
ECON 950 — Winter 2020

Prof. James MacKinnon

11. Neural Networks

Neural networks go back many decades, but they have recently become a very hot
topic because of major improvements in performance.

ESL says that the most widely used neural network model is the single hidden layer
back-propagation network, or single layer perceptron.

This is no longer true. In recent years, deep learning has taken off, and it involves

a great many hidden layers.

One of the things that held back progress for decades was the paper

Kurt Hornik, Maxwell Stinchcombe, and Halbert White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, 2 (5), 1989, 359–366.

This paper, with over 18 thousand citations, was widely believed to say that neural

networks only need one hidden layer.

Slides for ECON 950 1

Abstract:

This paper rigorously establishes that standard multilayer feedforward networks
with as few as one hidden layer using arbitrary squashing functions are capable of
approximating any Borel measurable function from one finite dimensional space

to another to any desired degree of accuracy, provided sufficiently many hidden
units are available. In this sense, multilayer feedforward networks are a class of
universal approximators.

For regression, there is typically one output Y at the top of the network diagram.

For classification, there are typically K of them, denoted Yk.

At the bottom are p inputs.

In between are M activation functions which explain derived features Zm, K target
functions that map from the Zm to Tk, and K output functions gk(T) which map
from the Tk to the Yk.

The activation functions for the derived features are

Zm = σ(α0m + x⊤αm), (1)

Slides for ECON 950 2

where the choice of σ(·) has changed over time.

For many years, the most popular choice for the activation function was the sigmoid
function, which we call the logistic function:

σ(x) =
1

1 + exp(−x)
=

exp(x)

1 + exp(x)
. (2)

The target function that aggregates the Zm is

Tk = β0k + zβk (3)

The output function is typically the identity for a regression, so that gk(T) = Tk.

For classification, it is more common to use the softmax function

gk(T) =
exp(Tk)∑K
ℓ=1 exp(Tℓ)

, (4)

which is just the transformation used for multinomial logit.

Slides for ECON 950 3

Combining the activation functions with the output function, we obtain fitted values

fk(x) = gk(T) via (1), (3), and (4).

Because we do not observe the Zm, the units that compute them are called hidden
units. There can be more than one layer of these.

If we think of the Zm as basis expansions of the original inputs, a neural network
is like a linear or multilogit model that uses them as inputs.

But, unlike basis expansions, parameters of the activation functions are estimated.

For any sigmoid function, we can scale and/or recenter the input. Evidently, σ(x/2)
rises more slowly than σ(x), and σ(2x) rises faster.

If we change the function from σ(x) to σ(x − x0), we shift the threshold where

σ > 0.5 from 0 to x0.

If ||α|| is very small, the sigmoid function will be almost linear.

If ||α|| is very large, the sigmoid function will be very flat near 0, then very steep,

then very flat near 1.

Slides for ECON 950 4

The neural network model with one hidden layer has the same form as the projection

pursuit regression model. The difference is that the activation functions have a
particular functional form.

Recall that the PPR can be written as

y =
M∑

m=1

gm(x⊤ωm), (5)

Suppose that

gm(x⊤ωm) = βmσ(α0m + x⊤αm)

= βmσ(α0m + ||αm||x⊤ωm),
(6)

where ω = αm/||αm|| is a unit vector.

Evidently (6) is a very special case of the ridge function gm(x⊤ωm).

Because the activation functions in neural nets are much more restrictive than ridge

functions in PPR, we tend to need a lot more of them.

Slides for ECON 950 5

For some years, the hyperbolic tangent or tanh function was popular as the activa-

tion function. Recall that

tanh(x) =
e2x − 1

e2x + 1
. (7)

While the logistic function ranges from 0 to 1, tanh(x) ranges from −1 to 1.

Both the logistic and tanh functions seem natural, because they map smoothly from
the real line to an interval. However, they turned out to have important deficiencies.

• They both “saturate”. When the argument is small, the logistic will be close
to 0, and when the argument is large, it will be close to 1.

• Changing the weights (the αm vectors) has little effect when the functions are
saturated.

• This is closely related to the “vanishing gradient problem.” When the activa-
tion function is saturated, the gradients are very small, so it is hard to know
how to vary the weights.

These problems tend to be especially severe for models with several layers. If
saturation occurs for any layer, making changes to the weights for lower layers will

have little impact on the model fit.

Slides for ECON 950 6

In econometric terms, identification becomes extremely difficult.

The solution is to use the rectified linear activation unit, or ReLU as the activation
function.

This function is simply

g(x) = max(0, x), (8)

which is absurdly easy to calculate. It saturates if the argument is negative, but
not if it is positive. In the latter case, the gradient never vanishes.

The ReLU now seems to be the default activation function for most types of neural
networks.

However, there can be problems when x < 0. Therefore, it is generally good to

start with positive inputs.

The ReLU can also be generalized in various ways. For example, the leaky ReLU is

g(x) = I(x > 0)x+ 0.01I(x ≤ 0)x. (9)

So instead of being 0 when x is negative, it is a small negative number that has a

small gradient.

Slides for ECON 950 7

There are many other generalizations, including the exponential linear unit:

g(x) = I(x > 0)x+ aI(x ≤ 0)(ex − 1). (10)

where a is a hyperparameter to be tuned.

11.1. Fitting Neural Networks

Neural networks generally have a lot of unknown parameters, often called weights.

The complete set is the vector θ. It consists of

α0m and αm, m = 1, . . . ,M [M(p+ 1)] (11)

for the activation functions, plus

β0k and βk, k = 1, . . . ,K [K(M + 1)] (12)

for the target functions.

Slides for ECON 950 8

For regression, the objective function is

R(θ) =
N∑
i=1

Ri(θ) =
K∑

k=1

N∑
i=1

(
yik − fk(xi)

)2
. (13)

Here, following ESL, we allow there to be more than one output, although it seems
odd that there is no allowance for these to be correlated.

For classification, a sensible objective function is the deviance:

R(θ) =

N∑
i=1

Ri(θ) =

K∑
k=1

N∑
i=1

yik log fk(xi). (14)

The corresponding classifier for any x is the value of k that maximizes fk(x).

With the softmax activation function (4), minimizing (14) is equivalent to estimat-
ing a linear logistic regression in the hidden units.

If we simply minimize (13) or (14), we are likely to overfit, perhaps severely.

Slides for ECON 950 9

The obvious solution is to regularize, but that does not seem to be what neural net

folks do, perhaps because there are too many parameters.

Instead, they stop the algorithm early, before actually getting to the minimum.
This involves using a validation sample as estimation progresses.

However, this means that starting values are important. With ReLU, it would be
really bad to start at a point where a lot of the activation functions equal 0.

Minimizing R(θ) can be done by back-propagation, which is a two-pass procedure.

Starting values are often chosen randomly.

Back-propagation often works well, especially on parallel computers, because each
hidden unit passes information only to and from units with which it is connected.

However, back-propagation can be slow, and better methods are available.

For the regression case,

Ri(θ) =
K∑

k=1

(
yik − fk(xi)

)2
. (15)

Slides for ECON 950 10

The derivatives with respect to the βkm are

∂Ri

∂βkm
= −2

(
yik − fk(xi)

)
g′
k(zi

⊤βk)zmi, (16)

where zmi = σ(α0 + xi
⊤αm), and zi is an M -vector with typical element zmi.

The derivatives with respect to the αmℓ are

∂Ri

∂αmℓ
= −2

K∑
k=1

(
yik − fk(xi)

)
g′
k(zi

⊤βk)βkmσ′(xi
⊤αm)xiℓ. (17)

A gradient descent update at iteration j + 1 has the form

β
(j+1)
km = β

(j)
km − γj

N∑
i=1

∂Ri

∂β
(j)
km

α
(j+1)
mℓ = α

(j)
mℓ − γj

N∑
i=1

∂Ri

∂α
(j)
mℓ

, (18)

Slides for ECON 950 11

where γj is the learning rate.

We can rewrite the derivatives in (16) and (17) as

∂Ri

∂βkm
= δkizmi (19)

and
∂Ri

∂αmℓ
= smixiℓ. (20)

For example,
δki = −2

(
yik − fk(xi)

)
g′
k(zi

⊤βk), (21)

and we can see from (17) that smi is even more complicated.

We can think of δki and smi as “errors” from the current model at the output and

hidden layer unit, respectively.

These errors satisfy the back-propagation equations

smi = σ′(xi
⊤αm)

K∑
k=1

βkmδki. (22)

Slides for ECON 950 12

In the forward pass, the current parameters are fixed and the predicted values f̂k(xi)

are computed using the activation and output functions.

In the backward pass, the δki are computed and then back-propagated using (22)
to give the smi.

Both the δki and the smi are then used to compute the gradients for the updates
in (18), using (19) and (20).

The learning rate γj should decrease to 0 as j → ∞.

It is possible to update the quantities that are used by back-propagation efficiently
as extra observations are added.

This is very desirable if the training set keeps growing over time.

In practice, people often use stochastic gradient descent, which deliberately intro-
duces randomness. For example, the order in which parameters are updated may

be determined randomly at each step.

Slides for ECON 950 13

11.2. Some Issues with Training Neural Networks

In general, the objective function for a neural net is not convex. Therefore, there

may be multiple minima.

It is very important to start the algorithm from different places, and/or use methods
such as simulated annealing, particle swarm, or genetic algorithms that are designed
to handle non-convex functions.

Because neural nets have many parameters, overfitting is a problem. Deep neural
nets can have millions of parameters!

One solution is to stop before getting to the overall optimum. This works best if
the starting parameter values are small, so that the model is nearly linear.

ESL claims that a better approach is regularization, called weight decay. I don’t

know whether this is still recommended.

Instead of minimizing R(θ), we minimize

R(θ) + λ

∑
k,m

β2
km +

∑
m,ℓ

α2
mℓ

. (23)

Slides for ECON 950 14

This simply adds terms 2λβkm and 2λαmℓ to the derivatives (16) and (16), respec-

tively, and these carry through to other equations.

The tuning parameter λ is normally chosen by cross-validation.

Instead of the penalty in (23), we could use the weight elimination penalty, which
tends to shrink smaller weights more:

λ

∑
k,m

β2
km

1 + β2
km

+
∑
m,ℓ

α2
mℓ

1 + α2
mℓ

. (24)

Figure 11.4 shows a classification example with and without weight decay (regular-

ization). There are 10 hidden layers.

Without weight decay, there is severe overfitting, and performance on the test

dataset is much worse than performance on the training dataset.

As with many machine learning methods, it makes sense to standardize the data to

have mean 0 and variance 1 before beginning.

Slides for ECON 950 15

This is important for regularization and makes it easier to choose sensible starting

values. ESL suggests that starting values should be U(−0.7, 0.7).

Question: What do we do if the sample size increases during the training process?
With additional data, the entire sample will no longer be standardized.

But re-standardizing every time we get one or more additional observations would
be expensive, would change estimates from the original sample, and would screw
up procedures that update the estimates cheaply as additional data arrive.

ESL say that it is better to have too many hidden units than too few, since weights
can always be shrunk by regularization. They suggest starting with 5 to 100 hidden

units. Use higher numbers with larger training samples and more inputs.

Number of hidden layers varies with the problem. Choosing it requires experimen-
tation and experience. The deep learning revolution has led to models with many

more layers (50+ in some cases) than before.

Use the average predictions over a collection of (good) estimated networks. Because
the NN model is nonlinear, this is not the same as averaging the weights over several

sets of estimates.

Slides for ECON 950 16

Average the predictions over networks estimated using a number of bootstrap sam-

ples (bagging).

The zip code example in Section 11.7 is interesting.

Neural networks and projection pursuit take nonlinear functions of linear combina-
tions of inputs.

Both can work well for prediction when the data contain quite a lot of information

(high signal to noise ratio or very large sample size).

They are both hard to interpret, because each input can enter in many places,

nonlinearly.

Because neural nets are smooth functions of real-valued parameters, it is natural to

use Bayesian methods.

MCMC solves the problem of multiple local minima, and automatically provides
averaging via posterior means. Prior information replaces regularization.

See Section 11.9 for a brief discussion of Bayesian neural nets and comparison with
boosted trees, random forests, boosted neural nets, and bagged neural nets.

Slides for ECON 950 17

