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9. Going Beyond Linear Models

Linear regression, linear discriminant analysis, and logistic regression all rely on
models that are linear in the inputs.

We often need to go beyond such models. The easiest way to do so is to augment or
replace the original inputs x with transformed inputs that allow for more flexible

relationships with the output variable.

Let hm(x) denote a transformation of x. There are M of these, and typically

M > p, perhaps much greater.

We then use the linear basis expansion

f(x) =
M∑

m=1

βmhm(x). (1)

Slides for ECON 950 1



Once we have chosen the basis expansion, we can fit all sorts of models just as we

did before.

In particular, we can use ordinary linear regression or logistic regression, perhaps
with L1, L2, elastic-net, or some fancier form of regularization.

• If hm(x) = xm,m = 1, . . . , p with M = p, we get the original linear model.

• If hm(x) = x2
j and/or xjxk for m > p, we can augment the original model

with polynomial and/or cross-product terms. Unfortunately, a full polynomial
model of degree d requires O(pd) terms.

When d = 2, we have p linear terms, p quadratic terms, and p ∗ (p − 1)/2

cross-product terms.

Global polynomials do not work very well. It is much better to use piecewise

polynomials and splines which allow for local polynomial representations.

• We can use transformations of single inputs, such as hm(x) = log(xj) or
√
xj ,

either replacing xj or as additional regressors.

• We can use functions of several inputs, such as h(x) = ||x||.
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• We can create all sorts of indicator (dummy) variables, such as hm(x) =

I(lm ≤ xk < um). In such cases, we often create a lot of them.

For example, we could divide the range of xk into Mk nonoverlapping segments.

The Mk dummies that result would allow a piecewise constant relationship
between xk and y.

In such a case, it would often be a very good idea to use a form of L2 regular-
ization, not shrinking the coefficients towards zero, but instead shrinking their
first differences, as in Shiller (1973) and Gersovitz and MacKinnon (1978).

To avoid estimating too many coefficients, we often have to impose restrictions.
One popular one is additivity:

f(x) =

p∑
j=1

fj(xj) =

p∑
j=1

M∑
m=1

βjmhjm(xj). (2)

In many cases, it is important to employ selection methods, such as the (possibly

grouped) lasso.

It is also often important to use regularization, including lasso, ridge, and other

methods to be discussed.
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9.1. Piecewise Polynomials and Splines

A piecewise polynomial function f(x) simply divides the domain of x (assumed

one-dimensional for now) into continguous intervals.

In the simplest case, with M = 3,

h1(x) = I(x ≤ ξ1), h2(x) = I(ξ1 < x ≤ ξ2), h3(x) = I(ξ2 < x). (3)

Thus, for this piecewise constant function,

f(x) =

3∑
m=1

βmhm(x). (4)

The least squares estimates are just

β̂m = ȳm =
1

ι⊤hm
y⊤hm, (5)

where hm is a vector with typical element hm(xi). It is a vector of 0s and 1s.

Slides for ECON 950 4



Of course, a piecewise constant function is pretty silly; see the upper left panel of

ESL-fig5.01.pdf.

A less stupid approximation is piecewise linear. Now we have six basis functions

when there are three regions. Numbers 4 to 6 are

h1(x)x, h2(x)x, and h3(x)x. (6)

But f(x) still has gaps in it; see the upper right panel of ESL-fig5.01.pdf.

The best way to avoid gaps is to constrain the basis functions to meet at ξ1 and

ξ2, which are called knots. This is most easily accomplished by using regression
splines. In the linear case with three regions, there are four basis functions:

h1(x) = 1, h2(x) = x, h3(x) = (x− ξ1)+, h4(x) = (x− ξ2)+. (7)

See the lower left panel of ESL-fig5.01.pdf. h3(x) is plotted the lower right panel.
Here h3(x) and h4(x) are truncated power basis functions.

Linear functions are pretty restrictive.
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It is very common to use a cubic spline, which is constrained to be continuous and

to have continuous first and second derivatives.

With three regions (and therefore two knots) a cubic spline has six basis functions.

These are
h1(x) = 1, h2(x) = x, h3(x) = x2, h4(x) = x3,

h5(x) = (x− ξ1)
3
+, h6(x) = (x− ξ2)

3
+.

(8)

In general, a spline is of order M and has K knots. Thus (7) is an order-2 spline
with 2 knots, and (8) is an order-4 spline that also has 2 knots.

The basis functions for an order-M spline with K knots ξk are:

hj(x) = xj−1, j = 1, . . . ,M, (9)

hM+k(x) = (x− ξk)
M−1
+ , k = 1, . . . ,K. (10)

In practice, M = 1, 2, 4. For some reason, cubic splines are much more popular

than quadratic ones.

For computational reasons when N and K are large, it is desirable to use B-splines

rather than ordinary ones. See the Appendix to Chapter 5 of ESL.
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9.2. Natural Cubic Splines

Polynomials tend to behave badly near boundaries. Using them to extrapolate is
extremely dangerous.

A natural cubic spline adds additional constraints, namely, that the function is
linear beyond the boundary knots.

This saves four degrees of freedom (2 at each boundary knot) and reduces variance,
at the expense of higher bias. The freed degrees of freedom can be used to add

additional interior knots.

In general, a cubic spline with K knots can be represented as

f(x) =

3∑
j=0

βjx
j +

K∑
k=1

θk(x− ξk)
3
+; (11)

compare (8).

The boundary conditions imply that

β2 = β3 = 0,
K∑

k=1

θk = 0,
K∑

k=1

ξkθk = 0. (12)
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Combining these with (11) gives us the basis functions for the natural cubic spline

with K knots. Instead of K + 4 basis functions, there will be just K.

The first two basis functions are just 1 and x. The remaining K − 2 are

Nk+2(x) =
(x− ξk)

3
+ − (x− ξK)3+
ξK − ξk

−
(x− ξK−1)

3
+ − (x− ξK)3+

ξK − ξK−1
(13)

for k = 1, . . . ,K − 2.

Since the number of basis functions is only K, we may be able to have quite a few

knots.

When there are two or more inputs, they cannot both include a constant among
the basis functions.

ESL discusses a heart-disease dataset. For the continuous regressors, they use
natural cubic splines with 3 interior knots.

ESL fits a logistic regression model, without regularization, using backwards step

deletion.
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ESL drops terms, not individual regressors, using AIC. Only the alcohol term is

actually dropped.

The final model has one binary variable and five continuous ones. Each of the latter

uses a natural spline with 3 interior knots.

There are 22 coefficients (a constant, a family history dummy, and five splines with

4 each).

ESL-fig5.04.pdf plots the fitted natural-spline functions along with pointwise bands

of width two standard errors.

Let θ denote the entire vector of parameters, and θ̂ its ML estimator. Then

V̂ar(θ̂) = Σ̂ is computed by the usual formula for logistic regression:

V̂ar(θ̂) =
(
X⊤Υ (θ̂)X

)−1
, (14)

where

Υt(θ) ≡
λ2(Xtθ)

Λ(Xtθ)
(
1− Λ(Xtθ)

) . (15)
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Here Λ(·) is the logistic function, and λ(·) is its derivative. That is,

Λ(x) ≡ 1

1 + e−x
=

ex

1 + ex
(16)

λ(x) ≡ ex

(1 + ex)2
= Λ(x)Λ(−x). (17)

Then the pointwise standard errors are the square roots of

V̂ar
(
f̂(xji)

)
= hj(xji)

⊤Σ̂jjhj(xji), (18)

where xji is the value of the j
th variable for observation i, and hj(xji) is the vector

of values of the basis functions for xji. In this case, it is a 4--vector.

Notice how the confidence bands are wide where the data are sparse and narrow
where they are dense.

Notice the unexpected shapes of the curves for sbp (systolic blood pressure) and

obesity (BMI). These are retrospective data!
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9.3. Smoothing Splines

Consider the minimization problem

min
f

( N∑
i=1

(
(yi − f(xi, λ)

)2
+ λ

∫ (
f ′′(t)

)2
dt

)
, (19)

where λ is a fixed smoothing parameter.

When λ =∞, minimizing (19) yields the OLS estimates, since the second derivative
must be 0.

When λ = 0, minimizing (19) yields a perfect fit, provided every xi is unique,

because f(x) can be any function that goes through every data point.

It can be shown (see Exercise 5.7, which is nontrivial) that the minimizer is a natural

cubic spline with knots at all of the (unique) xi.

The penalty term shrinks the spline coefficients towards the least squares fit.

We can write the solution as

f(x) =

N∑
j=1

θjNj(x), (20)
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where the Nj(x) are an N -dimensional set of basis functions for this family of

natural splines. Thus N1(x) = 1, N2(x) = x, and the remaining N = 2 are given
by (13) with K = N .

Thus we are actually minimizing

(y −Nθ)⊤(y −Nθ) + λθ⊤ΩNθ, (21)

where N is an N ×N matrix with typical element Nj(xi), and

(ΩN )jk ≡
∫

N ′′
j (t)N

′′
k (t)dt. (22)

This involves the second derivatives of the basis functions defined in (13). But what
does it actually mean?

The solution that minimizes (21) is

θ̂ = (N⊤N + λΩN )−1N⊤y, (23)

which looks a lot like the solution to ridge regression, except that the identity matrix

has been replaced by ΩN .
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Evidently,

f̂(x) =
N∑
j=1

θ̂jNj(x). (24)

Efficient computational techniques use B-splines instead of natural splines. Thus
we replace N by B.

The matrix B has N + 4 columns instead of N , but the big advantage is that it is
lower 4-banded. In consequence, B⊤B + λΩ is 4-banded.

This makes computing these matrices (with sorted values of the xi cheap) and
Cholesky decomposition also cheap.

Use Cholesky to find L such that LL⊤= B⊤B + λΩ. Then solve the equations

LL⊤θ = B⊤y (25)

by back substitution to find θ and hence f̂ .

In practice, we do not really need all N interior knots. For large N , we can get away
with a number proportional to (but much larger than) logN ; see the smooth.spline

function in the stats package in R.
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9.4. Smoother Matrices

Even though we do not compute it this way, we can write

f̂ = N(N⊤N + λΩN )−1N⊤y

= Sλy
(26)

This should look familiar! Here Sλ is a smoother matrix. It is a linear operator,
and it is symmetric and positive semidefinite.

If λ = 0, Sλ would be a projection matrix.

If we were using natural or cubic splines, we could write

f̂ = Bξ(Bξ
⊤Bξ)

−1Bξ
⊤y = Hξy, (27)

where Bξ is an N ×M matrix of basis functions. Then Hξ would be a projection

matrix with rank M .

In contrast, the rank of Sλ is N.
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Unlike Hξ, Sλ is not idempotent. Instead

SλSλ ⪯ Sλ, (28)

which means that the difference between Sλ and SλSλ is a positive semidefinite
matrix.

Thus we can see that the smoother matrix shrinks whatever it multiplies.

The effective degrees of freedom of a smoothing spline is

dfλ = Tr(Sλ). (29)

Instead of specifying λ, we can specify dfλ, and solve for λ by solving (29).

We can rewrite Sλ in the Reinsch form as

Sλ = (I− λK)−1. (30)

The argument goes as follows:

ŷ = N(N⊤N + λΩN )−1N⊤y

= N
(
N⊤(I+ λ(N⊤)−1ΩNN−1)N

)−1
N⊤y

(31)
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Since N is a square, invertible matrix, the second row here becomes

NN−1
(
I+ λ(N⊤)−1ΩNN−1

)−1
(N⊤)−1N⊤y

=
(
I+ λ(N⊤)−1ΩNN−1

)−1
y

=
(
I+ λK)−1y

(32)

Thus we see that equation (30) holds.

The matrix K is called the penalty matrix.

The eigen decomposition of Sλ is

N∑
k=1

ρk(λ)ukuk
⊤, ρk(λ) =

1

1 + λdk
, (33)

where dk is the k th eigenvalue of K and uk is the corresponding eigenvector.

Observe that the eigenvectors do not depend on λ. It affects Sλ only through the

eigenvalues ρk(λ)
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The fitted values are

Sλy =
N∑

k=1

ρk(λ)ukuk
⊤y. (34)

If there were no shrinkage, this would just be
∑N

k=1 ukuk
⊤y. The contributions of

the various eigenvectors are shrunk differently.

As the ρk(λ) become smaller, the corresponding eigenvectors become more complex
and get shrunk more.

The first two ρk(λ) always equal 1. They correspond to the first two basis vectors,
namely, ι and x. They are 1 because d1 = d2 = 0. Thus linear functions are not
penalized.

The objective function (21) can be rewritten as

(y −Uθ)⊤(y −Uθ) + λθ⊤Dθ. (35)

HereU has k th column uk, andD is a diagonal matrix with k th diagonal element dk.
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Since dfλ = Tr(Sλ), it must be the case from (33) that

dfλ =
N∑

k=1

ρk(λ). (36)

In contrast, for projection smoothers like natural and cubic splines, all the nonzero
eigenvalues are 1, so that df is the dimension of the space spanned by the basis

functions.

As λ→ 0, dfλ → N and Sλ → I.

As λ→∞, dfλ → 2 and Sλ →H = PX .

Although this may not be obvious, a smoothing spline is actually a local fitting
method, like locally linear/quadratic kernel regression.

See ESL-fig5.08.pdf. The smoother matrix is nearly banded. Thus f̂(xi) depends

only on points “near” xi.
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9.5. Selection of Smoothing Parameters

For regression splines, we have to select the number of knots and their locations.

This may involve picking a lot of parameters.

For smoothing splines, we just need to pick λ.

Since df(λ) = Tr(Sλ) is monotonic in λ, we can pick df and solve for λ numerically.
This should not be hard even when N is large, because λ is a scalar and we only
need the diagonals of Sλ.

The variance of f̂ is

SλVar(y)Sλ
⊤∝ SλSλ. (37)

If the disturbances are independent and homoskedastic, then Var(y) = σ2I.

The bias of f̂ is

E(f̂)− f = Sλf − f . (38)

Thus the mean squared error is

σ2SλSλ + (Sλ − I)ff⊤(Sλ − I)⊤. (39)
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Obviously, making λ too small (df too big) causes excessive variance, and making

λ too big (df too small) causes excessive bias.

See ESL-fig5.09.pdf. When λ is too big (df = 5), the spline underfits. When it is
too small (df = 15), the spline overfits.

The integrated squared prediction error, or expected prediction error (EPE), is σ2

plus the MSE (39) averaged over all points.

Unfortunately, because we don’t know f (except in the context of simulation ex-
periments where we generate the data), we cannot compute EPE.

One possibility is to use leave-one-out (N -fold) cross-validation. This turns out to

be remarkably easy, because

CV(f̂λ) =
N∑
i=1

(
yi − f̂

(−i)
λ (xi)

)2
=

N∑
i=1

(
yi − f̂λ(xi)

1− Sλ(i, i)

)2
.

(40)
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To compute this, we just need the original fitted values f̂λ(xi) and the diagonals

Sλ(i, i) of Sλ.

This is based on essentially the same result as the one that lets us compute leave-
one-out OLS estimates using just y, û, and the diagonals of the hat matrix. See
equation (2.62) in ETM.

In the second line of (40), the numerator is the residual for the smoothing spline
based on the entire sample, and the denominator is the analog of 1− hi.

This makes it very easy to compute the leave-one-out CV curve; see Figure 5.9.

9.6. Nonparametric Logistic Regression

We can use smoothing splines with logistic regression and other estimators.

Instead of f(x) denoting the fitted value conditional on x, it now denotes the log of
the odds:

log
Pr(y = 1 |x)
Pr(y = 0 |x)

= f(x). (41)
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Therefore

p(x) ≡ Pr(y = 1 |x) =
exp
(
f(x)

)
1 + exp

(
f(x)

) . (42)

The penalized criterion function is based on the loglikelihood function. It is

N∑
i=1

(
yi log

(
p(xi)

)
+ (1− yi) log

(
1− p(xi)

))
− 1−

2
λ

∫ (
f ′′(t)

)2
dt. (43)

This is minimized by making f a natural spline with knots at every unique value
of x. Therefore

f(x) =
N∑
j=1

θjNj(x), (44)

which looks just like (20).

The gradient is

g(θ) = N⊤(y − p)− λΩNθ, (45)

and the Hessian is

H(θ) = −N⊤WN − λΩN , (46)
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whereW is anN×N diagonal matrix with typical diagonal element p(xi)
(
1−p(xi)

)
.

Of course, if we set λ = 0, (45) and (46) would correspond to ML estimation of
logit model.

Finding θ̂ such that the gradient (45) is 0 requires an iterative procedure. It could
be based on

f (h+1) = N(N⊤WN + λΩN )−1
(
f (h) +W−1(y − p(h)

)
. (47)

However, because N is N ×N , this will become prohibitively expensive when N is
large. There must be tricks, such as using B-splines evaluated at far fewer than N

points, to make it feasible.

9.7. Multidimensional Splines

When there are two or more regressors (in general, d of them), we can use splines
in many ways.

The easiest approach is an additive model, where we simply use (say) a natural cubic
spline for x1 and another one for x2. This will be discussed in the next section, on

generalized additive models. It evidently makes strong assumptions.
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A less restrictive approach is the tensor product basis.

Suppose we have M1 basis functions to represent x1 and M2 basis functions to

represent x2. Then

gjk(x) = h1j(x1)h2k(x2), j = 1, . . . ,M1, k = 1, . . . ,M2. (48)

So each gjk(x) is a product of two basis functions. Then

g(x) =

M1∑
j=1

M2∑
k=1

θjk gjk(x). (49)

Even if M1 and M2 are quite small, M1M2 can easily be large, and things rapidly

get out of hand for d >> 2.

We can also use higher-dimensional smoothing splines. As before, we minimize

N∑
i=1

(
yi − f(xi)

)2
+ λJ [f ], (50)
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where J [f ] is a penalty functional. A natural generalization of the one-dimensional

penalty

λ

∫ (
f ′′(t)

)2
dt (51)

to the two-dimensional case is

λ

∫ ∫ ((
∂2f(x)

∂x2
1

)2
+ 2

(
∂2f(x)

∂x1∂x2

)2
+

(
∂2f(x)

∂x2
2

)2)
dx1dx2. (52)

Minimizing (50) with this penalty leads to a thin-plate spline, which is similar to a

cubic smoothing spline.

Thin-plate splines have the following properties:

• As λ → 0, the solution approaches an interpolating function. It fits perfectly
but is completely useless.

• As λ→∞, the solution approaches linear least squares.
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For intermediate values of λ, the solution has the form

f(x) = β0 + β⊤x+

N∑
j=1

αjhj(x), (53)

where

hj(x) = ||x− xj ||2 log ||x− xj ||. (54)

These are called radial basis functions.

The solution is found by plugging (54) into (50) and minimizing it. Unfortunately,

there is no sparse structure to exploit, so the solution is O(N3).

The good news is that we can get away with many fewer than N knots. Using K

knots reduces the computational cost to O(NK2 +K3).

We can also use additive smoothing splines, based on the model

f(x) = α+

d∑
j=1

fj(xj), (55)
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where each of the fj(x) is a univariate spline, and the penalty functional

J [f ] =
d∑

j=1

∫
f ′′
j (tj)

2dtj . (56)

We could also add cross-product terms to (56) if we wanted:

f(x) = α+
d∑

j=1

fj(xj) +
d∑

j=1

∑
k<j

fjk(xj , xk). (57)

Of course, there are potentially many ways to choose the fj and the fjk.

9.8. Generalized Additive Models

For regression, a generalized additive model has the form

E(y |x) = α+ f1(x1) + f2(x2) + . . .+ fp(xp), (58)

where the fj are smooth nonparametric functions.
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Instead of using basis functions, which would allow estimation by OLS, we fit

each function using a scatterplot smoother, such as a smoothing spline or a kernel
smoother.

The trick is to estimate all p functions at once.

For logistic regression, we are interested in the mean of the binary response function,

µ(x). This can be modeled as

log

(
µ(x)

1− µ(x)

)
= α+ f1(x1) + f2(x2) + . . .+ fp(xp). (59)

There is evidently a close relationship between (58) and (59). The difference is the
link function g(µ).

• For regression models, g(µ) = µ.

• For logistic regression models, g(µ) = log
(
µ/(1− µ)

)
.

• For probit regression models, g(µ) = Φ−1(µ).

• For loglinear models, g(µ) = log(µ).

Slides for ECON 950 28



Of course, not all the fj need to be flexible. We could allow fj(xj) = xj for some

predictors. This is necessary if a predictor is qualitative.

We could also interact dummy variables for the levels of one or more qualitative
predictors with the values of other predictors.

Thus, for example, one of the fj might be a function of income but only when
age < 30, another might be a function of income when 30 ≤ age < 50, and a third
might be a function of income when age ≥ 50.

For smoothing splines, the objective function is

N∑
i=1

(
yi − α−

p∑
j=1

fj(xij)
)2

+

p∑
j=1

λj

∫
f ′′
j (tj)

2dtj , (60)

where the λj are tuning parameters.

As in the univariate case, the minimizer of (60) has each of the fj(xij) a cubic spline
with knots at every unique value of xij .

We need to impose restrictions to make α identifiable. It is normally assumed that∑p
j=1 fj(xij) = 0, which implies that α̂ = ȳ.
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In order to identify the linear parts of the cubic splines, the matrix of the xij must

have full column rank.

There is a conceptually simple iterative procedure for finding a solution. It is called

backfitting.

1. Set α̂ = ȳ and f̂j(xij) = 0 ∀ i, j.

2. Cycle over j = 1, . . . , p repeatedly. At each j,

f̂j(xij) = Sj

({
yi − α̂−

∑
k ̸=j

f̂(xik)
}N

1

)
, (61)

where the notation means that we apply a cubic smoothing spline, with tuning
parameter λj , to the points inside the braces for all i.

3. After finding the f̂j(xij) for each j, renormalize them using

f̂j(xij)← f̂j(xij)−
1

N

N∑
1

f̂j(xij). (62)
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Mathematically, this step is unnecessary. Computationally, it is a good idea.

4. Stop when every f̂j(xij) is changing by less than some specified amount ε.

Essentially, this procedure involves estimating a great many univariate smoothing

splines. It will be feasible if it uses a computationally efficient procedure for the
smoothing splines. This means not actually inverting N ×N matrices.

The same backfitting algorithm can be used with many other types of smoothers.

These might include local polynomial regression (e.g. natural cubic splines instead
of smoothing splines), kernel regression, or various types of series expansions.

If the smoothers are applied only at the training points, they can be represented

by N ×N matrices Sj . Then the degrees of freedom for the j th are approximately
Tr(Sj)− 1. The −1 is there because we treated the constant separately.

Similar backfitting procedures can also be used for generalized additive logistic
models. But the smoothing steps will involve nonlinear estimation.

1. Compute starting values α̂ = log
(
ȳ/(1− ȳ)

)
and f̂j(xij) = 0 ∀ i, j.

2. Cycle over j repeatedly:
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i. Compute η̂i = α̂+
∑

j f̂j(xij) and p̂i = 1/
(
1 + exp(−η̂i)

)
.

ii. Construct the working target variable

zi = η̂i +
yi − p̂i

p̂i(1− p̂i)
.

iii. Construct weights wi = p̂i(1− p̂i).

iv. Fit an additive model to the targets zi with weights wi, using a weighted

backfitting algorithm. This gives new estimates α̂ and f̂j(xij).

3. Stop when every f̂j(xij) is changing by less than some specified amount ε.

Why do we not omit f̂j(xij) from the sum when computing η̂i, by analogy with

(61)?

This algorithm combines the iterations needed for weighted nonlinear least squares
estimation of a logit function with the iterations needed for backfitting.

When the objective is classification, some classification errors may be more serious

than others.
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For example, if we are trying to classify incoming emails as spam or not-spam, we

may care more about misclassifying not-spam.

Suppose that yi = 0 if not-spam and yi = 1 if spam. Then, instead of maximizing
the usual loglikelihood (weighted NLS) function, we could give more weight to
observations with yi = 0 than to observations with yi = 1.

Additive models are widely used and can work well when p is not too large.

They are easy to interpret, because we can graph the f̂j against xj .

Backfitting works for a wide variety of estimation and smoothing procedures. The
key step is essentially using a one-dimensional smoother.

Estimating typically requires hand-holding as the investigator searches over various
specifications.

They are not suitable for cases with p large, unless they are combined with lasso or

some other procedure for selecting inputs.
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9.9. Projection Pursuit Regression

This method uses an additive model, not in the original inputs but in features
derived from them.

As usual, x is an input vector, and y is an output. The projection pursuit regression

model, or PPR model, has the form

y =

M∑
m=1

gm(x⊤ωm), (63)

where the functions gm are called ridge functions and are unspecified. The direction
vectors ωm are unit vectors; that is, they have length unity.

If we knew the direction vectors, we could treat (63) like a generalized additive
model, using smoothing splines, local polynomials, or kernel regression to estimate

the ridge functions, together with backfitting methods.

When M = 1, (63) is called the single index model in econometrics.

If M is large enough, the PPR model (63) can approximate any continuous function

in Rp arbitrarily well.
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To estimate (63), we need to minimize

N∑
i=1

(
yi −

M∑
m=1

gm(xi
⊤ωm)

)2
(64)

with respect to the direction vectors and the ridge functions.

If we set M = 1 for now, then, conditional on ω, we simply have a one-dimensional
smoothing problem.

Given g(·), we need to minimize the SSR over ω. ESL suggests using a quasi-Newton
method very similar to the GNR.

If ω(j) denotes the value of ω at step j of the iterative procedure, we have by a

first-order Taylor expansion

g(xi
⊤ω) ∼= g(xi

⊤ω(j)) + g′(xi
⊤ω(j))xi

⊤(ω − ω(j)). (65)

Therefore,

yi − g(xi
⊤ω) ∼= yi − g(xi

⊤ω(j)) + g′(xi
⊤ω(j))xi

⊤ω(j) − g′(xi
⊤ω(j))xi

⊤ω. (66)

Slides for ECON 950 35



This suggests that we want to run the regression

yi − g(xi
⊤ω(j)) + g′(xi

⊤ω(j))xi
⊤ω(j) = g′(xi

⊤ω(j))xi
⊤ω (67)

to estimate the vector ω. This does not ensure that ||ω|| = 1, but that can easily
be imposed afterwards.

For reasons that are not entirely clear to me, ESL writes this in a much more
complicated way. Maybe their method does ensure that ||ω|| = 1.

We iterate between the regression for ω and the smoother to estimate g(·) until
convergence.

When there is more than one term, we add additional (gm,ωm) pairs one at a time.

Backfitting can be used to re-estimate previously fitted gm functions. In principle,

it could also be used to re-estimate previously fitted ωm vectors, but ESL say this
is rarely done.

The value of M is usually chosen by comparing model fit with M and M −1 terms.

Cross-validation can also be used.
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PPR is a very old idea, dating back to Friedman and Stuezle (1981). However, ESL

say it is not widely used, maybe because it was computationally infeasible in the
early 1980s.

How does it compare with simpler methods like kernel regression and smoothing
splines?
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