
ECON 950 — Winter 2020

Prof. James MacKinnon

7. Boosting

Like bagging and random forests, boosting involves creating many models.

Unlike bagging and random forests, boosting creates these models sequentially, and
there is no resampling involved.

Boosting learns slowly by repeatedly fitting new models based on the residuals of
earlier models.

For regression trees, the algorithm works as follows:

1. Set f̂(x) = 0 and ri = yi for all i.

2. For m = 1, . . . ,M , repeat:

i. Fit a tree f̂m(x) with d splits to the training data (x, r).

ii. Update f̂ by adding a shrunken version of f̂m(x) to it:

f̂(x)← f̂(x) + λf̂m(x). (1)

Slides for ECON 950 1



iii. Update the residuals:

ri ← ri − λf̂m(xi). (2)

3. The boosted model is

f̂(x) =
M∑

m=1

λf̂m(x). (3)

Recall that the initial value of f̂ was 0. Thus all of the explanatory power comes

from the f̂m(x).

There are three tuning parameters:

1. The number of (in this case) trees. There is a risk of overfitting if M gets too
large, so we need to use cross-validation.

2. The shrinkage parameter λ. Typical values are 0.01 and 0.001. When λ is very
small, M needs to be large.

3. The number of splits d, called the interaction depth. This tends to be small,
perhaps just d = 1.

When d = 1, every split is a stump, and (3) becomes an additive model.

Slides for ECON 950 2



It seems odd that λ is not set to 1/M. Do we have to rescale λ if M becomes larger?

See ISLR Figure 8.11.

For squared error loss (which may not be a good thing to use; see ESL Section
10.6), the objective function is

N∑
i=1

L
(
yi, f(xi)

)
=

N∑
i=1

(
yi − f(xi)

)2
. (4)

Since we build up the f(xi) slowly in (1), we see that

L
(
yi, f̂(xi)

)
← L

(
yi, f̂(xi) + λf̂m(xi)

)
=
(
yi − f̂(xi)− λf̂m(xi)

)2
=
(
ri − λf̂m(xi)

)2
,

(5)

where ri is simply the ith residual for the current model, before we have added the

mth term to it.

Slides for ECON 950 3



At each step in the boosting algorithm, we add λ times the term f̂m(xi) that best

fits the function
N∑
i=1

(
ri − f̂m(xi)

)2
, (6)

which just depends on the current residuals and on f̂m(xi).

The discussion above assumes that we use a tree to obtain f̂m(xi), but many other

models can also be boosted.

It does not make sense to boost a linear regression model, because the residuals are
orthogonal to all the predictors.

7.1. AdaBoost.M1 for two-way classification

We code the output as {−1, 1} instead of {0, 1}.

The error rate on the training sample is

err =
1

N

N∑
i=1

I
(
yi ̸= G(xi)

)
, (7)

Slides for ECON 950 4



where G(xi) denotes the classifier. It also takes values {−1, 1}.

A weak classifier is only slightly better than random guessing.

Boosting sequentially applies the weak classifier to repeatedly modified versions of
the data (in the regression case above, these were residuals). Eventually, we have
M of these, denoted Gm(x) for m = 1, . . . ,M .

We then combine these as follows to produce the final prediction

G(x) = sign

(
M∑

m=1

αmGm(x)

)
, (8)

where the weights αm have to be determined.

Instead of using residuals from successive steps, classification uses weights that
change as the algorithm proceeds.

Observations that were misclassified get more weight, and observations that were
correctly classified get less weight.

The AdaBoost.M1 algorithm works as follows:

Slides for ECON 950 5



1. Initialize the observations weights to 1/N for all i.

2. For m = 1, . . . ,M :

i. Fit a classifier Gm(x) to the training data using weights wi.

ii. Compute

errm =

∑N
i=1 wi I

(
yi ̸= Gm(xi)

)∑N
i=1 wi

.

iii. Compute αm = log
(
(1− errm)/errm

)
.

iv. Set wi ← wi exp
(
αmI

(
yi ̸= Gm(xi)

))
for i = 1, . . . , N.

3. The final classifier is given in (8): G(x) = sign
(∑M

m=1 αmGm(x)
)
.

The algorithm just described is called “Discrete AdaBoost,” because the classifier
always reports −1 or 1.

A modified version called “Real AdaBoost” was proposed in Friedman, Hastie, and
Tibshirani (AMS, 2000). This seems to be a key paper. Real AdaBoost yields real

numbers in the [0, 1] interval as outputs instead of {−1, 1}.

Slides for ECON 950 6



In the above algorithm, step 1. is unchanged. Step 2. becomes

2. For m = 1, . . . ,M :

i. Fit a classifier pm(x) to the training data using weights wi.

ii. Compute fm = 1
2 log

(
pm(x)/(1− pm(x))

)
.

iii. Set wi ← wi exp
(
−yifm(xi)

)
for all i, and renormalize so that∑N

i=1 wi = 1.

3. The final classifier is the sign of
∑M

m=1 fm(x).

Observe that the fm here are the logs of odds ratios.

ESL present a simulated example in which p = 10 and each input Xj is N(0, 1).

The output is 1 if
10∑
j=1

X2
j > χ2

10(0.5) = 9.34182. (9)

Thus, on average, half of the outputs will be 1 and half will be −1. But, since we

observe the realized random variables, we should be able to make predictions.

Slides for ECON 950 7



There are 2000 training cases and 10,000 test ones.

The weak classifier is a tree with two terminal nodes, a “stump.”

The error rate of the initial classifier is 45.8%. After boosting with M = 400, it is
only 5.8%. A single large tree has an error rate of 24.7%.

See ESL, Figure 10.2.

7.2. Boosting and additive models

Because boosting is additive—see (3) and (8)— it can be thought of as a form of

basis expansion.

Basis expansions take the form

f(x) =
M∑

m=1

βmb(x,γm), (10)

where the βm are expansion coefficients, and the b(·) are (usually) simple functions

of x and the coefficient vectors γm.

Slides for ECON 950 8



For neural nets, the b(·) are sigmoid functions of linear combinations of x.

For MARS, the b(·) are splines, and the γm parametrize the variables and the values

for the knots.

For trees, the γm parametrize the split variables and split points.

In general, we estimate this sort of model by minimizing a loss function with respect
to the βm and the γm:

N∑
i=1

L

(
yi,

M∑
m=1

βmb(x,γm)

)
(11)

This is hard if we have to minimize with respect to all parameters at once, but it
can be easy if we can minimize sequentially with respect to the parameters of one

basis function at a time.

The idea of forward stagewise additive modeling is to minimize (11) by adding
additional basis functions without modifying previous ones.

This is exactly what boosting does; see (3) and the algorithm that includes it.

Slides for ECON 950 9



7.3. Other issues in boosting

What does AdaBoost minimize?

According to ESL, it minimizes

L
(
y, f(x)

)
= exp

(
−yf(x)

)
; (12)

see Section 10.4.

They show that this is equivalent to minimizing the deviance

ℓ
(
y, f(x)

)
= log

(
1 + exp(−2yf(x))

)
, (13)

which is what a logit model would minimize, except for the factor of 2 that arises
because of coding the output as {−1, 1} instead of {0, 1}.

There is a long discussion of robust and non-robust loss functions in Section 10.6.

There is a detailed discussion of boosting trees in Section 10.9.

The important topic of gradient boosting is discussed in Section 10.10.

There are some interesting examples in Section 10.14.

Slides for ECON 950 10


