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4. Linear Methods for Classification

The output variable is now discrete. We want to divide up the space of the input
variables into a collection of regions associated with K different predicted outcomes

(or groups, or classes).

Let Y be a matrix with K columns of observations on the output variables. Each

column contains 0s and 1s, and each row contains a single 1.

For example, if observation 44 belongs to group 3, row 44 of Y will have a 1 in
column 3 and 0s in all other columns.

The OLS estimator is

B̂ = (X⊤X)−1X⊤Y , (1)

where B̂ is (p+ 1)×K and X has p+ 1 columns, one of them a constant term.
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This is a generalization of the linear probability model. The latter is used when

there are only two outcomes. In that case, we can use just one regression, because
the fitted values must sum to 1 over all the equations.

In general, we could get away with estimating K − 1 regressions and obtaining the
fitted values for the K th by using this property.

For any input vector x, we can calculate the fitted output f̂(x) = [1,x⊤]B̂, which

is a K-vector.

Then we classify x as belonging to group (or class, or region) k if k corresponds to
the largest element of f̂(x).

Unfortunately, as ESL explains, linear regression often performs very badly when
K ≥ 3. The problem is “masking,” where middle classes get missed.

ESL works through an example where the largest value of x⊤B̂k is always for one of
the two extreme classes, even though it is easy to see visually that there are three

classes which can be separated without error.

This example is shown in ESL-fig4.02.pdf.
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4.1. Linear Discriminant Analysis

Suppose that fk(x) is the density of X in class k, where k runs from 1 to K.

Suppose that πk is the prior probability of class k, where the event G = k means
that the class actually is k.

Then, by Bayes’ theorem,

Pr(G = k |x) = πkfk(x)∑K
ℓ=1 πℓfℓ(x)

. (2)

So we just need to find the fk(x) and combine them with the prior probabilities.

If the density of each class is multivariate normal,

fk(x) =
1

(2π)p/2|Σk|1/2
exp
(
− 1−

2
(x− µk)

⊤Σ−1
k (x− µk)

)
. (3)

In the case of linear discriminant analysis, we assume that Σk = Σ for all k.
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In general, the log of the ratio of the posteriors (that is, the log odds) is

log
πk

πℓ
+ log

fk(x)

fℓ(x)
. (4)

When the densities are given by (3) with constant Σ, this reduces to

log
πk

πℓ
− 1−

2
(x− µk)

⊤Σ−1(x− µk) +
1−
2
(x− µℓ)

⊤Σ−1(x− µℓ). (5)

Because the two covariance matrices are the same, this simplifies to

log
πk

πℓ
− 1−

2
(µk − µℓ)

⊤Σ−1(µk − µℓ) + x⊤Σ−1(µk − µℓ), (6)

which is linear in x.

Since this is true for any pair of classes, all boundaries must be hyperplanes.

Where else have we seen a model in which the log of the odds is linear in x? The

logistic regression or logit model!
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The linear discriminant function for class k is

δk(x) = x⊤Σ−1µk − 1−
2
µk

⊤Σ−1µk + log πk. (7)

We simply classify x as belonging to the class k for which (7) is largest.

Of course, for all the classes, we need to estimate

π̂k = Nk/N, (8)

µ̂k =
1

Nk

∑
i∈Gk

xi (9)

Σ̂ =
1

N −K

K∑
k=1

∑
i∈Gk

(xi − µ̂k)(xi − µ̂k)
⊤. (10)

Here Gk is the set of observations that belong to class k.

Since the values of δk(x) depend on the π̂k, we could change the boundaries of the

classes by using different estimates of the πk.

Slides for ECON 950 5



For example, we could shrink them towards 1/K:

π̂k(α) = α
Nk

N
+ (1− α)

1

K
. (11)

When N is small and the Nk are not too different, this ought to produce better

results by accepting more bias in return for less variance.

ESL discusses the relationship between LDA and classification by linear regression.
For two classes, there is a close relationship.

4.2. Quadratic Discriminant Analysis

If the Σk matrices are not equal, then the log odds does not simplify to (6).

In contrast to (7), the discriminant functions are now quadratic in x. The quadratic

discriminant functions are

δk(x) = − 1−
2
log |Σk| − 1−

2
(x− µk)

⊤Σ−1
k (x− µk) + log πk. (12)
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Now we have to estimate separate covariance matrices for each class:

Σ̂k =
1

Nk

∑
i∈Gk

(xi − µ̂k)(xi − µ̂k)
⊤. (13)

Note that these matrices are p× p, each with p(p+ 1)/2 parameters to estimate.

Especially when some of the Nk are small, the Σk may not be estimated very well,
which will probably cause the classification procedure to perform much worse on

the test data than on the training data.

There is an interesting alternative to QDA that is based on LDA.

Simply augment x by adding all squares and cross-products, and then perform
LDA. See ESL-fig4.01.pdf and ESL-fig4.06.pdf. Of course, this also adds a lot of
parameters if p is large.

ESL reports that LDA and QDA often work remarkably well, even though the
Gaussian assumption, and the equal covariance matrix assumption, are surely not

true in the vast majority of cases.

Slides for ECON 950 7



Presumably, the parsimony of LDA causes it to have low variance but high bias. In

many cases, it is apparently worth accepting a lot of bias in return for low variance.

Perhaps the data can only support simple decision boundaries such as linear or
quadratic ones, and the estimates provided via the Gaussian LDA and QDA models
are stable.

Since we need |Σ̂k| and Σ̂−1
k rather than just Σ̂, it is convenient to use the eigen

decomposition

Σ̂k = UkDkUk
⊤. (14)

Then

log |Σ̂k| =
p∑

ℓ=1

log dkℓ, (15)

and

(x− µ̂k)
⊤Σ̂−1

k (x− µ̂k) =
(
Uk

⊤(x− µ̂k)
)⊤D−1

k

(
Uk

⊤(x− µ̂k)
)
. (16)

Getting the eigenvalues and eigenvectors is expensive, but it gives us the determi-

nant and the inverse almost for free.
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4.3. Regularized Discriminant Analysis

We can shrink the covariance matrices towards their average:

Σ̂k(α) = αΣ̂k + (1− α)Σ̂. (17)

Of course, α has to be chosen, perhaps by cross-validation.

Similarly, we could shrink Σ̂ towards the scalar covariance matrix σ̂2I:

Σ̂(γ) = γΣ̂ + (1− γ)σ̂2I. (18)

Combining (17) and (18), we could use

Σ̂k(α, γ) = αΣ̂k + (1− α)
(
γΣ̂ + (1− γ)σ̂2I

)
, (19)

which has two tuning parameters to specify.

In Section 4.3.3, ESL goes on to discuss reduced-rank LDA, which is closely related

to LIML and to Johansen’s approach to cointegration.
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4.4. Logistic Regression

The log of the odds between any two classes is assumed to be linear in x. This
implies that

Pr(G = k |x) = pk(x,θ) =
exp(βk0 + x⊤βk)

1 +
∑K−1

ℓ=1 exp(βℓ0 + x⊤βℓ)
, (20)

where θ contains all of the parameters. There are (K − 1) ∗ (p+ 1) of these.

ESL discusses ML estimation of the logit model (K = 2) in Section 4.4.1. What
they have there, and later in Section 4.4.3 on inference, is closely related to the
material in Sections 11.2 and 11.3 of ETM.

They do not discuss estimation of the multinomial logit (multilogit) model except
in Exercise 4.4.

For binary logit, the probability of class 1 is

p(x,θ) =
exp(β0 + xi

⊤β)

1 + exp(β0 + xi
⊤β)

=
1

1 + exp(−β0 − xi
⊤β)

. (21)
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Thus the contributions to the loglikelihood are

β0 + xi
⊤β − log

(
1 + exp(β0 + xi

⊤β)
)

if yi = 1 (22)

and
− log

(
1 + exp(β0 + xi

⊤β)
)

if yi = 0. (23)

The sum of these contributions over all observations is the loglikelihood function:

ℓ(β) =
N∑
i=1

(
yi(β0 + xi

⊤β)− log
(
1 + exp(β0 + xi

⊤β)
))
. (24)

To maximize ℓ(β), we differentiate with respect to β0 and each element of β and
set the derivatives to 0.

The first-order condition for β0 is interesting:

N∑
i=1

yi −
N∑
i=1

exp(β0 + xi
⊤β)

1 + exp(β0 + xi
⊤β)

= 0. (25)
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So the sum of the yi must be equal to the sum of the probabilities that y = 1. Thus,

at the ML estimates, the expected number of 1s must equal the actual number.

This is similar to the condition for OLS that the mean of the regressand must equal
the mean of the fitted values.

The loglikelihood (24) can be maximized by a quasi-Newton method that is equiv-
alent to iteratively reweighted least squares. See ESL, p. 121 or ETM pp. 455-456.

4.5. Regularized Logistic Regression

Of course, we can penalize the loglikelihood function for (multinomial) logit, using

either an L1 or L2 penalty, or perhaps both in the fashion of the elastic-net penalty.

ESL only discusses the L1 (lasso) case.

For the logit/lasso case, instead of maximizing

N∑
i=1

(
yi(β0 + xi

⊤β)− log
(
1 + exp(β0 + xi

⊤β)
))
, (26)
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we would maximize

1

N

N∑
i=1

(
yi(β0 + xi

⊤β)− log
(
1 + exp(β0 + xi

⊤β)
))

− λ

p∑
j=1

|βj |. (27)

The factor of 1/N is there to make λ not depend on N. Maximizing (27) apparently
requires nonlinear programming, but specialized procedures based on coordinate

descent are much faster.

For logit/ridge, we would replace the penalty term in (27) by

−λ

p∑
j=1

β2
j = −λ||β||2 = −λβ⊤β. (28)

I found a paper (le Cessie and van Houwelingen, JRSS C, 1992, 1531 cites) that

discusses this in detail. Estimation can be done using quasi-Newton methods, and
cross-validation can be used to choose λ.

Of course, we need to standardize the predictors before we use any sort of penalty.
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Although statisticians and econometricians typically use 0 and 1 as the values of

yi for classification problems with two classes, the machine learning community
typically uses −1 and +1.

With this convention, the negative of the loglikelihood (24) is replaced by

ℓ(β) =
N∑
i=1

log
(
1 + exp(−yi(β0 + xi

⊤β)
)
. (29)

Define f(xi) as β0 + xi
⊤β. Then yif(xi) is called the margin. When the margin is

positive/negative, the classification is correct/ incorrect.

4.6. Logistic Regression and LDA

Recall from (6) that the log of the odds between classes k and K for LDA is

log
πk

πK
− 1−

2
(µk − µK)⊤Σ−1(µk − µK) + x⊤Σ−1(µk − µK)

= αk0 + x⊤αk.
(30)
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For logistic regression, the log of the same odds is

βk0 + x⊤βk. (31)

Except for the names of the coefficients, (30) and (31) look identical!

However, the coefficients are estimated differently. When we estimate LDA and
logit models, we maximize different things.

The joint density of x and G is

Pr(x, G = k) = Pr(x) Pr(G = k|x). (32)

LDA maximizes the loglikelihood function

N∑
i=1

K∑
k=1

log Pr(xi, G = k) =
N∑
i=1

K∑
k=1

(
log ϕ(xi;µk,Σ) + log πk

)
, (33)

where ϕ(·) is the multivariate normal density. This is based on the joint density

(32) of G and x.
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Implicitly, the joint density that appears in (33) depends on the marginal density

Pr(X) =
K∑

k=1

πkϕ(xi;µk,Σ), (34)

which we obtain by summing over all the classes.

In contrast, multinomial logit maximizes the loglikelihood function

N∑
i=1

K∑
k=1

log Pr(G = k|xi), (35)

which is based on the probability of G = k conditional on x. It does not depend on
the marginal density (34).

Because LDA uses more information, it should be more efficient than multilogit.
ESL cites a paper by Efron that says the efficiency loss is about 30%.

The loss could be much greater if we have lots of unlabelled observations. They can

be used to estimate Σ even though we don’t know what class they belong to.
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However, the additional information comes from the assumption that the x are

multivariate normal, which is a very strong assumption. Since (35) conditions on
the xi, the multilogit model makes no assumption about how they are generated.

Moreover, the assumptions of LDA make no sense if any of the regressors is cate-

gorical. Thus multilogit is safer and more widely applicable.

4.7. Structured Local Regression Models

Unless p is very small, we need to impose structure on the model.

One approach is to use a structured kernel such as

KλA(x0,x) = D

(
(x− x0)

⊤A(x− x0)

λ

)
, (36)

where A is a positive definite matrix that gives more or less weight to certain
directions.

ESL prefer to use structured regression functions such as

f(x) = α+

p∑
j=1

gj(xj) +
∑
k<ℓ

gkℓ(xk, xℓ) + . . . (37)
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These are generalizations of the partially linear regression model. Typically, there

cannot be too many higher-order terms. For additive models, there are just the p
functions gj(xj).

Instead of a nonlinear function for one variable and a linear model for all the others,
(37) has many one-dimensional and two-dimensional nonlinear models to estimate.

This can be done iteratively. Consider the additive case. If we centre the data, and

all the gj(xj) except gk(xk) are assumed known, we can estimate an additive model
by repeatedly running the local regression

y −
∑
j ̸=k

gj(xj) = gk(xk) + resid. (38)

We cycle through j from 1 to p until convergence. We may have to estimate a lot
of local regressions, but each one is just one-dimensional.

Another type of model is the varying coefficient model. Let z denote xp and define
q ≡ p− 1. Then consider the model

f(x) = β0(z) + β1(z)x1 + . . .+ βq(z)xq, (39)
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where there are now p nonlinear functions to estimate. Conditional on them, we

simply have a linear regression model.

It can be fitted by locally weighted least squares. We minimize

N∑
i=1

Kλ(z0, zi)
(
yi − xi

⊤β(z0)
)2

(40)

with respect to the vector β(z0) for each value of z0.

4.8. Local Likelihood

Any parametric model can be converted to a local one by using weights that vary
across observations according to the value of x.

In particular, it is easy to turn globally linear models into locally linear ones.

Suppose the model has a loglikelihood function

ℓ(β
)
=

N∑
i=1

ℓ(yi,xi
⊤β). (41)
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An obvious example is a logit or probit model. Then we can estimate a locally

linear version by maximizing

ℓ
(
β(x0)

)
=

N∑
i=1

Kλ(x0,xi)ℓ
(
yi,xi

⊤β(x0)
)
. (42)

Here we weight contributions to the loglikelihood instead of squared residuals.

We could also estimate a model with varying coefficients by maximizing

ℓ
(
θ(z0)

)
=

N∑
i=1

Kλ(z0, zi)ℓ
(
yi,xi

⊤θ(z0)
)

(43)

with respect to the vector θ(z0) for each value of z0; compare (40).

Consider the multilogit model with J responses, where

Pr(G = j |x) = exp(βj0 + x⊤βj)

1 +
∑J−1

k=1 exp(βk0 + x⊤βk)
, (44)

where βJ0 = 0 and βJ = 0.
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The local loglikelihood for this model is

N∑
i=1

Kλ(x0,xi)

(
βgi0(x0) + (xi − x0)

⊤βgi(x0)

− log

(
1 +

J−1∑
k=1

exp
(
βk0(x0) + (xi − x0)

⊤βgi(x0)
)))

.

(45)

Because the regressions are centred at x0, the posterior probabilities at x0 are
simply

P̂r(G = j |x0) =
exp
(
β̂j0(x0)

)
1 +

∑J−1
k=1 exp

(
β̂k0(x0)

) . (46)

Since P̂r(G = j |x0) just depends on x0 and the coefficients β̂j0, j = 1, J − 1, we
can calculate its standard error using the delta method.

This model can be used for classification in low dimensions.
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4.9. Kernel Estimation and Classification

This subsection is based on Sections 6.6 and 6.8 of ESL.

The Gaussian kernel, in ESL’s notation, is

f̂X(x) =
1

N

N∑
i=1

ϕλ(xi − x), (47)

where ϕλ(·) is the normal density with mean 0 and variance λ2. The factor of 1/λ

does not explicitly appear in (47) because it is part of ϕλ.

In the multivariate case, (47) generalizes to

f̂X(x) =
1

(2λ2π)p/2

N∑
i=1

exp
(
− 1−

2

(
||xi − x||2/λ

)
. (48)

Of course, the curse of dimensionality implies that we are likely to get very poor

estimates when p is large and N is not extremely large.
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We can use estimates like (48) for classification.

Suppose there are K classes. Then

P̂r(G = k |x) = π̂kf̂k(x)∑K
ℓ=1 π̂ℓf̂ℓ(x)

. (49)

This is just the empirical counterpart of (3). In most cases, we use the sample
proportions to estimate the π̂k, as in (8).

ESL note that, when classification is the goal, it is only points near the boundaries
that we are interested in. We want to estimate the posterior probabilities accurately
in those regions.

The naive Bayes estimator makes the extremely strong assumption that the joint
density of the components of x is the product of the marginal densities:

fk(x) =

p∏
j=1

fkj(xj), k = 1, . . . ,K. (50)
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For any x that interests us, we simply obtain p kernel density estimates, f̂kj , and

use their product to estimate f̂k(x).

If unrestricted kernel density estimates based on (48) are too noisy and the naive
Bayes estimator is too biased, another possibility is to estimate normal mixture
models.

In the multivariate case, a normal mixture has the form

f(x) =

M∑
m=1

αmϕ(x;µm,Σm), (51)

where the mixing proportions αm sum to unity.

We can estimate a model like (51) for each class, and these lead to flexible models
for Pr(G |x).

As previously discussed, we can also use kNN methods for classification. Simply
classify x as belonging to whatever class is most common among the k nearest

neighbours to x.
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4.10. The Curse of Dimensionality

The performance of kernel estimation (and smoothing methods in general, including
kNN) rapidly deteriorates as p increases.

The fundamental problem is that the volume of a mathematical space increases
exponentially with the number of dimensions.

The unit interval is a 1-dimensional hypercube. If we take 100 evenly-spaced points
on a grid, the distance between them will be only 10−2 = 0.01.

Any point we pick at random will be “close” to several of the points on the grid.

Suppose there are two dimensions instead of one. To get the same distance between
points on the grid (in the direction of each axis), we need 1002 = 10, 000 points.

Moreover, the average Euclidean distance between a point and its nearest neighbours
will be greater than 0.01, so that a randomly chosen point in the hypercube (a square

in this case) will be further away from the nearest point on the grid.

For three dimensions, we need 1003 = 1, 000, 000 points to achieve a distance of 0.01
in the direction of each axis, and the average Euclidean distance between a point

and its nearest neighbours will be even greater.
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Thus, unless the sample size increases very rapidly as p increases, the data become

much “sparser” as p increases. Any estimator based on local averages will have
fewer and fewer nearby points to average over as p increases.

When predictors take on discrete values, we get the same sort of problem. Suppose
that each predictor is binary. Then the number of possible sets of values is 2p.

For large p, this will be much larger than N, so many possible sets of predictor

values will never appear in any given sample.

A machine-learning algorithm that does not impose strong assumptions about func-
tional form cannot make reliable predictions about events that are not “close” to

ones observed in the sample.

This is one reason why high-dimensional methods, such as lasso, ridge, and elastic
net, do make strong assumptions about functional form.

We can handle problems with large p, or we can allow the relationship between
inputs and outputs to be very general, but we cannot do both.
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