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12. Support Vector Machines

These notes are based on Chapter 9 of ISLR.

Support vector machines are a popular method for classification problems where
there are two classes.

There are extensions for regression and multi-way classification, but we will not

discuss them.

12.1. Separating Hyperplanes

Recall that a hyperplane in two dimensions is defined by

β0 + β1X1 + β2X2 = 0. (1)

This is just a straight line.
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More generally, when there are p dimensions, we can write

β0 + β1X1 + β2X2 + β3X3 + β4X4 . . .+ βpXp = 0. (2)

If we form the Xi into a vector x, we can also write

β0 + x⊤β = 0. (3)

Every hyperplane divides the space in which it lives into two parts, depending on

whether β0 + x⊤β > 0 or β0 + x⊤β ≤ 0.

In some cases, when we have data labelled with two classes, we can find a separating
hyperplane such that all the points in one class lie on one side of it, and all the
points in the other class lie on the other side.

Let the training observations be denoted yi and xi, where yi contains the class
labels, which are −1 and 1.

If a separating hyperplane exists, it must have the property that

β0 + xi
⊤β > 0 if yi = 1

β0 + xi
⊤β < 0 if yi = −1

(4)
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for all observations. More compactly, we can write

yi(β0 + xi
⊤β) > 0 for all i = 1, . . . , N. (5)

Notice that the values of β0 and β are not unique. If (5) is true for any (β0,β) pair,

then it is also true for (λβ0, λβ) for any positive λ.

If one separating hyperplane exists, then typically an infinite number of them exist.
See ISLR-fig-9.02.pdf. This is true even if we impose a constraint like β2

0+||β||2 = 1.

When a separating hyperplane exists, we have a perfect classifier. For every obser-
vation, we can classify yi as −1 or 1 with certainty.

With other methods, such as logit and probit, having a perfect classifier is bad. It
makes it impossible to obtain parameter estimates that are finite.

But for support vector machines, this is the ideal situation, albeit one that is rarely
achieved with actual data.

The loglikelihood function for both logit and probit models can be written as

ℓ(y, β0,β) =
∑
yi=1

logF (β0 + xiβ) +
∑

yi=−1

log
(
1− F (β0 + xiβ)

)
. (6)
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When there exists a separating hyperplane, and we evaluate F (·) in (6) at values

that define it, we have β0 + xiβ > 0 for every observation in the first summation,
and β0 + xiβ < 0 for every observation in the second summation.

This implies that F (β0 + xiβ) > 0.5 for every observation in the first summation,

and F (β0 + xiβ) < 0.5 for every observation in the second summation.

If we multiply β0 and β by a positive number λ > 1, we increase the value of
every term in (6). The value of F (β0 + xiβ) gets closer to 1 for terms in the first

summation, and closer to 0 for terms in the second summation.

The maximum possible value of ℓ(y, β0,β) is 0. We can make it as close as we like

to 0 by making λ big enough.

In terms of β0 and β, all values are going to plus or minus infinity as this happens.
So any optimization algorithm will fail.

For support vector machines, in contrast, having a separating hyperplane, and hence
a perfect classifier, is actually the ideal situation.

We simply classify a test observation, say x∗, as 1 if β0 + x∗⊤β > 0 and as −1 if

β0 + x∗⊤β < 0.
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12.2. Maximal Margin Classifiers

As we saw in ISLR-fig-9.02.pdf, if there exists a separating hyperplane, there are
typically an infinite number of them.

The maximal margin hyperplane, or optimal separating hyperplane, is the one that
is farthest from the training observations.

The margin is simply the smallest perpendicular distance between any of the train-

ing observations xi and the hyperplane.

The maximal margin classifier simply classifies each observation based on which
side of the maximal margin hyperplane it is.

This is shown in ISLR-fig-9.03.pdf for the data in ISLR-fig-9.02.pdf.

In the figure, the maximal margin hyperplane depends on just three points, the

three support vectors. Small changes in the location of other observations does not
affect its location.

The maximal margin hyperplane can be obtained by solving a particular optimiza-

tion problem. We need to maximize M with respect to M, β0, and β subject to the
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constraints

yi(β0 + xi
⊤β) ≥ M, for all i = 1, . . . , N. (7)

and

β2
0 + β⊤β = 1. (8)

The first constraint ensures that every point is on the right side of the maximal

margin hyperplane, and indeed that it is distant from it by at least M, the margin.
The second constraint is just a normalization.

Even when separating hyperplanes exist, the maximal margin hyperplane may be
very sensitive to individual observations.

In ISLR-fig-9.05.pdf, adding just one observation dramatically changes the slope of
the hyperplane.

The optimization problem above can be solved efficiently, but it is almost never of
interest, because in practice separating hyperplanes almost never exist.
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12.3. Support Vector Classifiers

In practice, a separating hyperplane rarely exists. For any possible hyperplane,
there will be some observations on the wrong side.

The support vector classifier or soft margin classifier chooses a hyperplane where
some observations are on the wrong side.

In some cases, there may exist a separating hyperplane, but it is better to put some
observations on the wrong side of the margin.

Now we maximize M subject to the constraints

β2
0 + β⊤β = 1, (9)

yi(β0 + xi
⊤β) ≥ M(1− εi), for all i = 1, . . . , N, (10)

where εi ≥ 0 and
N∑
i=1

εi ≤ C. (11)
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We now have to choose the εi as well as M, β0, and β. The εi are called slack

variables.

Equation (9) is the same as (8). It is just a normalization.

What has changed is that (10) allows points to be on the wrong side of the margin
when εi > 0.

In (11), C is a nonnegative tuning parameter. Its value, not surprisingly, turns out
to be very important.

If εi = 0, then observation i lies on the correct side of the margin.

If εi > 0, then observation i lies on the wrong side of the margin.

If εi > 1, then observation i lies on the wrong side of the hyperplane.

The value of C puts a limit on the extent to which the εi can collectively exceed
zero. When C = 0, we are back to (7) and (8).

For C > 0, no more than C observations can be on the wrong side of the hyperplane,

because we will have εi > 1 for every such observation.
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Since every violation of the margin increases the sum of the εi, we can afford more

violations when C is large than when it is small. Thus M will almost surely increase
with C.

ISLR-fig-9.07.pdf illustrates what can happen as C changes. In it, the value of C

decreases from upper left to lower right.

One important feature of the SV classifier is that only observations that lie on the

margin or that violate the margin will affect the hyperplane.

For all other observations, the inequalities in (10) are satisfied with εi = 0. Moving
them a little (or a lot) while keeping them on the correct side of the margin has no

effect at all on the solution.

The observations that matter (the ones on the margin or on the wrong side of it)

are called support vectors.

When the tuning parameter C is large, the margin is wide, many observations
violate the margin, and so there are many support vectors. There will tend to be

low variance but high bias.
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When the tuning parameter C is small, the margin is narrow, few observations

violate the margin, and so there are few support vectors. There will tend to be low
bias but high variance.

The SV classifier is totally insensitive to observations on the correct side of the

margin, and therefore (for a wide margin) on the correct side of the hyperplane by
quite a bit.

For logistic regression, something similar but less extreme is true. The estimates

are never totally insensitive to any observation, but they are not very sensitive to
observations that are far from the hyperplane on the correct side.

12.4. Support Vector Machines

So far, we have only considered decision boundaries that are hyperplanes. But if

the boundaries are actually nonlinear, hyperplanes won’t work well.

See ISLR-fig-9.08.pdf.

We could just add powers and/or cross-products of the xij , increasing the number

of parameters to be estimated.
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The support vector machine, or SVM, is an extension of the support vector classifier

that results from enlarging the feature space using kernels.

The solution to the support vector classifier problem in (9) and (10) involves only
the inner products of the observations.

The linear support vector classifier for any point x can be represented as

f(x) = β0 +

N∑
i=1

αix
⊤xi, (12)

where there is one parameter αi for each training observation.

To estimate the parameters β0 and αi, we need every inner product xi
⊤xi′ . There

are N(N − 1)/2 of these.

It turns out that αi = 0 if xi is not a support vector.

Thus we can rewrite (12) as

f(x) = β0 +
∑
i∈S

αix
⊤xi, (13)
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where S is the set of support vectors. This makes it very inexpensive to classify a

new observation.

Now suppose that, whenever the inner product xi
⊤xi′ appears in calculations for

the support vector classifier, we replace it by the kernel

K(xi,xi′), (14)

where K(·) can be chosen in various ways. Now

f(x) = β0 +
N∑
i=1

αiK(xi,xi′). (15)

The linear kernel is just xi
⊤xi′ , which gives us the support vector classifier.

The polynomial kernel of degree d is

K(xi,xi′) = (1 + xi
⊤xi′)

d. (16)
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In effect, we are now fitting a support vector classifier in a higher-dimensional space

involving polynomials of degree d, rather than in the original feature space.

Another possibility is the radial kernel, which is

K(xi,xi′) = exp
(
−γ(xi − xi′)

′(xi − xi′)
)
. (17)

The value of γ, which is a positive constant, is chosen in advance or by cross-
validation.

The radial kernel has very local behavior. When a test observation x∗ is far from

the training observation xi, then

K(x∗,xi) = exp
(
−γ(x∗ − xi)

′(x∗ − xi)
)

(18)

will be very small unless γ is tiny. This means that xi will play virtually no role in

f(x∗). Thus training observations which are far from x∗ will have very little impact
on the predicted class label for x∗.

In this sense, an SVM with a radial kernel is like kernel regression, where observa-

tions far from x∗ have little or no effect on the fitted value for x∗.
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One advantage of using kernels instead of simply adding functions of the original

features (regressors) is that the data continue to affect the results only through the
N(N − 1)/2) distinct values of K(xi,xi′).

For any vector x, we can compute f̂(x) and classify an observation based on the

value of f̂(x)− t for some cutoff value t.

Doing this for the heart disease data yields the ten ROC curves shown in four panels

in ISLR-fig-9.10-11.pdf.

For the training data, the winner seems to be SVM with γ = 0.1. It beats LDA
(linear discriminant analysis), the support vector classifier, and SVM with smaller

values of γ.

However, for the test data, SVM with γ = 0.1 now seems to be the worst method.

It is hard to tell what the best method is.

As ISLR discuss in Section 9.4, SVMs can be generalized to handle more than
two classes, but the generalizations are not very natural, because we have to do

everything for pairs of outcomes.
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There is also something called support vector regression, where only residuals larger

in absolute value than some positive constant contribute to the loss function.

12.5. SVMs and Logistic Regression

Despite good marketing, and a very different approach to computation, SVMs are
not as different from other methods as they were originally claimed to be.

We can rewrite the criterion for estimating a support vector classifier— see (9)
through (11)—as

min
β0,β

(
N∑
i=1

max
(
0, yif(xi)

)
+ λβ′β

)
, (19)

where λ ≥ 0 is a tuning parameter, and f(x) is the support vector classifier.

When λ is large, the βj will tend to be small, many violations of the margin will be

tolerated, and we obtain an estimator with low variance but high bias.

When λ is small, the βj will tend to be large, fewer violations of the margin will be

tolerated, and we obtain an estimator with high variance but low bias.
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Thus, a small value of λ corresponds to a small value of C in (11).

Note also that λβ′β looks just like the penalty term for ridge regression.

Thus, the form of the objective function for SVM is very similar to the one for
ridge-regularized logistic regression.

The first term inside the summation in (19) is max
(
0, yif(xi)

)
, which leads to what

is called hinge loss.

Hinge loss looks like the loss for logistic regression; see ISLR-fig-9.12.pdf.

When an observation is on the correct side of the margin, the loss is zero. When it
is on the wrong side, the loss is linear with a slope of 1.

For logistic regression, the loss is small when an observation is on the the correct

side of the hyperplane by some distance. When it is on the wrong side of the
hyperplane, the loss is approximately linear.

Looking at SVMs in terms of (19) (perhaps generalized to allow for a kernel), we

see that the value of λ, and hence C, is really important.

Relative merits of SVM and logistic regression?
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