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5. Kernel Density Estimation

Two useful books are Li and Racine (2007) and Henderson and Parmeter (2015).

The simplest way to estimate a CDF graphically is to use the empirical distribution

function, or EDF.

Suppose we have a sample xi, i = 1, . . . , N , of realizations of a random variable X.
Then the EDF at any point x is

F̂ (x) ≡ 1

N

N∑
i=1

I(xi ≤ x), (1)

where I(·) is the indicator function. This is not a smooth function of x.

The traditional way to estimate a probability density function graphically is to form

a histogram. This would be the right thing to do if the data were discrete.
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The interval containing the xi is partitioned into a set of subintervals by a set of

points zj , j = 1, . . . ,M , with zj < zj+1 for all j, where typically M << N .

Like the EDF, the histogram is a locally constant function with discontinuities.
Unlike the EDF, the histogram is discontinuous at the zj , not the xi.

Let j be such that zj ≤ x < zj+1 for some x. Then the histogram is just the
following estimate of the density function at x:

f̂(x) =
1

N

N∑
i=1

I(zj ≤ xi < zj+1)

zj+1 − zj
. (2)

The value of the histogram at x is the proportion of the sample points contained in
the same bin as x, divided by the length of the bin.

A histogram is extremely dependent on the choice of the partitioning points zj .

With just two zj , the histogram would look like a uniform distribution with lower
limit z1 and upper limit z2.

With a great many zj , many bins would be empty. The remaining bins would

contain spikes, because zj+1 − zj would tend to 0 as the partition became finer.
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We want neither too few nor too many bins. To prove anything about asymptotic

validity, we would need a rule for increasing the number of bins as N → ∞.

5.1. Kernel estimation of distribution functions

The discontinuous indicator function I(xi ≤ x) in (1) can be interpreted as the CDF
of a degenerate random variable which puts all its probability mass on xi.

The EDF can be thought of as the unweighted average of these CDFs.

We can obtain a smooth estimator of the CDF by replacing the discontinuous func-
tion I(x ≥ xi) in (1) by a continuous CDF that has support in an interval contain-

ing xi. This will give us a weighted average.

Let K(z) be any continuous CDF corresponding to a distribution with mean 0. This
function is called a cumulative kernel. It usually corresponds to a distribution with

a density that is symmetric around the origin, such as the standard normal.

In order to be able to control the degree of smoothness of the estimate, we set the
variance of the distribution characterized by K(z) to 1 and introduce the bandwidth

parameter h as a scaling parameter.
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This gives the kernel CDF estimator

F̂h(x) =
1

N

N∑
i=1

K
(xi − x

h

)
. (3)

This estimator depends on the cumulative kernel K(·) and the bandwidth h.

As h → 0, a typical term of the summation on the right-hand side of (3) tends to
I(xi ≥ x) = I(x ≤ xi), and so F̂h(x) tends to the EDF F̂ (x) as h → 0.

At the other extreme, as h becomes large, a typical term of the summation tends
to the constant value K(0), which makes F̂h(x) very much too smooth.

In the usual case in which K(z) corresponds to a symmetric distribution, F̂h(x)
tends to 0.5 as h → ∞.

It has been shown that h = 1.587sN−1/3 is optimal for CDF estimation, where s
is the standard deviation of the xi.

Here “optimal” means that we minimize the asymptotic mean integrated squared

error, or AMISE; see below.

Slides for ECON 950 4



5.2. Kernel estimation of density functions

For density estimation, we can choose K(z) to be not only continuous but also
differentiable. Then we define the kernel function, often simply called the kernel,

as k(z) ≡ K ′(z).

If we differentiate equation (3) with respect to x, we obtain the kernel density
estimator

f̂h(x) =
1

Nh

N∑
i=1

k
(xi − x

h

)
. (4)

Notice that we divide by Nh rather than just N .

Like the kernel CDF estimator (3), the kernel density estimator (4) depends on the
choice of kernel k(·) and the bandwidth h.

One very popular choice for k(·) is the Gaussian kernel, which is just the standard
normal density ϕ(·). It gives a positive (although perhaps very small) weight to

every point in the sample.
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Another commonly used kernel, which has certain optimality properties, is the

Epanechnikov kernel,

k1(z) =
3(1− z2/5)

4
√
5

for |z| <
√
5, 0 otherwise. (5)

This kernel gives a positive weight only to points for which |(xi − x)|/h <
√
5.

Yet another popular kernel is the biweight kernel:

k2(z) =
15

16
(1− z2)2 I(|z| ≤ 1). (6)

This is quite similar to the Epanechnikov kernel, but it squares the argument and
involves different constants.

Three properties shared by all these kernels, and other second-order kernels, are

κ0(k) ≡
∫ ∞

−∞
k(z)dz = 1, (7)

κ1(k) ≡
∫ ∞

−∞
zk(z)dz = 0, (8)
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and

κ2(k) ≡
∫ ∞

−∞
z2k(z)dz < ∞. (9)

The first property is shared by all PDFs.

The second property is that the kernel has first moment zero. It is satisfied by any
kernel that is symmetric about zero.

The third property is that the kernel has finite variance. It is essential for estimates
based on the kernel k to have finite bias.

The big difference between the Epanechnikov and Gaussian kernels is that the

former is 0 for |z| >
√
5, while the latter is always positive.

It can be shown that, to highest order, the bias of the kernel estimator is

E
(
f̂h(x)− f(x)

) ∼= h2

2
f ′′(x)κ2(k), (10)

where f ′′(x) is the second derivative of the density f(x). Recall from (9) that κ2(k)

is the second moment of the kernel k.
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Notice that the bias does not depend directly on the sample size. It only depends

on N through h, which should become smaller as N increases.

Since bias is proportional to h2, it may seem that we should make h very small.
But that turns out to be desirable only when N is very large.

The shape of the density matters. If the slope of the density is constant, then
f ′′(x) = 0, and there is no bias.

It can also be shown that, to highest order, the variance of f̂h(x) is

E
(
f̂h(x)− f(x)

)2 ∼=
1

Nh
f(x)R(k), (11)

where

R(k) =

∫
k2(z)dz (12)

measures the “difficulty” of the kernel.

Note that the variance depends inversely on both the sample size and the bandwidth.
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It makes sense that the variance goes up as h goes down, because fewer observations

are averaged to give us the estimate for any x.

In choosing h, there is a tradeoff between bias and variance. A larger h increases

bias but reduces variance.

Making h larger is like making k larger in kNN estimation.

The asymptotic mean squared error, or AMSE, is

AMSE
(
f̂h(x)

)
= Bias2

(
f̂h(x)

)
+Var

(
f̂h(x)

)
∼= 1−

4
κ2
2(k)

(
f ′′(x)

)2
h4 + (Nh)−1f(x)R(k).

(13)

If we held h fixed as N → ∞, the first term (bias squared) would stay constant,
and the second term (variance) would go to zero.

Thus we want to make h smaller as N increases. But we need to ensure that
Nh → ∞ as N → ∞ to make the second term go away.

The AMSE depends on x, so it will be different in different parts of the distribution.
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There is no law requiring h to be the same for all x, although using more than one

value risks causing visible artifacts where h changes.

If our objective is simply to draw a picture that looks nice and accurately portrays

the true distribution, we may well want to use more than one value of h, but we
will have to smooth out the artifacts.

To get an overall result, it is common to consider the asymptotic mean integrated

squared error, or AMISE:

AMISE
(
f̂h(x)

)
=

∫ ∞

−∞
AMSE

(
f̂h(z)

)
dz

∼= 1−
4
h4κ2

2(k)R(f ′′) +
R(k)

nh
,

(14)

where R(f ′′) measures the “roughness” of f(x). Note that R(f ′′) should not be
confused with R(k)!

Larger values of R(f ′′) imply that the density is harder to estimate.

AMISE involves the same tradeoff between bias and variance as AMSE, but it does

not depend on x because we have integrated it out.
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The Epanechnikov kernel is optimal, in the sense that it minimizes AMISE. The

efficiency of some other kernel, say kg(·), relative to k1(·) is

R(kg)κ2(kg)
1/2

R(k1)
. (15)

The quantity κ2(k1) does not appear here, because κ2(k1) = 1. The loss in efficiency
relative to Epanechnikov is roughly 0.61% for biweight and 5.13% for Gaussian.

5.3. Bandwidth selection

The choice of bandwidth is far more important than the choice of kernel.

The optimal bandwidth for minimizing AMSE is

hopt = N−1/5

(
f(x)R(k)

κ2
2(k)

(
f ′′(x)

)2
)1/5

. (16)

and the optimal bandwidth for minimizing AMISE is

hopt = N−1/5

(
R(k)

κ2
2(k)R(f ′′)

)1/5
. (17)
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These results make it clear that h should get smaller as N gets larger, but quite

slowly. For example,
N = 10 −→ h ∝ 0.63096

N = 100 −→ h ∝ 0.39811

N = 1000 −→ h ∝ 0.25119

N = 10,000 −→ h ∝ 0.15849

N = 100,000 −→ h ∝ 0.10000

Here N increases by a factor of 10,000, and h shrinks by a factor of just 6.3.

For any density and any kernel, one can figure out R(k), κ2(k), and R(f ′′). In the
case of the Gaussian kernel and a normal density, these are

R(k) = (2
√
π)−1, κ2(k) = 1, and R(f ′′) =

2

8
√
πσ5

. (18)

Substituting these into expression (17) for hopt, we find that

hopt =

(
8
√
πσ5

6
√
π

)1/5
N−1/5 =

(
4−
3

)1/5
σN−1/5 ∼= 1.059σN−1/5. (19)

Slides for ECON 950 12



This leads to Silverman’s rule-of-thumb bandwidth:

hrot = 1.059sN−1/5, (20)

where s is the sample standard deviation.

When a distribution has heavy tails, s is not a very good measure of dispersion.

A more robust measure is the inter-quartile range. For a normal distribution,
σ = IQR/1.349. Thus we can either replace s in the rule-of-thumb bandwidth

by IQR/1.349, or (to avoid over-smoothing) replace it by min(s, IQR/1.349).

For the Epanechnikov kernel, the constant that corresponds to 1.059 is 1.049. It

is a little bit smaller because of the greater efficiency of estimation based on the
Epanechnikov kernel.

Of course, any rule-of-thumb bandwidth may fail badly if the distribution being
estimated differs a lot from the normal. There are likely to be severe problems if
the distribution is multi-modal.

We evidently need a way to estimate R(f ′′).
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H&P (2015) discuss various plug-in methods. All of these essentially require that

we obtain a kernel estimate of R(f ′′), which is then used to estimate the optimal
bandwidth.

But estimating R(f ′′) requires a bandwidth parameter, and estimating it requires
another bandwidth parameter, and so on!

5.4. Some numerical examples

Figure 1 shows kernel density estimates for CRVE t statistics based on 5000 repli-
cations using a Gaussian kernel.

We would expect these t statistics to be more or less symmetrically distributed, but
with variance greater than 1 and quite possibly kurtosis greater than 3σ4.

There are three estimated densities, using

hrot = 1.059N−1/5

hbig = 1.5× 1.059N−1/5

hsmall = 0.5× 1.059N−1/5
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Figure 1. Kernel density estimates for CRVE t statistics
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The figure is plotted for 601 values of t evenly spaced between −6.0 and 6.0.

It is clear from the figure that hsmall is too small, because there are lots of wiggles.

It is not so obvious that hbig is too big.

All three estimates give us a pretty good idea of what the density looks like. hbig

gives the nicest picture, but perhaps the peak is too low.

Figure 2 is similar, but it graphs the density of 4999 bootstrap (t∗) statistics. It
seems even more obvious that hsmall is too small.

In this case, we can generate as many observations as we like. With N sufficiently

large, we should get essentially the same figure for any sensible value of h.

With real data, on the other hand, N may be too small to yield reliable estimates.

We can often obtain a density that looks nice by making h too large, but it may
deviate a lot from the truth, especially in the tails and near the peak.

If multi-modal densities are possible and interesting, we do not want to make the

bandwidth so large that the second mode disappears.
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Figure 2. Kernel density estimates for bootstrap CRVE t∗ statistics
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5.5. Kernel regression

The simplest approach to nonparametric regression is kernel regression.

Suppose that two random variables Y and X are jointly distributed, and we wish
to estimate the conditional expectation µ(x) ≡ E(Y |x) as a function of x, using a
sample of paired observations (yi, xi) for i = 1, . . . , n.

For given x, consider the function G(x) defined as

G(x) = E
(
Y I(X ≤ x)

)
=

∫ x

−∞

∫ ∞

−∞
y f(y, z) dy dz, (21)

where f(y, x) is the joint density of Y and X. Let g(x) ≡ G′(x) denote the first
derivative of G(X).

A natural unbiased estimator of G(x) is 1
N

∑N
i=1 yi I(xi ≤ x).

But this estimator, like the EDF, is discontinuous. We need to replace the indicator

function by something smoother if we are to estimate the derivative of G(x).

Slides for ECON 950 18



The simplest approach is to replace I(xi ≤ x) by a cumulative kernel. Thus we

obtain the biased but smooth estimator

Ĝh(x) =
1

N

N∑
i=1

yiK
(x− xi

h

)
, (22)

where K is a cumulative kernel (that is, the CDF of a distribution with mean 0 and
variance 1), and h is a bandwidth parameter.

In order to obtain a kernel regression, we need to find the derivative of (22), say
ĝh(x), and estimate the marginal density of X.

This yields the Nadaraya-Watson, or locally constant, estimator

µ̂h(x) =

∑N
i=1 yiki(x)∑N
i=1 ki(x)

, ki(x) ≡ k
(x− xi

h

)
, (23)

where k ≡ K ′ is a kernel function.

The numerator of (23) is a weighted average of the values of yi in the neighborhood

of x, and the denominator is a kernel estimate of the density of X at the point x.
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The Nadaraya-Watson estimator is the solution to the estimating equation

N∑
i=1

ki(x)
(
yi − µ̂h(x)

)
= 0. (24)

This is the empirical counterpart of a weighted average of the yi − µ(x).

But the conditional expectation of yi is not µ(x) but µ(xi). This causes bias.

A better approximation is the two-term Taylor expansion µ(x) + µ′(x)(xi − x), in
which both µ(x) and µ′(x) are unknown.

Both of these unknowns can be estimated simultaneously by solving the estimating

equations
N∑
i=1

ki(x)
(
yi − µ(x)− µ′(x)(xi − x)

)
= 0 (25)

and
N∑
i=1

ki(x)(xi − x)
(
yi − µ(x)− µ′(x)(xi − x)

)
= 0. (26)
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The simplest way to solve these equations is to run the linear regression

k
1/2
i (x)yi = µ(x)k

1/2
i (x) + µ′(x)(xi − x)k

1/2
i (x) + residual, (27)

so as to obtain the locally linear estimator of µ(x), which is just the first estimated

coefficient, say µ̂LL
h . Regression (27) is called a local(ly) linear regression.

We must run regression (27) for every value of x at which we wish to evaluate µ(x).
How many observations it involves depends on the kernel and the bandwidth.

For a Gaussian kernel, regression (27) always has N observations. For an Epanech-
nikov kernel, it typically has a smaller (perhaps much smaller) number.

Observations near x get large weights, and observations far away get small weights.
With kernels such as Epanechnikov, the latter actually get zero weights.

We could add additional terms, such as

µ′′(x)k
1/2
i (x)(xi − x)2, (28)

to regression (27). This would give us a locally quadratic estimator. More generally,

we would have a locally polynomial estimator.
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It can be shown that, to second order, the bias of the locally constant estimator is

κ2(k)

2f(x)
h2
(
2µ′(x)f ′(x) + µ′′(x)f(x)

)
= 1−

2
κ2(k)h

2µ′′(x) + κ2(k)h
2µ′(x)

f ′(x)

f(x)
,

(29)

where µ′(x) and µ′′(x) denote the first and second derivatives of the conditional
mean function evaluated at x.

The first term depends on the second derivative of µ(x), and the second term

depends on the first derivative. So there will be no bias if µ(x) is a horizontal line.

Recall that f(x) is the density of the xi at x, and f ′(x) is its first derivative. Also,

recall from (9) that κ2(k) is the second moment of the kernel k.

Thus bias will be larger for kernels with larger variance and when the density of x

is changing more rapidly.

Similarly, to second order, the bias of the locally linear estimator is

Bias(µ̂LL
h ) = 1−

2
κ2(k)h

2µ′′(x). (30)
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The bias of the LL estimator, expression (30), is equal to the first term of the bias

of the LC estimator in the second line of (29).

The second term in (29) depends on µ′(x), but the common term depends only on

µ′′(x). So, as we might expect, the LL estimator is unbiased if µ(x) is linear.

To highest order, the variance of both estimators is the same:

Var(µ̂LC
h ) = Var(µ̂LL

h ) ∼=
σ2R(k)

Nhf(x)
, (31)

where σ2 is the variance of the regression disturbances. Unlike the bias, this does
not depend on the regression function we are estimating.

It is possible to find an optimal bandwidth by minimizing AMISE, but the result
depends on:

• the sample size, with a factor of N−1/5;

• the density of x, the regressor;

• the variance of the disturbances;
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• the shape of the regression function; and

• the kernel.

In practice, people generally do not attempt to estimate the optimal bandwidth.

Instead, they typically use leave-one-out cross-validation. For the locally constant

(LC) estimator, we choose h to minimize

LSCV(h) =
N∑
i=1

(
yi − µ̂−i(xi)

)2
, (32)

where

µ̂−i(xi) =

∑N
j ̸=i yjkh(xj , xi)∑N
j ̸=i kh(xj , xi)

. (33)

For each i, this is just the kernel-weighted average of all the yj for j ̸= i.

5.6. A numerical example

I generated 400 observations from an artificial DGP that is linear for xi below a

certain value and quite nonlinear beyond that point.
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I used an Epanechnikov kernel, with either a default bandwidth of h = sN−1/5 or

a value of h chosen by cross-validation.

The LC estimates totally miss the rightmost data points, and also perform poorly
for the leftmost ones.

The reason is obvious: For the rightmost points, LC is taking a weighted average
of points that are (almost) all to the left of them.

To avoid this, LSCV makes h quite small, which causes the fitted values to wiggle.

LL estimates are much more plausible than LC ones. h chosen by cross-validation is

smaller than baseline value, but not much difference between two sets of estimates.

Values of the cross-validation function:

LC: baseline h (0.9803): 2.8525 optimal h (0.2498): 2.4960

LL: baseline h (0.9803): 2.4947 optimal h (0.6920): 2.4693

It is not a coincidence that the optimal bandwidth is much larger for LL regression

than for LC regression.
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Figure 3. Locally constant kernel regression using simulated data

Slides for ECON 950 26



The choice of h involves a tradeoff between bias and variance. We saw in (31) that

the variance of the two estimators is similar and declines with h.

We also saw that the bias of LC, in (29), is larger than the bias of LL, in (30).

These both increase with h.

Therefore, the tradeoff favours making h larger for LL than for LC.

We can afford to make the bias term larger by making h larger when the bias term
is smaller to begin with.

5.7. More on Kernels

We previously defined the Epanechnikov kernel as

k1(z) =
3(1− z2/5)

4
√
5

for |z| <
√
5, 0 otherwise. (34)

ESL define it as

D(t) =
3

4
(1− t2) for |t| < 1, 0 otherwise. (35)
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Figure 4. Locally linear kernel regression using simulated data
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Thus t = z/
√
5 and k1(z) = D(t)/

√
5.

We can obviously choose bandwidths so that kernel regression based on (34) and

(35) are identical.

ESL define

Kλ(x0, x) = D

(
|x− x0|

λ

)
, (36)

whereas we used

k1

(
x− x0

h

)
. (37)

It seems odd that ESL use absolute values in (36) when the argument of D(t) is

squared.

A kernel that looks a lot like the Epanechnikov kernel but is differentiable is the
tri-cube kernel

D(x) =
(
1 + |t3|

)3
for |t| < 1, 0 otherwise. (38)
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5.8. Local Regression in Higher Dimensions

It is easy to generalize Nadaraya-Watson kernel regression and locally linear or
quadratic regression to more than one dimension, although it may not be a good
idea for p > 2.

For example, we might have

b(x) = [1 x1 x2]
⊤, (39)

for locally linear regression in two dimensions, or

b(x) = [1 x1 x2 x2
1 x2

2 x1x2]
⊤, (40)

for locally quadratic regression in two dimensions. We minimize

N∑
i=1

Kλ(x0,xi)
(
yi − b⊤(xi)β(x0)

)2
(41)

and obtain the fitted values f̂(x0) = b⊤(x0)β̂(x0).
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The kernel is usually a radial Epanechnikov or tri-cube:

Kλ(x0,x) = D

(
||x− x0||

λ

)
, (42)

where the predictors should usually be standardized.

It is impossible to maintain both low bias and low variance, unless the sample has

a great many points near every interesting value of x0. This is extremely difficult
to achieve unless N is very large.

For bias to be small, we need all the points that get much weight to be near x0,
which implies that λ must be small.

For the variance to be small, we need there to be a lot of points that are near x0,

which implies that λ must be large.

The only way that λ can be small enough for low bias and large enough for low
variance is if N increases exponentially in p.
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5.9. Structured Local Regression Models

Unless p is very small, we need to impose structure on the model.

For example, we can use a structured regression function such as

f(x) = α+

p∑
j=1

gj(xj) +
∑
k<ℓ

gkℓ(xk, xℓ) + . . . (43)

This generalizes the partially linear regression model. Typically, there cannot be

too many higher-order terms. For additive models, there are just the gj(xj).

Instead of a nonlinear function for one variable and a linear model for all the others,
(43) has many one-dimensional and two-dimensional nonlinear models to estimate.

This can be done iteratively. Consider the additive case. If we centre the data and
all the gj(xj) except gk(xk) are assumed known, we can estimate an additive model

by repeatedly running the local regression

y −
∑
j ̸=k

gj(xj) = gk(xk) + resid. (44)
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We cycle through j from 1 to p until convergence. We may have to estimate a lot

of local regressions, but each one is just one-dimensional.

Another type of model is the varying coefficient model. Let z denote xp and define
q ≡ p− 1. Then consider the model

f(x) = β0(z) + β1(z)x1 + . . .+ βq(z)xq, (45)

where there are now p nonlinear functions to estimate. Conditional on them, we
simply have a linear regression model.

It can be fitted by locally weighted least squares. We minimize

N∑
i=1

Kλ(z0, zi)
(
yi − xi

⊤β(z0)
)2

(46)

with respect to the vector β(z0) for each value of z0.

Slides for ECON 950 33



5.10. Local Likelihood

Any parametric model can be converted to a local one by using weights that vary
across observations according to the value of x.

In particular, it is easy to turn globally linear models into locally linear ones.

Suppose the model has a loglikelihood function

ℓ(β
)
=

N∑
i=1

ℓ(yi,xi
⊤β). (47)

An obvious example is a logit or probit model. Then we can estimate a locally
linear version by maximizing

ℓ
(
β(x0)

)
=

N∑
i=1

Kλ(x0,xi)ℓ
(
yi,xi

⊤β(x0)
)
. (48)

Here we weight contributions to the loglikelihood instead of squared residuals.
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We could also estimate a model with varying coefficients by maximizing

ℓ
(
θ(z0)

)
=

N∑
i=1

Kλ(z0, zi)ℓ
(
yi,xi

⊤θ(z0)
)

(49)

with respect to the vector θ(z0) for each value of z0; compare (46).

Consider the multiple logit model with J responses, where

Pr(G = j |x) = exp(βj0 + x⊤βj)

1 +
∑J−1

k=1 exp(βk0 + x⊤βk)
, (50)

where βJ0 = 0 and βJ = 0.

The local loglikelihood for this model is

N∑
i=1

Kλ(x0,xi)

(
βgi0(x0) + (xi − x0)

⊤βgi(x0)

− log

(
1 +

J−1∑
k=1

exp
(
βk0(x0) + (xi − x0)

⊤βgi(x0)
)))

.

(51)
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Because the regressions are centred at x0, the posterior probabilities at x0 are

simply

P̂r(G = j |x0) =
exp
(
β̂j0(x0)

)
1 +

∑J−1
k=1 exp

(
β̂k0(x0)

) . (52)

They do not depend on the vectors β̂j(x0).

Since P̂r(G = j |x0) just depends on x0 and the coefficients β̂j0, j = 1, J − 1, we
can calculate its standard error using the delta method.

This model can be used for classification in low dimensions.
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