

In this paper, we have proposed a simple bootstrap procedure for the
J test of nonnested linear regression models that works extraordinarily well,
even in extreme cases where the usual single bootstrap procedure overrejects
quite noticeably. Our FDB procedure may be used in place of the usual one,
or it may be used in addition to it in cases where the usual bootstrap P
value is near the level of the test. Our simulation experiments deliberately
focused on extreme cases in which the asymptotic test often rejects more
than half the time and the single bootstrap test does not work very well. In
practice, we would expect the single bootstrap to work extremely well, and
our FDB procedure to work nearly perfectly, in virtually every case that an
econometrician would be likely to encounter.
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