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Notes: The examination is in two parts. Please answer the only question in Part I
and three (3) questions from Part II. Tables with some critical values of the χ2 and
Student’s t distributions appear at the end of the examination.

Part I. Please answer the following question, which is worth 28% of the final mark.

1. Consider the linear regression model

yi = β1 + β2x2i + β3x3i + β4x4i + ui,

where there are 87 observations, the regressors are assumed to be exogenous, and
the four βj parameters are unknown.

a) Write down β̂4, the OLS estimate of β4, using a compact and readable notation.
Hint: You may wish to define some vectors and matrices.

b) Explain how you would estimate the standard error of β̂4 and obtain a 95% con-
fidence interval for β4 under the assumption that the ui are independently and
identically distributed. Would this interval be exact without making additional
assumptions?

c) Now suppose that E(u2
i ) = exp(γ0 + γ1x3i), with the γj unknown. Would the

confidence interval from part b) be valid, even asymptotically? Are there any
restrictions on the γj under which it would be (asymptotically) valid? Are
there circumstances in which it would be asymptotically valid even without
restrictions on the γi?

d) Briefly explain two different ways to obtain the standard error of β̂4 under
the assumptions of part c). How would you use each of these standard errors
to form a confidence interval? Would these intervals be asymptotically valid?
Would they be valid for the actual sample in this case? Which of the two
intervals would you expect to be longer?

ANSWER [5, 7, 8 and 8 marks for the four parts]
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a) Define x4 as the vector with typical element x4i, y as the vector with typical
element yi, and X1 as the 87× 3 matrix with [1 x2i x31] in the ith row. Then
the regression becomes

y = X1β1 + β4x4 + u.

Using the FWL Theorem,

β̂4 =
x⊤
4 M1y

x⊤
4 M1x4

,

where M1 projects orthogonally off X1.

b) Under the IID assumption, the usual estimate of the standard error of β̂4 is

s4 =

(
y⊤MXy/83

x⊤
4 M1x4

)1/2
.

The confidence interval is

[β̂4 − c.975s4, β̂4 + c.975s4],

where c.975 is the .975 quantile of the t(83) distribution. This interval is would
not be exact without the additional assumption that the ui are normally dis-
tributed.

c) In general, the interval from b) will not be valid, even asymptotically, because
there is now heteroskedasticity. There is also serial dependence, but not serial
correlation, unless the regressors are serially independent. It will, of course, be
valid if γ1 = 0, because then the ui are homoskedastic. It will also be valid if
there is no correlation, asymptotically, between M1x4 and exp(γ0 + γ1x3i).

d) The obvious methods are HC1, HC2, and HC3. They just need to propose two
of them. For reference, they all have the form

(X⊤X)−1[middle matrix](X⊤X)−1.

The middle matrices are

HC1:
87

83

87∑
i=1

û2
iXiX

⊤
i

HC2:
87∑
i=1

û2
i

1− hi
XiX

⊤
i

HC3:
87∑
i=1

û2
i

(1− hi)2
XiX

⊤
i
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None of these is valid for the actual sample of 87 observations. They are all
valid asymptotically. We can be confident that the HC1 interval is the shortest
and the HC3 interval the longest.

Part II. Please answer three (3) of the following five (5) questions. Each question
has four (4) parts and is worth 24% of the final mark.

2. Consider the linear regression model

yi = β1 + β2x2i + β3x3i + ui,

which is to be estimated using a sample of 73 observations. The regressors x2i and
x3i are assumed to be exogenous. You are interested in the parameter γ ≡ β2/β3.

a) Explain how you would obtain an estimate γ̂ and an asymptotically valid stan-
dard error s(γ̂) analytically (i.e., without doing any simulations) under the
assumption that E(uiuj) = 0 for i ̸= j and E(u2

i |Xi) = σ2
i . Do not waste time

doing the algebra.

b) Explain how you would perform a bootstrap test of the hypothesis that γ = 3
under the assumptions of part a). Would your bootstrap DGP incorporate any
restrictions? Explain precisely how it would work.

c) Explain how you would obtain a bootstrap standard error s∗(γ̂) under the
assumptions of part a) and how you could use that standard error to form a 95%
confidence interval. Would your bootstrap DGP incorporate any restrictions?
Explain precisely how it would work.

d) Explain how you would construct a 95% studentized bootstrap confidence in-
terval for γ under the assumptions of part a). Would your bootstrap DGP
incorporate any restrictions? Explain precisely how it would work.

ANSWER [6 marks for each part]

a) We need to use the delta method here. Since γ = β2/β3, the delta-method
standard error is

s(γ̂) =

(
[ 1/β̂2 −β̂2/β̂

2
3 ]

[
V̂22 V̂23

V̂23 V̂33

] [
1/β̂2

−β̂2/β̂
2
3

])−1/2

.

Here the V̂jk are elements of any heteroskedasticity-robust variance matrix
estimator. Students were told not to waste time on the algebra.

b) Estimate the model under the assumption that γ = 3. This may be done by
regressing yi on 3x2i + x3i, which will yield estimates β̃1, β̃3, and β̃2 = 3β̃3.
You can obtain wild bootstrap samples from

y∗ib = β̃1 + β̃2x2i + β̃3x3i + v∗b ũi,
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where the ũi are the restricted residuals and the v∗b are Rademacher random
variates. You could also transform the ũi as in HC2 or HC3 before doing this,
but that is not needed.

Then generate B bootstrap samples, and use each of them to compute a boot-
strap test statistic for the hypothesis that γ = 3. The actual and bootstrap
test statistics are

τ =
γ̂ − 3

s(γ̂)
and τ∗b =

γ̂∗
b − 3

s(γ̂∗
b )

.

Compute a bootstrap P value in the usual way. Choose B appropriately.

c) This time use an unrestricted bootstrap DGP. Do not bother to compute the
s(γ̂∗

b ). Use the γ̂b to compute

se∗(γ̂) =

(
1

B − 1

B∑
b=1

(γ̂∗
b − γ̄∗)2

)1/2
.

The bootstrap confidence interval is then

[γ̂ − c.975(70)se
∗(γ̂), [γ̂ + c.975(70)se

∗(γ̂)],

where c.975(70) is the .975 quantile of the t(70) distribution.

d) The studentized bootstrap interval is

[γ̂ − c∗.975s(γ̂), [γ̂ − c∗.025s(γ̂)],

where the c∗(α) are quantiles of the bootstrap distribution of the τ∗b , and s(γ̂)
is the delta-method standard error from part a).

3. Consider the linear regression model

yi = Xiβ + ui,

where the ui are independently but not identically distributed. Specifically, it is
assumed that E(ui |Xi) = 0, and E(u2

i |Xi) = σ2
i .

a) Write the OLS estimator β̂ as a function of β0, the true value of β, X, and
u, where X has typical row Xi, and u has typical element ui. The expression
you obtain should have two terms, only one of which is stochastic. Of what
order in the sample size N is the stochastic term under standard assumptions?
Explain.

b) Under the assumptions made so far, will β̂ be unbiased? Will it be consistent?
What can you say about its asymptotic distribution? Do you need to make
any additional assumptions to answer these questions? Explain briefly.
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c) Suppose now that the ui are not assumed to be independent. Of course, the
Xi were never assumed to be independent. Do your answers to part b) change
in any way as a result of these new assumptions?

d) Consider the special case in which

ui = v + wi, v ∼ N(0, ω2), E(wiwj) = 0 for all i, j.

What can you say about the stochastic term in the expression for β̂ that you
obtained in part a)? Is β̂ consistent in this case? Explain.

ANSWER [5, 7, 6, 6 marks]

a) Evidently

β̂ = (X⊤X)−1X⊤Xβ0 + (X⊤X)−1X⊤u

= β0 + (X⊤X)−1X⊤u

Under standard assumptions, (X⊤X)−1 = O(1/N) and X⊤u = Op(N
1/2).

Therefore, the stochastic term is Op(N
−1/2).

b) Under the assumptions made so far, β̂ will not be unbiased, because the re-
gressors are assumed to be predetermined rather than exogenous. If we make
the additional assumption that SX⊤X = plim(X⊤X/N) is a positive definite
matrix, and put enough limits on the σ2

i so that plimN−1X⊤u = 0, then it
will be consistent.

If in addition we assume that a central limit theorem applies to the vector
N−1/2X⊤u, then we can show that

N1/2(β̂ − β0)
a∼ N(0,V ∞),

where V ∞ denotes the asymptotic variance matrix of N1/2(β̂ − β0). This
matrix will have the form

S−1
X⊤X

(
plim

1

N
X⊤ΩX

)
S−1
X⊤X

,

where Ω is a diagonal matrix with σ2
i as the ith diagonal element.

c) Without imposing some restrictions on the amount of dependence, we can no

longer claim that β̂ is either consistent or asymptotically normal. Moreover,
the appropriate normalizing factor may no longer be N1/2.

The asymptotic variance matrix, if it exists, has the same form as above, but
Ω is no longer a diagonal matrix. With too much dependence, no CLT may
apply and the matrix in the middle may not be O(1).
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d) This term is no longer Op(N
−12. We can write it as

v(X⊤X)−1X⊤ι+ (X⊤X)−1X⊤w,

where ι is an N -vector with every element equal to 1, and w is an N -vector
with typical element wi. Under reasonable assumptions, the second term here
will be Op(N

−1/2), but the first term is simply the random variable v times

(X⊤X)−1X⊤ι = O(1). So it is Op(1). Thus β̂ is not consistent in this case.

4. You are given a sample of 20,781 stroke patients treated at 122 hospitals located
in 21 communities, along with data on the characteristics of the patients and the
hospitals. Let yhi denote the number of days in hospital for patient i in hospital h,
and let Xhi be a vector of patient and hospital characteristics. Some hospitals claim
to base their operations on “patient-centred care,” and others do not. The variable
zhi is equal to 1 if hospital h made such a claim when patient i was treated, and
equal to 0 otherwise.

Suppose you regress the yhi on the zhi, the Xhi, and a vector of community fixed
effects. The coefficient on z is β. The OLS estimate of β, say β̂, is −0.734, which
suggests that stroke patients are discharged about 3/4 of a day earlier in hospitals
with patient-centred care.

a) You compute the standard error of β̂ in several different ways. The HC1, HC2,
and HC3 standard errors are 0.112, 0.116, and 0.122, respectively. When you
cluster by hospital, the CV1 standard error is 0.226, the CV2 standard error
is 0.245, and the CV3 standard error is 0.268. Which of these standard errors
seems most believable? Explain why, and also explain precisely how to compute
this standard error.

b) In view of the number of hospitals, it may seem odd that the various cluster-
robust standard errors vary so much. What is the most likely explanation
for this? What quantities could you compute and study in order to provide
evidence for this explanation?

c) After you submit your paper on patient-centred care to a journal, a referee
argues that you should have clustered by community instead of by hospital.
You therefore compute three more cluster-robust standard errors, this time
clustering by community. What would you do if these were a little smaller
than the ones you obtained originally? What would you do if they were a little
larger? What would you do if they were 30% to 40% larger? Would it make
sense to use another method of inference to verify the results when you cluster
by community?

d) Suppose the cluster-robust standard error that you prefer when you cluster
by community is 0.366. Use this standard error and the table at end of the
examination to obtain a 95% confidence interval for β. Does this interval
suggest that the hypothesis β = 0 can be rejected at the .05 level?
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ANSWER [6 marks for each part]

a) The HC standard errors should obviously not be believed, because they are
much smaller than the CV ones. While a formal test exists, there is no way
this could possibly have happened by accident.

The CV3 (or cluster jackknife) standard error is the most believable. If all
hospitals were about the same size, it might be a bit too large, and CV2 might
be better. But that is surely not the case here.

To compute the CV3 variance matrix, we have to compute 122 sets of delete-
one-hospital estimates, say β̂(g). This apparently requires 122 OLS regressions,
but they can be done quite cheaply by using matrices of sums of squares and
cross-products. For simplicity, consider the jackknife variance of β̂ only. It is

G− 1

G

G∑
g=1

(β̂(g) − β̂)2.

The CV3 standard error is the square root of this quantity.

b) The most obvious reason for the three CV standard errors to differ so much
is that the sizes of the hospitals, and hence the number of observations per
hospital, probably vary a lot. It is also possible that only a modest proportion
of hospitals either claim, or do not claim, to provide patient-centred care, which
would create some high-leverage observations.

To investigate these issues, you should compute the Ng and the partial leverages
for all hospitals. If either or both of them vary a lot, that would explain the
differences and also suggest that it is safest to use CV3.

c) If the standard errors clustered by community do not differ much from those
clustered by hospital, I would stick with the latter. It would be a bad idea to
switch if the former were smaller, but probably not harmful to switch if they
were a little larger. However, if they are 30% larger (or even 5% larger), I
would switch to clustering by community.

Because there are only 21 communities, I would use the wild cluster bootstrap
to verify the results from the CV3 standard error. The best method to use is
probably WCR-S, but there is no harm trying WCR-C as well.

d) The confidence interval based on the t(20) distribution is

[−.734− .366 ∗ 2.086, −.734 + .366 ∗ 2.086] = [−1.4975, 0.029476].

Since this interval includes zero, we cannot reject the null at the .05 level.
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5. Consider the linear simultaneous equations model

y1 = βy2 +Zγ + u, (1)

y2 = Wπ + v = W1π1 +Zπ2 + v, (2)

where y1 and y2 are n--vectors of observations on endogenous variables, Z is an n×k
matrix of observations on exogenous or predetermined variables, W ≡ [W1 Z] is
an n× l matrix of observations on exogenous or predetermined variables, and u and
v are n--vectors of homoskedastic disturbances. Assume that E(utvs) = 0 for t ̸= s
and E(utvt) = ρσuσv, where ut and vs are elements of u and v, and σ2

u and σ2
v are

their variances. The rest of the notation should be obvious.

a) In general, will the OLS estimate of β be unbiased? Will it be consistent? Is
there any special case in which it will be consistent? Explain carefully.

b) Explain how to compute the generalized IV estimator β̂IV. What can you say
about the mean squared error of this estimator relative to the mean squared
error of the OLS estimator β̂OLS? What are the key features of the data-
generating process (DGP) that explain the relationship between the two MSE
values? Explain.

c) How many overidentifying restrictions are there? Explain how to test them
using an asymptotic test. What would you conclude if n = 350, k = 12, l = 15,
and the test statistic (in χ2 form) were 6.46? Note that there is a table of the
χ2 distribution at the end of the examination.

d) Suppose the F statistic for π1 = 0 in equation (2) were 2.24. Would you
expect the standard error of β̂IV to be similar to the standard error of β̂OLS in
this case? Would you expect the finite-sample distribution of β̂IV to be well
approximated by its asymptotic distribution? Would your answers to either or
both of these questions change if the value of this F statistic were 17.58?

ANSWER [5, 7, 5, and 6 marks]

a) In general the the OLS estimate of β is biased and inconsistent, because y2 is
correlated with u through the correlation between u and v. However, it would
be consistent if the ui and vi were contemporaneously uncorrelated, that is, if
ρ = 0.

b) The GIV estimator is

β̂IV =
y2

⊤PWMZy1

y2
⊤PWMZPWy2

.

This is what the FWL Theorem gives us when applied to the second-stage
regression

y1 = PWy2 +Zγ + u.
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Note that PWZ = Z, so we can also write

β̂IV =
y2

⊤(PW − PZ)y1

y2
⊤(PW − PZ)y2

.

The IV estimator may or may not have a larger MSE than the OLS estimator.
It will certainly have a larger variance, but it should have a smaller bias. Since
MSE is the sum of the squared bias and the variance, it could go either way.
If the reduced-form regression (2) fits well, then the IV variance should not be
too much larger than the OLS variance. Thus the IV MSE is likely to be lower
in that case, unless the bias of the OLS estimator is small. This bias depends
in large part on ρ. The further ρ is from zero, the greater the bias.

c) There are l − k − 1 overidentifying restrictions. You can test them using a
Sargan test. The test statistic is

û⊤
1 MW û1

σ̂2
1

.

Here σ̂2
1 is the IV estimate of the variance of the first equation. This test

statistic is asymptotically distributed as χ2(l − k − 1).

The test statistic 6.56 lies between the .05 and .025 critical values of the χ2(2)
distribution, so we would reject the null if we believe that the asymptotic theory
underlying this test is reliable.

d) This is quite a small F statistic, which suggests that the reduced-form equation
is quite weak. Therefore, the IV standard error is probably a lot bigger than
the OLS standard error. Moreover, because 2.24 is far short of the Stock-Yogo
critical values, standard asymptotic theory probably works badly.

In contrast, if the F statistic were 17.58, the reduced-form regression would be
quite strong. Thus the IV standard error might not be a lot larger than the
OLS one, and asymptotic inference would probably be quite reliable.
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Table 1. Upper-Tail Critical Values of the χ2 Distribution

D.F. / Level .10 .05 .025 .01

1 2.706 3.841 5.024 6.635

2 4.605 5.991 7.378 9.210

3 6.251 7.815 9.348 11.345

4 7.779 9.488 11.143 13.277

5 9.236 11.070 12.833 15.086

6 10.645 12.592 14.449 16.812

Table 2. Two-Tail Critical Values of the Student’s t Distribution

D.F. / Level .10 .05 .025 .01

10 1.812 2.228 2.634 3.169

15 1.753 2.131 2.490 2.947

16 1.746 2.120 2.473 2.921

17 1.740 2.110 2.458 2.898

18 1.734 2.101 2.445 2.878

19 1.729 2.093 2.433 2.861

20 1.725 2.086 2.423 2.845

21 1.721 2.080 2.414 2.831


