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3. Methods Based on Linear Regression

The methods discussed in this section are primarily intended for high-dimensional

situations, where p is large relative to N, perhaps much larger than N.

We can write

f(x) = β0 + xβ = β0 +

p∑
j=1

βj xj , (1)

treating the constant and other regressors separately. In the notation of ETM, p
denotes k − 1, and N denotes n.

Of course, the xj can include transformations of inputs, such as square roots, logs,
squares, or higher powers, various types of dummy variables, and products of inputs
or of transformations of them.

So a “linear” regression model can actually allow for very nonlinear relationships.
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3.1. Regression by Successive Orthogonalization

When the xj are orthogonal, the β̂j = xj
⊤y/xj

⊤xj obtained by univariate regressions
of y on each of the xj are equal to the multiple regression least squares estimates.

We can accomplish something similar even when the data are not orthogonal. This
is called Gram-Schmidt Orthogonalization. It is related to the FWL Theorem.

1. Set z0 = x0 = ι.

2. Regress x1 on z0 to obtain a residual vector z1 and coefficient γ̂01.

3. For j = 2, . . . , p, regress xj on z0, . . . , zj−1 to obtain a residual vector zj and
coefficients γ̂ℓj for ℓ = 0, . . . , j − 1.

4. Regress y on zp to obtain β̂p = zp
⊤y/zp

⊤zp.

The scalar β̂p is the coefficient on xp in the multiple regression of y on a constant
and all the xj .

Note that step 3 simply involves j univariate regressions.

If we did this p + 1 times, changing the ordering so that each of the xj came last,

we could obtain all the OLS coefficients.
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The QR decomposition of X is

X = ZD−1DΓ = QR, (2)

where Z contains the columns z0 to zp (in order), Γ is an upper triangular matrix

containing the γ̂ℓj , and D is a diagonal matrix with typical diagonal element ||zj ||.
Thus Q = ZD−1 and R = DΓ .

It can be seen that Q is an N × (p+ 1) orthogonal matrix with the property that

Q⊤Q = I, and R is a (p+ 1)× (p+ 1) upper triangular matrix.

The QR decomposition provides a convenient orthogonal basis for S(X).

It is easy to see that

β̂ = (X⊤X)−1X⊤y = R−1Q⊤y, (3)

because
(X⊤X)−1 = (R⊤Q⊤QR)−1 = (R⊤R)−1 = R−1(R⊤)−1,

and

X⊤y = R⊤Q⊤y.
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Since R is triangular, it is very easy to invert. Also,

ŷ = PXy = QQ⊤y. (4)

so that
SSR(β̂) = (y −QQ⊤y)⊤(y −QQ⊤y) = y⊤y − y⊤QQ⊤y. (5)

The diagonals of the hat matrix are the diagonals of QQ⊤.

The QR decomposition is easy to implement and numerically stable. It requires

O(Np2) operations.

An alternative is to form X⊤X and X⊤y efficiently, use the Cholesky decomposition

to invert X⊤X, and then multiply X⊤y by (X⊤X)−1.

The Cholesky approach requires O(p3 +Np2/2) operations. For p << N , Cholesky
wins, but for large p QR does. Never use a general matrix inversion routine, because
such routines are not as stable as QR or Cholesky.

In extreme cases, QR can yield reliable results when Cholesky does not. If X⊤X
is not well-conditioned (i.e., if the ratio of the largest to the smallest eigenvalue is

large), then it is much safer to use QR than Cholesky. Intelligent scaling helps.
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3.2. Subset Selection

When p is large, OLS tends to have low bias but large variance.

By setting some coefficients to zero, we can often reduce variance substantially while

increasing bias only modestly.

It can be hard to make sense of models with a great many coefficients.

Best-subset regression tries every subset of size k = 1, . . . , p to find the one that,
for each k, has the smallest SSR.

There is an efficient algorithm, but it becomes infeasible once p becomes even mod-
erately large (say much over 40).

Forward-stepwise selection and backward-stepwise selection are feasible even when
p is large. The former works even if p > N .

To begin the forward-stepwise selection procedure, we regress y on each of the xj

and pick the one that yields the smallest SSR.

Next, we add each of the remaining p − 1 regressors, one at a time, and pick the

one that yields the smallest SSR.
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Then we add each of the remaining p−2 regressors, one at a time, and pick the one

that yields the smallest SSR.

If we are using the QR decomposition, we can do this efficiently. We are just adding
one more column to Z and hence Q, and one more row to Γ and hence R.

We do this for each of the candidate regressors and calculate the SSR from (5) for
each of them. We can reuse most of the elements of the old Q matrix.

For backward-stepwise regression, we start with the full model (assuming that
p < N) and then successively drop regressors. At each step, we drop the one with
the smallest t statistic.

Smart stepwise programs will recognize that regressors often come in groups. It
generally does not make sense to

• Drop a regressor X if the model includes X2 or XZ;

• Drop some dummy variables that are part of a set (e.g. some province dummies
but not all, or some categorical dummies but not all).

In cases like this, variables should be added, or subtracted, in groups.
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If we use either forward-stepwise or backward-stepwise selection, how do we decide

which model to choose?

The model with all p regressors will always fit best, in terms of SSR.

We either need to penalize the number of parameters (d) or use cross-validation.

Cp :
1

N
(SSR + 2dσ̂2) = (1 + 2d/N)σ̂2. (6)

Thus Cp adds a penalty of 2dσ̂2 to SSR.

The Akaike information criterion, or AIC, is defined for all models estimated by

maximum likelihood. For linear regression models with Gaussian errors,

AIC =
1

Nσ̂2
(SSR + 2dσ̂2), (7)

which is proportional to Cp.

More generally, with the sign reversed, the AIC equals 2 logL(θ |y) − 2d. Notice

that the penalty for AIC does not increase with N .
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The Bayesian information criterion, or BIC, for linear regression models is

BIC =
1

N

(
SSR + log(N)dσ̂2

)
. (8)

More generally, with the sign reversed, BIC = 2 logL(θ |y)− d logN .

When N is large, BIC places a much heavier penalty on d than does AIC, because
log(N) >> 2. Therefore, the chosen model is very likely to have lower complexity.

If the correct model is among the ones we estimate, BIC chooses it with probability 1
as N → ∞. The other two criteria sometimes choose excessively complex models.

3.3. Ridge Regression

As we have seen, ridge regression minimizes the objective function

N∑
i=1

(
yi − β0 −

p∑
j=1

βj xij

)2
+ λ

p∑
j=1

β2
j , (9)

where λ is a complexity parameter that controls the amount of shrinkage. This is

an example of ℓ2-regularization.
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Minimizing (9) is equivalent to solving the constrained minimization problem

min

N∑
i=1

(
yi − β0 −

p∑
j=1

βj xij

)2
subject to

p∑
j=1

β2
j ≤ t. (10)

In (9), λ plays the role of a Lagrange multiplier. For any value of t, there is an

associated value of λ, which might be 0 if t is sufficiently large.

Notice that the intercept is not included in the penalty term. The simplest way to
accomplish this is to recenter all variables before running the regression.

It would seem very strange to impose the same penalty on each of the β2
j if the

associated regressors were not scaled similarly. Therefore, it is usual to rescale all
the regressors to have variance 1. They already have mean 0 from the recentering.

We have seen that

β̂ridge = (X⊤X + λIp)
−1X⊤y, (11)

where every column of X now has sample mean 0 and sample variance 1.
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A number that is often more interesting than λ is the effective degrees of freedom

of the ridge regression fit. If the dj are the singular values of X (see below), then

df(λ) ≡ Tr
(
X(X⊤X + λIp)

−1X⊤) = p∑
j=1

d2j
d2j + λ

. (12)

As λ → 0, df(λ) → p.

Thus the effective degrees of freedom for the ridge regression is never greater than
the actual degrees of freedom for the corresponding OLS regression.

The ridge regression estimator (11) can be obtained as the mode (and also the
mean) of a Bayesian posterior. Suppose that

yi ∼ N(β0 + xi
⊤β, σ2), (13)

and the βj are believed to follow independent N(0, τ2) distributions. Then expres-

sion (9) is minus the log of the posterior, with λ = σ2/τ2.

Thus minimizing (9) yields the posterior mode, which is β̂ridge.
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Evidently, as τ increases, λ becomes smaller. The more diffuse our prior about the

βj , the less it affects the posterior mode.

Similarly, as σ2 increases, so that the data become noisier, the more our prior
influences the posterior mode.

A simple way to compute ridge regression for any given λ is to form the augmented
dataset

Xa =

[
X

√
λIp

]
and ya =

[
y

0

]
, (14)

which has N + p observations. Then OLS estimation of the regression

ya = Xaβ + ua (15)

yields the ridge regression estimator (11), because

Xa
⊤Xa = X⊤X + λIp and Xa

⊤ya = X⊤y. (16)

In this case, it is tempting to use Cholesky, at least when p is not too large, because

it is easy to update Xa
⊤Xa and Xa

⊤ya as we vary λ.
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3.4. The Singular Value Decomposition

The singular value decomposition of X is

X = UDV⊤, (17)

where U and V are N ×p and p×p orthogonal matrices, with S(U) = S(X). Thus
U⊤U = V⊤V = Ip. The columns of V are the eigenvectors of X⊤X.

Recall that λ is an eigenvalue of a matrix A if there exists a nonzero vector ξ, called

an eigenvector, such that
Aξ = λξ. (18)

Thus the action of A on ξ produces a vector with the same direction as ξ, but a

different length unless λ = 1.

In (17), D is a p × p diagonal matrix, with diagonal elements dj that have the
property

d1 ≥ d2 ≥ . . . ≥ dp ≥ 0. (19)

These are the square roots of the eigenvalues of X⊤X.

Slides for ECON 950 12



The rank of the matrix D, and also of the matrix X⊤X, is the number of dj that

are strictly positive.

Observe that

PXy = X(X⊤X)−1X⊤y

= UDV⊤(V DU⊤UDV⊤)−1V DU⊤y

= UDV⊤(DV⊤)−1(U⊤U)−1(V D)−1V DU⊤y

= UU⊤y.

(20)

We can now see that

Xβ̂ridge = (X⊤X + λI)−1X⊤y

= UD(D2 + λI)−1DU⊤y

=

p∑
j=1

uj

d2j
d2j + λ

uj
⊤y,

(21)

where uj is the j th column of U.
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When λ = 0, the scalars in the last line of (21) collapse to 1, and we see that

PXy = Xβ̂OLS =

p∑
j=1

ujuj
⊤y, (22)

which is another way of writing the last line of (20).

When λ > 0, the estimates are shrunk. There is more shrinkage applied to the

coordinates of basis vectors with small values of dj .

The eigen decomposition of X⊤X is

X⊤X = V D2V⊤. (23)

The eigenvectors vj are the columns of V .

The largest eigenvector v1 has the property that z1 = Xv1 has the largest sample
variance among all normalized linear combinations of the columns of X.

Since z1 = u1d1, this sample variance is

Var(Xv1) = Var(u1d1) = d21/N. (24)
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The first principal component of X is z1. Subsequent principal components are

orthogonal to z1, and to each other. Their variance declines as j increases.

Thus small singular values dj correspond to directions in S(X) that have small
variance. Ridge regression shrinks these directions the most, because they provide

relatively little information, which may easily be swamped by noise.

3.5. Principal Components Regression

Recall from (24) that the principal components of X are zm = Xvm, where the
vm are the eigenvectors, that is, the columns of V . These are p× 1.

If we regress y on the first M principal components, we find that

ŷpc = ȳι+
M∑

m=1

θ̂mzm, (25)

where, because the zm are orthogonal,

θ̂m =
zm

⊤y

zm⊤zm
. (26)
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As with other methods, it is a good idea to standardize the xj so that they have

mean 0 and variance 1.

The principal components are ordered in the same way as the eigenvalues:

||z1|| ≥ ||z2|| ≥ ||z3|| ≥ . . . ≥ ||zp||. (27)

Thus z1 is the direction in which the columns of X vary the most.

For principal components regression (PCR), we first regress y on z1, then on z1
and z2, and so on.

Because the zm are orthogonal, adding another regressor, say zg, simply means

regressing the current residual

ϵ̂g−1 ≡ y − θ̂0 − θ̂1z1 − θ̂2z2 − . . .− θ̂g−1zg−1 (28)

on zg. Then we set ϵ̂g = ϵ̂g−1 − θ̂gzg. We keep going in this way until g = M .

The raw fit will improve as M increases, but criteria like AIC may get better or

worse. As usual, we can also use cross-validation to choose M .
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Of course, one can recover the implied β coefficients from the θ̂m:

β̂pc =

M∑
m=1

θ̂mvm. (29)

Especially when M is small, these are likely to be shrunk relative to the OLS
estimates. When M = p, these will be equal to OLS estimates.

There is a close relationship between ridge regression and PCR. Both operate via
the principal components of the input matrix.

In both cases, coefficients are shrunk but not set to zero.

For ridge, directions with small eigenvalues get shrunk more than ones with large
eigenvalues; recall (21).

For PCR, directions with small eigenvalues are discarded, while ones with large
eigenvalues are retained.
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3.6. The Lasso

Lasso (Tibshirani, 1996) stands for least absolute shrinkage and selection operator.

The lasso can be obtained as the solution to

min
1

2N

N∑
i=1

(
yi − β0 −

p∑
j=1

βj xij

)2
subject to

p∑
j=1

|βj | ≤ t. (30)

This looks almost identical to (10). The main difference is that the constraint
involves absolute values instead of squares. Thus the lasso involves ℓ1-regularization.

As with ridge regression, solving (30) is equivalent to minimizing

1

2N

N∑
i=1

(
yi − β0 −

p∑
j=1

βj xij

)2
+ λ

p∑
j=1

|βj |, (31)

where λ is a Lagrange multiplier; compare (9). Large values of λ are associated

with small values of t.
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Following SLS (but not ESL or ISLR), there is a factor of 1/(2N) in (30) and

(31). This is not needed, but it makes the values of λ comparable across samples
of different sizes.

If all variables are recentered to have mean zero, we can dispense with the β0

parameter. We can recover it if necessary as

β̂0 = ȳ −
p∑

j=1

β̂j x̄j . (32)

The obvious way to solve (30) is by quadratic programming, but there are better
approaches, which we discuss below.

The key difference between ridge and lasso is that, for lasso, some of the coefficients
will be 0 when t is sufficiently small (equivalently, when λ is sufficiently large).

If t is sufficiently large—greater than t0 =
∑p

j=1 |β̂j |—then β̂lasso = β̂ols. In this
case, the constraints do not bind.

For t < t0, the lasso coefficients are shrunk, and some of them may well be 0.

Ultimately, as t → 0, they will all be 0.
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For the tuning parameter, we can use λ, t, or the standardized tuning parameter

s ≡ t
/ p∑

j=1

|β̂j |. (33)

Whichever one we use, it is typically chosen by cross-validation.

The above statement is true when lasso is used for prediction, but not when it is
used for inference. Other methods are proposed in papers by Chernozhukov et al.

ESL and SLS recommend using K-fold cross-validation, where K = 5 or K = 10.

We will discuss these methods in detail later.

ForK-fold cross-validation, we divide the training sample intoK folds (subsamples)
of equal or roughly equal size.

Then we sequentially omit one fold at a time, applying the lasso to the other K− 1
folds. This gives us K sets of estimates.

For k = 1, . . . ,K, the estimates using all folds except the k th are then used to

compute fitted values for observations in fold k.
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We use these fitted values to compute the mean squared prediction error for all

observations. This is then plotted against t, s, or λ to choose the optimal value.

As usual, when the bound is too tight, the bias is large, and when the bound is too
loose, the variance is large.

In the former case, there will be few non-zero coefficients, and in the latter case
there will be many.

See SLS-fig-2.3.pdf for cross-validated estimate of prediction error.

If X is orthonormal, there is an explicit solution for lasso:

β̂lasso
j = sign(β̂j)

(
|β̂j | − λ

)
+
, (34)

where (z)+ = z if z > 0 and (z)+ = 0 if z ≤ 0.

Thus β̂lasso
j either has the same sign as β̂j or equals 0.

Like ridge, lasso is defined even when p+ 1 > N .
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The equivalent solution for ridge in the orthonormal case is

β̂ridge
j = β̂j/(1 + λ). (35)

So it always has the same sign as β̂j and never equals 0.

Like ridge regression, the lasso has a Bayesian interpretation. The prior for βj is a
Laplace (double exponential) distribution:

p(βj) =
λ

2
exp

(
−λ|βj |

)
. (36)

The lasso has been generalized in many ways. One important one is the elastic net,

which is discussed below.

ESL-fig3.10.pdf plots the profiles of lasso coefficients against s—see (33)— for the

prostate cancer data.

This may be compared with ESL-fig3.08.pdf, which plots the profiles of ridge coef-

ficients against df(λ) for the same data.
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The lasso shrinkage causes the estimates of the non-zero coefficients to be biased

towards zero and inconsistent.

This bias can be reduced in at least three ways.

• Use the lasso to identify the set of predictors with non-zero coefficients. Then
run another regression on just that set of predictors. This is called post-lasso

estimation. Its properties were studied in various Chernozhukov et al. papers.

• Use the lasso twice. This is called the relaxed lasso. In the second step, include
only the variables with non-zero coefficients in the first step.

If cross-validation is used at each step, the penalty parameter λ in the first

step is likely to be larger than in the second step, because there are more noise
variables to eliminate in the first step.

Since bias increases with λ, there should be less bias after the second step.

• Use the adaptive lasso (Zou, 2006). It replaces the penalty in (31) with

λ

p∑
j=1

wj |βj |, wj = 1/|β̃j |ν , ν > 0. (37)
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Here the β̃j are pilot estimates, perhaps OLS estimates if p << N or univariate

regression coefficients otherwise.

The penalty on small coefficients is larger than the penalty on large ones.

Thus the former tend to get driven to zero, and the latter get shrunk less than
ordinary lasso would do.

3.7. Properties of the Lasso

The lasso objective function is a special case of

1

2N

N∑
i=1

(
yi − β0 −

p∑
j=1

βj xij

)2
+ λ

p∑
j=1

|βj |q. (38)

For lasso, q = 1, and for ridge, q = 2. When q = 0, we have best-subset regression.

The smallest value of q for which the constraint set is convex is q = 1. Convexity
makes optimization much easier.

The maximum number of non-zero coefficients is min(N, p).
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Various consistency results have been proved for the lasso. The true parameter

vector needs to be sparse relative to N/ log(p), so it must contain a lot of zeros. See
SLS, Chapter 11.

The obvious way to obtain standard errors for lasso is to use the pairs bootstrap.

Resample from (yi,xi) pairs and apply the procedure to each bootstrap sample.

We can use the standard deviations of the bootstrap lasso estimates around their

mean as standard errors.

We can also calculate the proportion of the time that each parameter estimate is

non-zero.

Better inference methods have been developed in papers by Chernozhukov and
others. These include double selection and double machine learning. However,

they work only for coefficients on regressors that are known to be in the model.

3.8. Least Angle Regression

Least angle regression (Efron, Hastie, Johnstone, and Tibshirani, 2004) can be
thought of as an alternative to stepwise regression, but it also provides an efficient

way to compute the lasso.
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Before doing anything else, standardize all predictors to have mean 0 and unit norm,

so that ||xj || = 1.

1. Let r = y − ȳ.

2. Find the predictor xj most correlated with r.

3. Move βj from 0 towards xj
⊤r = (xj

⊤xj)
−1xj

⊤r until some other xk has as much
correlation with the current residual as does xj .

4. Move both βj and βk together in the direction of the least squares coefficient

of the current residual on [xj ,xk] until some other xℓ has as much correlation
with the current residual.

5. Continue in this way until all p predictors have been included in the regression.
After min(N − 1, p) steps, we arrive at the least squares solution.

The direction of the active step after variable k is entered is

δk = (X⊤
[k]X[k])

−1X[k](y −X[k]β[k]). (39)

Here X[k] denotes the columns of X that are now included, and β[k] denotes the

coefficients, one of which is 0.
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The coefficients then evolve as

β[k](α) = β[k] + αδk, (40)

and the fit vector evolves as

f̂k(α) = f̂k +X[k]δk. (41)

The exact step length and the identity of the next variable to add can be calculated
analytically, but ESL does not give details.

If we start at t = 0, the lasso coefficient(s) look just like the LAR ones until one of
the non-zero lasso coefficients hits zero again.

Therefore, a modified version of the LAR algorithm can be used to compute lasso
for all values of t or λ.

Add an additional step between 4. and 5.

4a. If a non-zero coefficient hits 0, drop its variable from the active set and recom-

pute the current least-squares directions.
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Note that dropped variables may reappear later.

LAR always takes p steps to obtain the OLS estimates. The lasso version may take

more than that, but it tends to be similar.

This procedure works even when p >> N . It provides a whole sequence of lasso
estimates for 0 ≤ λ < ∞.

Chapter 5 of SLS discusses optimization methods for lasso and other convex op-
timization problems in much greater detail. It suggests that, although LAR is

theoretically attractive, it is not the fastest method.

3.9. Pathwise Coordinate Optimization

We can rewrite (31) as

1

2N

N∑
i=1

(
yi − β0 −

∑
k ̸=j

β̃k(λ)xik − βj xij

)2
+ λ

∑
k ̸=j

|β̃k(λ)|+ λ|βj |, (42)

where β̃k(λ) denotes the current estimate of βk at penalty parameter λ.
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Minimizing (42) is a one-dimensional problem. It is effectively a univariate lasso

problem with response variable

ũ
(j)
i = yi −

∑
k ̸=j

β̃k(λ)xik. (43)

The solution to this problem is

β̃j(λ) = sign(t)
(
|t| − λ

)
+
, t =

N∑
i=1

xij ũ
(j)
i ; (44)

recall (34).

Repeated iteration of (43) and (44) over all j yields the lasso estimate β̂(λ); see

Friedman, Hastie, Hoefling, and Tibshirani (2007). This approach is an example of
coordinate descent.

Pathwise coordinate optimization is extremely simple. But one disadvantage, rela-

tive to LAR, is that it just yields estimates for a single value of λ.
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However, estimates for a large value of λ can be used as starting points for a

smaller value, and so on. When λ is sufficiently large, β̂lasso = 0. We can start at
the smallest value of λ for which that is true.

We still only get results for a grid of values, rather than all values as with LAR,
but that is often sufficient.

Observe that the actual computation of the ũ
j)
i in (43) and of β̃j(λ) in (44) are

extremely simple. Moreover, in many cases, when β̃j(λ) = 0, it just stays at 0.

SLS reports simulation results which suggest that coordinate descent is the fastest
way to obtain lasso estimates, both when N >> p and when p >> N .

3.10. Elastic-Net Penalization

The elastic-net penalty (Zou and Hastie, 2005) has the form

p∑
j=1

(
α|βj |+ (1− α)β2

j

)
. (45)

This reduces to the lasso penalty when α = 1 and the ridge penalty when α = 0.
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As usual, expression (45) is either multiplied by a tuning parameter λ and added

to the sum of squares, or it is required to be less than an upper limit t.

Since there are two tuning parameters, cross-validation is a lot more work than for

lasso or ridge. To reduce effort, people often just choose α and condition on it.

Elastic-net tends to yield more non-zero coefficients than lasso, but they are shrunk
more towards zero.

Unlike lasso, it can yield more than N non-zero coefficients when p > N .

We can use any program for lasso to compute the elastic net estimator by using the
augmentation trick discussed above to compute ridge regression.

Conversely, if we have a program for elastic net (such as elasticnet in Stata 16),
we can use it to obtain ridge estimates by setting α = 0.

If we multiply (45) by λ and then separate the two penalties, the ridge one becomes

(1− α)λ

p∑
j=1

β2
j . (46)

Slides for ECON 950 31



As in (14), we can form the augmented dataset

Xa =

[
X√

(1− α)λIp

]
and ya =

[
y

0

]
. (47)

Then we can obtain the elastic-net estimates by solving the lasso problem

argmin
β

(
1−
2
(ya −Xaβ)

⊤(ya −Xaβ) + αλ

p∑
j=1

|βj |
)
. (48)

This just depends on one tuning parameter, αλ. However, since Xa depends on

(1− α)λ, we ultimately have to choose two tuning parameters.
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