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6. Trees and Forests

Tree-based methods partition the feature space into a set of rectangles. One popular
method is CART, for classification and regression trees.

The fitted value for any rectangle is simply the average value of the dependent
variable for all points in that rectangle.

A single tree typically does not perform all that well. But multiple trees can be
combined into random forests that often perform very well.

6.1. Regression Trees

To grow a regression tree, we use recursive binary splitting.

1. Start by splitting the space into two regions. Find the predictor and split point

that gives the best fit, where the predictor is the mean of Y in each region.
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2. Next, split one of the regions into two regions, again using the predictor and

split point that gives the best fit.

3. Next, do it again. The region we split could be the one we did not split in step
2, or it could be one of the ones we did split.

4. Continue until a stopping rule tells us to stop. For example, we might stop if
all regions contain less than 5 observations.

Formally, if the space is divided into M regions, the response is

f(x) =
M∑

m=1

cmI(x ∈ Rm), (1)

where we will estimate the cm coefficients. If the objective is to minimize
N∑
i=1

(
yi − f(xi)

)2
, (2)

the best choice for ĉm is

ȳ |xi ∈ Rm =

∑N
i=1 yiI(xi ∈ Rm)∑N
i=1 I(xi ∈ Rm)

=
1

Nm

∑
xi∈Rm

yi, (3)
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where Nm is the number of points in Rm. This is just the average of the yi in

region m.

Initially, we make one split so as to obtain two regions. If we split according to

variable j at the point s, the regions are

R1(j, s) = {x |xj ≤ s} and R2(j, s) = {x |xj > s}. (4)

Since the estimates ĉ1 and ĉ2 for regions 1 and 2, respectively, will be

ĉ1 =
1

N1

∑
xi∈R1

yi and ĉ2 =
1

N2

∑
xi∈R2

yi, (5)

we want to choose j and s to minimize∑
xi∈R1(j,s)

(yi − ĉ1)
2 +

∑
xi∈R2(j,s)

(yi − ĉ2)
2. (6)

This is not hard to do efficiently, although the programming may be tricky.
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For each variable j, we just search over s to minimize (6). Then we choose the

variable that, for the optimal choice of s, yields the lowest value.

Next, we split each of the two regions, and so on. See ESL-fig9.02.pdf.

The preferred strategy is to grow a very large tree, say T0, stopping when every
region is very small.

An alternative would be to stop as soon as the best proposed split has a sufficiently

small effect on the fit. But this is too short-sighted.

The large tree, T0, almost certainly suffers from over-fitting. We therefore prune

the tree using cost-complexity pruning. Let

Qm(T ) =
1

Nm

∑
xi∈Rm

(yi − ĉm)2, (7)

where T denotes some subtree of T0, with terminal nodes (leaves) indexed by m.

The quantity Qm(T ) is a measure of node impurity.
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Then define the cost-complexity criterion

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |. (8)

Here |T | is the number of nodes in the tree T , and α is a tuning parameter.

Cα(T ) is simply the sum over all terminal nodes of the squared error losses, plus a
penalty term. Note that the Nm factors in (7) and (8) cancel out.

For each α, we find the subtree that minimizes (8) by undoing some of the splits
that we made previously.

This is done by weakest-link pruning, which collapses the split that causes the
largest increase in Cα(T ). This is the same split that causes the smallest reduction

in
∑|T |

m=1 NmQm(T ).

The value of α is chosen by K-fold cross-validation, with K normally 5 or 10.

This yields the tuning parameter α̂ and the associated tree Tα̂.
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As α increases, branches get pruned from the tree in a nested and predictable

fashion. This make it easy to obtain the sequence of subtrees as a function of α.

6.2. Classification Trees

Since we were minimizing (2), the procedure just described was constructing a
regression tree.

To construct a classification tree, we need to minimize something else. Let

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k) (9)

denote the proportion of class k observations in node m.

We can assign node m to class k if p̂mk is higher for k than for any other class. The
class with the highest proportion of the observations in node m is denoted k(m).

One measure of node impurity is the misclassification error

1

Nm

∑
1∈Rm

I
(
(yi ̸= k(m)

)
, (10)
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which is not differentiable and is not sensitive to the values of p̂mk except at points

where k(m) changes.

Another is the Gini index
K∑

k=1

p̂mk(1− p̂mk). (11)

The variance of a 0-1 response with probability p̂mk is p̂mk(1− p̂mk). Summing this
over all classes gives the Gini index (11).

The third is the cross-entropy or deviance

−
K∑

k=1

p̂mk log(p̂mk). (12)

In general, the deviance is minus two times the maximized loglikelihood. The
smaller the deviance, the better the fit.

Instead of classifying each node, we could simply assign probabilities. Then the
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training error would be

K∑
k=1

M∑
m=1

(
I(yi ∈ k)(1− p̂mk) + I(yi /∈ k)p̂mk

)
. (13)

6.3. Bootstrap Methods

It seems natural to use bootstrap methods to measure a model’s performance with-

out employing a separate test datatset. This turns out to be a bit tricky.

Many bootstrap methods, such as the residual bootstrap, wild bootstrap, and (most
of all!) the parametric bootstrap assume that the model being estimated is true.

This makes them unsuitable for this purpose.

One method that does not is the pairs bootstrap, where each bootstrap sample is
obtained by resampling from the (xi, yi) pairs, which we may denote zi.

This is sometimes also called the resampling bootstrap or the cases bootstrap.

The N × (p+ 1) matrix Z has typical row zi.
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It is easy to draw B bootstrap datasets by resampling from the zi. We can call

them Z∗
b for b = 1, . . . , B.

We could then apply whatever methods we used with the actual training set to each

of the Z∗
b .

Let f̂∗
b (xi) be the predicted value from bootstrap sample b for the point xi.

One estimate of the prediction error, called Err, is

Êrrboot =
1

B

1

N

B∑
b=1

N∑
i=1

L
(
yi, f̂

∗
b (xi)

)
, (14)

where L(·) is some loss function.

Just what L(·) is will depend on whether we are regressing or classifying and what

we care about. For example, it might be the squared error (yi − f̂i)
2.

Notice that we are comparing yi, the actual outcome for observation i, with the

fitted value f̂∗
b (xi) from each of the bootstrap samples.
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The bootstrap samples are being used as training samples, and the actual training

set is being used as the test sample. But they have many points in common. Oops!

This contrasts with cross-validation, where training is done on K − 1 folds, the

omitted fold is used for testing, and we sum over the K folds.

Consider again the case of 1NN classification with two equal-sized classes and no

information in the predictors.

The true error rate should be 0.5.

For the training sample, the error rate will be 0, because the nearest neighbor to
xi is itself.

For the bootstrap, the error rate will be the probability that any bootstrap sample
contains xi. This is simply

1−
(
1− 1

N

)N
. (15)

As N → ∞, (15) tends to 1− e−1 ≈ 0.63212.

Thus the probability that bootstrap sample b contains xi is roughly 0.632.
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The above result is important. It applies to any sort of resampling bootstrap.

For bootstrap samples that contain xi, their contribution to the term inside the
double sum in (14) is 0. For bootstrap samples that do not contain xi, their
contribution to that double sum is 0.5.

Therefore,

Êrrboot ≈ 0.632× 0 + 0.368× 0.5 = 0.184 << 0.50. (16)

A better way to mimic cross-validation is the leave-one-out bootstrap. For each
observation i, we use the bootstrap samples that do not contain that observation.

The leave-one-out bootstrap prediction error estimate is

Êrr
(1)

=
1

N

N∑
i=1

1

|C−i|
∑

b∈C−i

L
(
yi, f̂

∗
b (xi)

)
, (17)

where C−i denotes the set of indices of bootstrap samples that do not contain

observation i, and |C−i| is the number of such samples.
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Of course, we may need B to be fairly large to ensure that |C−i| > 0 for all i.

Êrr
(1)

solves the overfitting problem, but it has another problem.

Even though each bootstrap sample contains N observations, on average it only

contains 0.632N distinct observations.

Thus it may be biased, in roughly the same way that 3-fold cross-validation, which
uses 2N/3 observations, would be biased.

One crude (but theoretically sophisticated) solution is the .632 estimator

Êrr
(.632)

= 0.368× err + 0.632× Êrr
(1)
. (18)

It is a weighted average of the training error rate and the leave-one-out bootstrap

prediction error estimate.

ESL claims that (18) works well in “light fitting” situations but not in overfit ones.

They give an example where Êrr
(1)

works perfectly and Êrr
(.632)

is too optimistic.
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The no-information error rate γ is defined to be the error rate for our prediction

rule if the yi and xi were actually independent.

An estimate is

γ̂ =
N∑
i=1

N∑
i′=1

L
(
yi, f(xi′)

)
. (19)

Consider a dichotomous classification problem. Let p̂1 be the observed proportion
of the yi that equal 1 and q̂1 be the observed proportion of the f(xi′) that equal 1.

γ̂ = p̂1(1− q̂1) + q̂1(1− p̂1).

With 1NN, p̂1 = q̂1, so that γ̂ = 2 p̂1(1− p̂1), which equals 0.5 when p̂1 = 0.5.

The relative overfitting rate is

R̂ =
Êrr

(1)
− err

γ̂ − err
. (20)

Then we get the .632+ estimator

Êrr
(.632+)

= (1− ŵ)× err + ŵ × Êrr
(1)
. (21)
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This looks like (18), but instead of using weights 1−0.632 and 0.632, we use weights

1− ŵ and ŵ, where

ŵ =
.632

1− .368R̂
. (22)

In a case with extreme overfitting like 1NN, R̂ = 1, so that ŵ = 1, and

Êrr
(.632+)

= Êrr
(1)
. (23)

In cases with less overfitting,

err ≤ Êrr
(.632+)

≤ Êrr
(1)
. (24)

6.4. Bagging

The idea of bootstrap aggregation, or bagging, is to generate a prediction from each
of B bootstrap samples and average them.

This can be used with many different prediction methods, but it only makes sense

when the prediction is a nonlinear function of the data, as it is for CART.
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Again, let f̂∗
b (x) be the prediction for the point x based on bootstrap sample b.

Then the bagging estimate is

f̂bag(x) =
1

B

B∑
b=1

f̂∗
b (x). (25)

This is an approximation to E
(
f̂∗
b (x)

)
based on the empirical distribution of the

points (xi, yi).

We can think of E
(
f̂∗
b (x)

)
as an estimate of the “ideal” aggregating estimate, fag(x),

in which the expectation is taken over the actual distribution of (x, y).

Of course, fag(x) is infeasible, because we do not know the distribution of the

(x, y). We have to hope that the empirical distribution of the (xi, yi) provides a
good approximation.

The expectation of the bagging estimate will differ from f̂(x) only when the latter
is a nonlinear or adaptive function of the data. It would make no sense to bag linear

regression predictions.
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When f̂(x) is linear in y, averaging over the f̂∗
b (x) is equivalent to averaging over

the y∗
b and then applying a linear operator to the average.

But when f̂(x) is nonlinear in y, the bagging estimate may be substantially more
efficient than f̂(x) itself. It is often helpful for trees.

Suppose we could draw bootstrap samples from the actual distribution of the
(xi, yi). Applying our prediction procedure to such a sample would yield f̂∗(x).

Thus f̂∗(x) has mean fag(x).

Evidently,

E
(
y − f̂∗(x)

)2
= E

(
y − fag(x) + fag(x)− f̂∗(x)

)2
= E

(
y − fag(x)

)2
+
(
f̂∗(x)− fag(x)

)2
≥ E

(
y − fag(x)

)2
.

(26)

The inequality arises because of the second term in the second line, which is the

variance of f̂∗(x) around its mean of fag(x).

So in this (admittedly infeasible) case, aggregating reduces variance.
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Since bagging is the feasible analog of what we did in (26), it seems plausible that

it too will reduce variance.

The argument in (26) relied upon the additivity of squared bias and variance, which
is not true for classification with 0-1 loss.

Unfortunately, bagging a bad classifier can make it worse.

In the Bayesian context, we can think of f̂(x) as a posterior mode and f̂bag(x) as
posterior mean.

For symmetric, unimodal distributions like the Gaussian, they are identical. But
for skewed distributions, they could be quite different.

Because it is the posterior mean (not the posterior mode) that minimizes squared
error loss, it is not surprising that bagging often helps.

6.5. Random Forests

“Random forests” is a relatively recent (Breiman, 2001) method that is easy to use

and often works well.
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Interestingly, Breiman was 72 or 73 when this paper appeared, and it has over

52,925 citations. Unfortunately, he died four years later.

As we just saw, bagging (that is, averaging over the predictions from a number of
bootstrap samples) reduces variance but not bias.

This can work well if all the models are approximately unbiased and not very
correlated with each other.

If we average B random variables yb each with variance σ2, the variance of the
average is σ2/B.

If the random variables are correlated, with variance σ2 and covariance ρσ2, we

instead find that

Var(ȳ) =
1

B2

B∑
b=1

Var(yb) +
2

B2

B∑
b=1

B∑
b′=b+1

Cov(yb, yb′)

=
1

B
σ2 +

1

B2
B(B − 1)ρσ2

= ρσ2 +
1− ρ

B
σ2.

(27)
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As B increases, the second term tends to zero, like σ2/B in the uncorrelated case.

But the first term does not tend to zero. No matter how many random variables

we average (in this case, predictions from different models), we cannot reduce the
variance below ρσ2.

Random forests is a form of bagging applied to classification trees, but modified so

as to reduce correlation across the trees.

The trick is not to allow all possible splits. Instead, the algorithm randomly selects
m out of p possible variables for splitting.

Typically, m is quite small, like
√
p. That is the default for classification. The

default for regression is p/3.

If m = p, random forests is simply bagging applied to trees.

Here is the random forests algorithm:

For b = 1 to B,

1. Draw a bootstrap sample Z∗b from the training data.
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2. Grow a random-forest tree T b by repeating the following steps for each terminal

node until the minimum node size is reached:

i. Select m variables at random from the p variables;

ii. Pick the best variable and split-point among the m variables, and split

that terminal node into two daughter nodes.

3. Output the ensemble of trees {Tb}B1 .

4. For regression, the prediction is

f̂B
rf (x) =

1

B

B∑
b=1

Tb(x). (28)

For classification, each tree makes a prediction. For the random forest, choose the

class that gets the most votes.

Like other classification methods, this may give unsatisfactory results if the condi-
tional probabilities of some classes are never very large.

Would it be better to average the estimated probabilities?
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Reducing m tends to reduce the correlation between any pair of trees and hence

reduce the variance in (27).

6.6. Out-of-bag samples

It is possible to perform a sort of cross-validation while constructing a random

forest, without explicitly constructing cross-validation subsamples.

For each observation, keep track of whether it appears in bootstrap sample b or not.

If it appears, omit that bootstrap sample in the out-of-bag, or OOB, predictor.

The usual predictor (28) is based on all bootstrap samples, while the OOB one

omits approximately 36.8% of them.

Use the OOB errors in the same way you would normally use errors from cross-

validation samples, in this case to decide how many trees to average.

For regression, simply average the OOB predictors and find the resulting residuals
to obtain mean squared error.

For classification, we can take a majority vote or use the average of the predictions.
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Figures 15.1 to 15.3 from ESL compare random forests with other methods; see

ESL-fig15.01-03.pdf.

In these examples, random forests beat bagging but perform less well than boosting.
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