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8. Bias, Variance, and Model Complexity

Suppose we are trying to predict y using inputs x and some model estimated using
a training set T. We could be using any sort of procedure, such as kNN, lasso,

elastic net, kernel regression, or random forests.

We need to use training data (or training and validation data) for two things:

1. Choose the best model (model selection).

2. Estimate the prediction error of applying the estimated model to new data
(model assessment).

Ideally, we would have three separate sets of data: a training set, a validation set,
and a test set.

The training set is used to fit the models, the validation set is used to estimate
prediction error and decide which model to select, and the test set is used to assess

the prediction error of the final model.
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When cross-validation is possible, the same dataset is generally used for both esti-

mation and validation, especially if data are scarce.

For some methods, such as neural nets, it seems to be essential to have a validation

sample, which gets used many times during the model-building process.

The test set may only become available after the fact, when we put the model to
use making predictions.

That may be be good, since using the test set more than once to choose among
competing models will cause us to choose a model that fits the test set too well.

8.1. Loss Functions for Regression Models

For regression models, natural measures of loss are squared error loss

L
(
y, f̂(x)

)
=
(
y − f̂(x)

)2
(1)

and absolute error loss

L
(
y, f̂(x)

)
=
∣∣y − f̂(x)

∣∣. (2)
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These are actual losses for any y and a particular training set.

We would like to know how well our procedure can be expected to perform condi-
tional on the training set T.

This conditioning is important. The performance of any procedure will almost
certainly depend on T.

The “best” model based on a training set with N = 100 is likely to be far less

complicated than the “best” model based on a training set with N = 1, 000, 000.

What we want is the test error or prediction error or generalization error,

ErrT = E
(
L
(
y, f̂(x)

)
|T
)
. (3)

In contrast, the expected test error or expected prediction error or expected gen-
eralization error is

Err = E
(
L
(
y, f̂(x)

))
= E

(
ErrT

)
, (4)

and it is not conditional on T.
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In practice, we would like to know (3), because we have a particular training set

that we have used to obtain f̂(x).

However, it is often infeasible to estimate (3) but feasible to estimate (4), so we use
an estimate of Err as our estimate of ErrT.

The most naive estimate of Err is the training error

err =
1

N

N∑
i=1

L
(
yi, f̂(xi)

)
. (5)

But the training error can severely underestimate the test error, especially when
the model is complex.

For a given level of complexity, the model always tends to fit the training data
better than the test data. See ESL-fig7.01.pdf.

As the model becomes more complex, it tends to fit the training data better and

better, even when complexity is penalized.
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8.2. Loss Functions for Classification Models

For categorical data, we need something other than absolute or squared error loss.

If the response is G and it can take on K values, then an obvious loss function is
the deviance, which is −2 times the contribution to the loglikelihood:

L
(
G, p̂(x)

)
= −2

K∑
k=1

I(G = k) log p̂k(x). (6)

The test error and expected test error can be written as (3) or (4), with L
(
G, p̂(x)

)
replacing L

(
y, f̂(x)

)
.

In this case, the training error is simply

err = − 2

N

N∑
i=1

log p̂gi(xi), (7)

where p̂gi(xi) is the fitted probability of the observed outcome, say g, for the ith

observation.
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Observe that, if p̂gi(xi) = 1, the loss is 0. As p̂gi(xi) becomes smaller, its logarithm

becomes more negative, and the loss becomes larger.

Loglikelihoods can be used to measure loss in many other cases as well, such as
Poisson regression (for count data) or hazard functions.

People sometimes use α to denote a tuning parameter and then denote the fitted
value as f̂α(x) to reflect the fact that the predictions depend on α.

If we do that, we can write

errα =
1

N

N∑
i=1

L
(
yi, f̂α(xi)

)
. (8)

If may well be of interest to plot errα against α, but we need either cross-validation
or a separate validation sample if we want to choose α optimally.
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8.3. The Bias-Variance Decomposition

In the regression case, where y = f(x) + ε and ε ∼ IID(0, σ2
ε), the expected predic-

tion error is

Err(x0) = E
((
y − f̂(x)

)2 |x = x0

)
= σ2

ε +
(
Ef̂(x0)− f(x0)

)2
+ E

(
f̂(x0)− Ef̂(x0)

)2
= σ2

ε +Bias2
(
f̂(x0)

)
+Var

(
f̂(x0)

)
.

(9)

In the case of kNN estimation, the squared bias and the variance both take partic-
ularly simple forms. The squared bias is

Bias2 =

(
f(x0)−

1

k

k∑
ℓ=1

f(x(ℓ))

)2
, (10)

where x(ℓ) is the training observation ranked ℓth from x0.

The bias arises because f(x0) ̸= f(x(ℓ)) for the neighbours that we average over.

There would be no bias if f(·) were flat in a large enough neighbourhood around x0.
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The variance is

Var =
1

k
σ2
ε , (11)

which is just the variance of an average of k quantities with variance σ2
ε .

For a linear regression model, we know that the forecast at x0 is

f̂(x0) = x0β̂ = x0(X
⊤X)−1X⊤y, (12)

so that the variance of the forecast error is

Var = σ2
εx0(X

⊤X)−1X⊤X(X⊤X)−1x0 = σ2
εx0(X

⊤X)−1x0. (13)

This can also be written as

Var = ||h(x0)||2σ2
ε , where h(x0) ≡ X(X⊤X)−1x0. (14)

Since the average of ||h(x0)||2 over all the sample values is just the trace of the

matrix PX , we find that
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1

N

N∑
i=1

Err(xi) = σ2
ε +

(
f(xi)− Ef̂(xi)

)2
+

p

N
σ2
ε . (15)

For ridge regression, the forecast variance has the same form as (14), except that

h(x0) = X(X⊤X + αI)−1x0. (16)

For all linear regression estimators, such as ridge, the average squared bias is

Ex0

(
f(x0)− Ef̂α(x0)

)2
= Ex0

(
f(x0)− x0

⊤β∗
)2

+ Ex0

(
x0

⊤β∗ − E(x0
⊤β̂α)

)2
,

(17)

where β∗ denotes the value of β that minimizes

E
(
f(x)− x⊤β

)2
, (18)

where the expectation is taken over the distribution of x.

From (17), we see that the average squared bias is the sum of two things.
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The first thing is the average squared model bias, which arises because f(x0) ̸= x0
⊤β

for any β.

The second thing is the average squared estimation bias, which arises because
E(x0

⊤β̂α) ̸= x0
⊤β∗.

For linear models fit by OLS, the estimation bias is zero. All bias is model bias,
which reflects misspecification.

But for regularized linear models, such as ridge regression and lasso, estimation

bias is not zero. More aggressive regularization increases estimation bias, but the
consequent reduced variance may make it worthwhile.

ESL-fig7.03.pdf illustrates the bias-variance tradeoff in four cases.

The top two panels are for regression with squared error loss, for both kNN and
best subset regression.

The bottom two panels are for classification with 0-1 loss.

Variance is blue, squared bias is green, and expected prediction error is orange.
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In the top panels, which deal with regression, prediction error is the sum of squared

bias and variance.

In the bottom panels, which deal with classification, prediction error is no longer

the sum of squared bias and variance.

With 0-1 loss in a classification problem, mistakes that do not affect how we classify
an observation do not affect loss.

Even if the true probability is 0.98, and the model estimate is 0.51, the model makes
the right choice.

This is one reason why I prefer a loss function based on deviance, that is, the

loglikelihood function. See (6).

8.4. The Training Error Rate

The test (or prediction, or generalization) error of a model f̂ is

ErrT = Ey0,x0

(
L
(
y0, f̂(x0)

)
|T
)
. (19)
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The point (y0,x0) is a new test data point drawn from the joint distribution of the

data. We take expectations conditional on the training set T.

Because (19) is conditional on T , if we happened to obtain a different training set,
f̂ would be different, and so would ErrT.

Using the training error (5) to estimate (19) may not work well, because the same
data are used to fit the model and assess its performance.

There are fundamentally two problems.

• The point x0 typically does not coincide with any of the xi. If it did coincide,
then kNN with k = 1 would be unbiased.

• When x0 is a long way from the nearest xi, perhaps outside the convex hull of
the sample points, all methods have to extrapolate.

• Flexible methods, such as higher-order polynomials, often extrapolate very
badly. That is why some methods (for example, natural cubic splines) are
constrained to be linear at the boundary.

• Even if x0 does coincide with one of the xi, y0 is random, and so y0 ̸= yi.
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To separate these two issues, we can define the in-sample error as

Errin =
1

N
Ey0

(
L
(
yi0, f̂(xi)

)
|T
)
; (20)

compare (19).

Here we observe N new values yi0 at the same N training points. In practice, of
course, this will not happen unless we are gathering the data in a particular way.

The optimism is

op ≡ Errin − err, (21)

and the average optimism is

ω ≡ Ey(op). (22)

The expectation in (22) is taken over the values of y0 holding the xi constant.

In (21) and (22), we are holding the values of xi in the training set fixed. Of course,

we have to do that for err, because it is just something we compute; see (5) and (7).
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For many loss functions, it can be shown that

ω =
2

N

N∑
i=1

Cov(ŷi, yi). (23)

Thus the average optimism will be high when yi greatly affects its own prediction
and low when yi has little effect on its own prediction.

It is interesting to see why (23) is true for linear regression.

The fitted values are ŷ = PXy. Thus the sample covariance of y and ŷ for a
correctly specified model is

u⊤PXy = u⊤PXu+ u⊤Xβ. (24)

The second term here has expectation zero, and the expectation of the first term is
σ2Tr(PX) = pσ2. Thus

1

N

N∑
i=1

Cov(ŷi, yi) =
p

N
σ2. (25)
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At the same time, err is just 1/N times the SSR. Of course, the SSR is equal to

u⊤MXu and has expectation (N − p)σ2.

It is not quite as easy to see that

Errin =
1

N
Ey

(
(y0 − PXy)⊤(y0 − PXy)

)
=

1

N
Ey

(
(Xβ + u0 −Xβ − PXu)⊤(Xβ + u0 −Xβ − PXu)

)
=

1

N
Ey

(
(u0 − PXu)⊤(u0 − PXu)

)
=

1

N
Ey(u0

⊤u0 + u⊤PXu− 2u0
⊤PXu)

= σ2 +
p

N
σ2.

(26)

Thus Errin − Eyerr is

σ2 +
p

N
σ2 − N − p

N
σ2 =

2p

N
σ2. (27)

This is indeed twice the covariance of ŷi and yi; see (25).
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So the claim that the average optimism is twice the average covariance between ŷi
and yi is true for OLS regression.

Similar results are true asymptotically for other regression models and for models
estimated by maximum likelihood.

Equivalently, we can write

EyErrin = Eyerr +
2

N

N∑
i=1

Cov(ŷi, yi) (28)

So the expected in-sample error always exceeds the expectation of the training error.

The difference is due to the optimism, because yi affects its own fitted value.

We have already seen that, for a linear regression model, the second term in (28)
is 2(d/N)σ2; see (25). I used d instead of p here, because d could be a number of
basis functions rather than a number of inputs.

Using this result, (28) becomes

EyErrin = Eyerr +
2d

N
σ2. (29)

This tells us that the optimism is proportional to d/N .
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Equation (29) implies that we can also write

2

N

N∑
i=1

Cov(ŷi, yi) = 2
d

N
σ2
ε . (30)

Of course, these results would not hold if, for every d, we searched over a set of
models and chose the best one.

8.5. Estimating In-Sample Prediction Error

One way to estimate Errin is to add an estimate of ω to err. Based on (29), we
should add 2(d/N)σ̂2

ε to err in the case of a regression-like model.

Here σ̂2
ε should be based on a low-bias model, so that it provides a good estimate

of σ2
ε . This yields a variant of the Cp statistic:

Cp = err + 2
d

N
σ̂2
ε . (31)
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As we have seen, the AIC is similar to Cp. It is based on the fact that

−2E
(
log(P̂r(y))

)
= − 2

N
E
(
logl(θ̂)

)
+ 2

d

N
, (32)

where logl(θ̂) denotes the maximized loglikelihood.

Thus we get

AIC = − 2

N
logl(θ̂) + 2

d

N
. (33)

For regression models with normal errors, AIC and Cp are equivalent.

When there is a tuning parameter α and we can write the effective degrees of
freedom as d(α), we can plot

AIC(α) = err(α) + 2
d(α)

N
σ̂2
ε (34)

as an estimate of the test error curve. We find α̂ that minimizes (34).

This procedure is legitimate in some cases, but not in others. In particular, if the

basis functions are chosen adaptively, the optimism will exceed 2(d(α)/N)σ2
ε .
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The problem is that, by choosing the best set of basis functions for any α, we

effectively use up more than d degrees of freedom.

ESL-fig7.04.pdf shows an example of using AIC for classification (for the case of
phoneme recognition).

The tuning parameter is M , the number of basis functions for a natural cubic spline.

The knots are chosen uniformly over the range of frequencies.

The figure shows the training error, err, the AIC, and an independent measure of

Err based on a test sample.

For loglikelihood loss, AIC and Err track each other closely until M = 256, which
is very large.

For 0-1 loss, where (30) is not true, AIC and Err differ quite a bit but yield similar
conclusions and do not diverge sharply at M = 256.
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8.6. The Effective Number of Parameters

Any linear fitting method can be written as

ŷ = Sy. (35)

Such methods include OLS, where S = PX , linear regression on basis functions,
where S = PB and B is a matrix of basis functions, and methods that use quadratic
smoothing such as ridge regression and smoothing splines.

In all such cases, the effective number of parameters, or effective degrees of freedom,
is simply the trace of S:

df(S) = Tr(S). (36)

We proved in (25) that, for linear regression models,

Tr(S)σ2
ε =

N∑
i=1

Cov(ŷi, yi). (37)

This suggests that, whether or not a fitting method is linear, it is reasonable to

define df as
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df(ŷ) =
1

σ2
ε

N∑
i=1

Cov(ŷi, yi). (38)

So if there were no covariance between ŷi and yi, the fitting method would not use
any degrees of freedom.

In Section 7.6 there is also a result for df for neural networks, but since we have not
encountered them yet, it seems premature to write it down.

I will skip minimum description length and the Vapnik-Chervonenkis dimension.
The VC dimension is a way of measuring the complexity of a class of functions. It
leads to methods called structural risk minimization.

8.7. The Bayesian Information Criterion

We briefly discussed BIC in Slides 2. In general, it has the form

BIC = −2 logL+ d(logN), (39)

where d is the number of parameters.
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In the regression case,

BIC(α) =
N

σ̂2
ε

err(α) + (logN)d(α). (40)

BIC penalizes complicated models more heavily than AIC does. This ensures that,
asymptotically, it always chooses the correct model if there is one.

However, in samples of modest size, BIC may tend to choose models that are too
simple.

The estimate σ̂2
ε is normally obtained from an over-parametrized (low-bias) model.

Given M models µm indexed by m with uniform prior probabilities, it turns out

that the posterior probability for model j is simply

Pr(µj) =
exp
(
− 1

2BICj

)∑M
m=1 exp

(
− 1

2BICm

) . (41)

So picking the model with largest BIC give us the most probable model, and looking

at (41) gives us the posterior probabilities.
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8.8. Cross-Validation

The idea of cross-validation is not to use all the training data at once when esti-
mating the fit of the model. This greatly reduces Cov(ŷi, yi).

This method directly estimates the expected prediction error

Err = E
(
L
(
y, f̂(x)

))
(42)

using the training data. It often estimates Err quite well.

However, despite using the training data, it generally does not estimate ErrT well.
This may be surprising.

8.9. K-fold Cross-Validation

We split the data into K (roughly) equal-sized parts, or folds.

If the data are ordered at random, it does not really matter how we divide it into

folds. However, if the data are not ordered randomly, we may have to be careful.
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One method is to put observations 1, K+1, 2K+1 and so on into fold 1, observations

2, K + 2, 2K + 2 and so on into fold 2, and similarly for the other folds.

For each fold indexed by k = 1, . . . ,K, we fit the model to the other K − 1 folds

and calculate the prediction error for fold k.

Let κ(i) be an indexing function which indicates which fold of the data observation

i belongs to.

For example, if κ(1323) = 4, observation 1323 belongs to fold 4.

Let f̂−k(x) denote the fit at the point x using data from K − 1 folds, with fold k

omitted.

Then the cross-validation estimate of prediction error is

CV(f̂) =
1

N

N∑
i=1

L
(
yi, f̂

−κ(i)(xi)
)
, (43)

where f̂−κ(i)(xi) is the fitted value for observation i using all of the data except the

fold to which observation i belongs.
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In (43), we sum the loss over all observations. The predictions are based on K

different models, which differ across observations.

Common choices of K are 5, 10, and N. The last of these is used mainly in special
cases, such as linear models, where it is cheap to compute. In many other cases, it
is very expensive to compute.

If N happens to be divisible by a number like 6, 7, 8, or 9, it is natural to set K

equal to that number.

If there is a tuning parameter α, we can think of CV as being a function of it. Then
we can graph CV(f̂ , α) against α to estimate the test error curve.

As with (34), we then find α to minimize CV(f̂ , α).

When K = N , we have leave-one-out cross-validation. In this case, there is very
little bias, because N − 1 ≈ N , but variance tends to be large, because the samples
we use are almost the same.

With, say, K = 5, variance is lower, but bias can be higher if bias depends strongly

on the sample size.

Slides for ECON 950 25



If the prediction error based on samples of size 4N/5 or 9N/10 differs substantially

from those based on samples of size N, bias will be a problem.

ESL defines the learning curve as a function that relates Err (or 1−Err in their
example) to the sample size N. When it is flat near the actual N, then bias should

be low. When it is steep, bias may be high.

Since Err diminishes with N, the K-fold CV estimate of Err with small K will be
biased upwards.

8.10. Generalized Cross-Validation

Generalized cross-validation is a convenient alternative to leave-one-out cross-
validation for linear models with squared-error loss.

For many linear models,

1

N

N∑
i=1

(
yi − f̂−i(xi)

)2
=

1

N

N∑
i=1

(
yi − f̂(xi)

1− Sii

)2
, (44)

where Sii is the ith diagonal element of S.
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The GCV approximation to (44) is

GCV(f̂) =
1

N

N∑
i=1

(
yi − f̂(xi)

1− Tr(S)/N

)2
. (45)

Recall that the effective number of parameters is df = Tr(S). In the case of a linear

regression, this is just p.

So we shrink every training-set residual by the same factor instead of by a factor
that is larger for high-leverage observations.

ESL claims that GCV can alleviate the tendency of CV to undersmooth.

However, shrinking every training-set residual by the same factor seems dubious.

It is interesting to look at these results from the perspective of HCCMEs. For a

linear regression model, Sii = hi, the i
th element of the diagonal of the PX matrix.

The HC2 estimated residual is

üi =
ûi

(1− hi)1/2
, (46)
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and we know that its square has expectation σ2 when the errors are homoskedastic.

Similarly, the HC3 estimated residual is

üi =
ûi

1− hi
, (47)

and we know that its square has expectation greater than σ2 when the errors are

homoskedastic. Since (47) is a special case of (44), it seems highly likely that the
latter will also overestimate σ2 for observation i.

Of course, we want it to overestimate σ2, because the test error is the sum of σ2

and the error that arises from estimation error for β.

From this perspective, GCV is related to the HC1 estimated residual, which is

üi =

(
N

N − p

)1/2
ûi. (48)

The square of this is the expectation of u2
i , on average, which is not what we want.
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Instead, the GCV formula (45) effectively uses N/(N − p), since

(
1

1− p/N

)2
=

N2

(N − p)2
.

Thus, like leave-one-out cross-validation, GCM blows up the error in an effort to
take account of estimation error.

8.11. The Wrong Way to Perform Cross-Validation

It is extremely important that the way we obtain the CV fits is the same (except

for the samples used) as the way we performed the original fit.

For example, suppose we have a classification problem with many predictors. We
might follow this approach:

1. Find the correlations between every predictor and y, and retain the d predictors

with the highest correlations.

2. Build some kind of classifier using these d predictors.
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3. Use cross-validation to estimate the tuning parameter(s) and hence the para-

meters of the final model.

4. Base our estimate of Err on K-fold cross-validation using the chosen tuning
parameter(s).

This is madness!

We used the entire training set to choose the best d predictors. The fact that we
leave out folds of the sample at later stages does not solve the problem.

I have seen people do similar things with kernel regression. They use CV to estimate
Err, but they hold the bandwidth fixed at the value chosen using the entire sample.

This sort of thing can save a lot of computer time, but it leads to invalid results.

ESL do an experiment in which N = 50, p = 5000, there are two equal-sized classes,
and all of the predictors actually contain no information.

At the first stage, they choose the 100 predictors most highly correlated with the

class labels. They then use 1NN prediction.
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The true error rate should be 50%, since the predictors contain no information. But

the average CV error rate was just 3%!

The correct way to perform cross-validation in this sort of case is:

1. Divide the sample into K folds at random. Then iterate over all the folds for
k = 1, . . . ,K.

2. Using data from all folds except fold k, find a subset of d “good” predictors.

3. Again using data for all folds except k, build a multivariate classifier based on

the d chosen predictors.

4. Use this classifier to predict the class labels for the observations in fold k

Cross-validation must be applied to the entire sequence of modeling steps!

It is often tempting to reduce computational cost by performing some modeling

steps on the entire sample before beginning the cross-validation. But, in most
cases, it is wrong!

There is one exception. We can perform unsupervised screening steps (i.e., ones

that use information about the xi but do not use any information about the yi).
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For example, we could compute principal components just once. For large samples

the PCs computed on the whole sample should coincide (approximately) with the
ones computed using the folds, and they will not related to y.

ESL states that papers in top journals do this wrong all the time, especially in cases
with many predictors, such as genomic studies.

8.12. Conditional or Expected Test Error

As noted previously, what we really care about is ErrT, but we may actually be
estimating Err, the expected test error.

ESL-fig7.14-15.pdf sheds some light on this. These figures deal with best-subset
regression, where we are using cross-validation to determine the subset size, p.

The upper left panel of Figure 7.14 shows Err as a thick red curve, along with 100
ErrT curves for different training samples.

The upper right and lower left panels show CV error curves for 10-fold and N -fold

(leave-one-out) cross-validation, respectively.
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The thick black curves are “expected” cross-validation curves. I think these are just

averages over the 100 training samples.

10-fold seems less variable than N -fold, especially for small p.

Lower-right panel shows three types of absolute approximation error.

The CV curves work best for Err, and 10-fold works better for ErrT than N -fold.

Figure 7.15 shows plots of the true conditional error and CV error for various subset
sizes (1, 5, 10) in the first three panels.

The lower right panel shows correlations for both 10-fold and N -fold as a function

of subset size.

Oddly, the correlations are quite negative for small p, somewhat negative for large
p, and positive for intermediate p. Why? Is this plot correct?
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8.13. Possible future work:

How reliable are various cross-validation methods in the context of more interesting

problems than kNN and best subset regression?

When does it matter that we treat each observation separately rather than averaging
over them as in GCV?

How can we choose a model that predicts well when there is heteroskedasticity of

unknown form? When there is clustering of unknown form? See Chiang and Sasaki
(2019).

Of course, we should try to answer these questions in the context of models and
datasets of interest to economists.

Slides for ECON 950 34


