
Queen’s University

School of Graduate Studies and Research

Department of Economics

Economics 850 Econometrics I Fall, 2022

Professor James MacKinnon

Final Examination

December 12, 2022. Time: 3 hours

Notes: The examination is in two parts. Please answer the only question in Part I
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Student’s t distributions appear at the end of the examination.

Part I. Please answer the following question, which is worth 28% of the final mark.

1. Consider the linear regression model with N observations and k regressors,

y = X1β1 + β2x2 + u, (1)

where X1 is an N × k1 matrix of observations on k1 exogenous regressors, x2 is an
N -vector of observations on a single exogenous regressor, and y and u are N -vectors
of observations on a dependent variable and disturbances, respectively.

a) Suppose the elements of u, say ui, are normally and independently distributed
with unknown variance σ2. How would you estimate β2? How would you then
test the hypothesis that β2 = 0.75? Write down your test statistic explicitly as
a function of y, X1, and x2 (or quantities that depend on them). How is this
test statistic distributed when N = 37 and k1 = 3?

b) Suppose the ui are independently distributed with unknown variances σ2
i that

may be related to the regressors. How would you estimate β2? Write down the
test statistic you would use to test the hypothesis that β2 = 0.75 as a function
of y, X1, and x2 (or quantities that depend on them). What can you say about
the distribution of this test statistic when N = 37 and k1 = 3? What can you
say about it when N = 4,758 and k1 = 44?

c) Suppose the data used to estimate (1) fall into 13 clusters, indexed by g, for
g = 1, . . . , 13. Let ug denote the disturbance vector for the g th cluster. The ug

are assumed to be independent across clusters but to have unknown variances
and covariances. There are 4,758 observations, with cluster sizes ranging from
43 to 984, and k1 = 44. How could you test the hypothesis that β2 = 0.75 at
the .05 level without estimating the model more than once? You do not need
to write down your test statistic explicitly, but it should look similar to the
test statistic for part b). What distribution will you pretend that it follows?
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d) Suppose that β̂2 = 0.934 and that the test statistic of part c) is 2.194. Would
you feel confident in rejecting the null hypothesis at the .05 level? Briefly
explain how you could test the hypothesis that β2 = 0.75 using an alternative
procedure that involves 14 OLS regressions. Would you expect the resulting
test statistic to be larger or smaller than 2.194? Why?

ANSWER [7 marks for each part]

a) Using the FWL Theorem, we can write

β̂2 =
x⊤
2 M1y

x⊤
2 M1x2

,

where M1 projects orthogonally off X1. The estimate of σ2 is

s2 = y⊤MXy/(N − k),

and the standard error of β̂2 is

s(x⊤
2 M1x2)

−1/2.

Thus the test statistic for β2 = 0.75 is

β̂2 − 0.75

s(x⊤
2 M1x2)−1/2

.

When N = 37 and k1 = 3, this follows the t(33) distribution under the specified
assumptions.

b) The estimate of β2 is still the OLS estimate β̂2. However, instead of the stan-
dard error above, we need to use one that is heteroskedasticity-robust. One
way would be to use the square root of the k th diagonal element of the matrix

N

N − k
(X⊤X)−1

(
N∑
i=1

û2
iX

⊤
i Xi

)
(X⊤X)−1.

This element can also be written as

N

N − k
(x⊤

2 M1x2)
−1

(
N∑
i=1

û2
i (M1x2)

⊤
i (M1x2)i

)
(x⊤

2 M1x2)
−1,

but there is no need to use this more complicated expression. The test statistic
is just

β̂2 − .075

se(β̂2)
,
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where se(β̂2) is the HR standard error.

This test statistic is asymptotically N(0, 1). When N = 4,758 and k1 = 44, this
is probably a good approximation. But when N = 37 and k1 = 3, it is probably
a poor one. In all likelihood, t(33) would provide a better approximation, but
probably still not a very good one.

c) In this case, we need to use a CRVE. Since only one regression is to be run, it
is presumably CV1. Students don’t need to write it down, but it is

N

N − k

G

G− 1
(X⊤X)−1

(
G∑

g=1

X⊤
g ûgû

⊤
g Xg

)
(X⊤X)−1,

where Xg contains the rows of X for the g th cluster. The test statistic is just

β̂2 − .075

se(β̂2)
,

where now se(β̂2) is the square root of the k th diagonal element of the CV1

matrix. We pretend that it follows the t(12) distribution.

d) Because there are only 13 clusters and they vary greatly in size, the t(12)
approximation is likely to be poor. The test statistic of 2.194 is only a little
larger than the t(12) critical value of 2.179, so even if it were good, we could
just barely reject at the .05 level.

An alternative procedure would use the cluster jackknife or CV3 variance ma-
trix estimator. We run 13 additional regressions, each of them omitting one of
the 13 clusters. These yield estimates β̂(g) for the whole parameter vector and

β̂
(g)
2 for β2. The estimated standard error of β̂2 is then the square root of

13

12

13∑
g=1

(β̂
(g)
2 − β̂2)

2.

If we use this standard error to construct a test statistic, the test statistic is
very likely (although not certain) to be smaller because the standard error is
very likely to be larger.

Part II. Please answer three (3) of the following five (5) questions. Each question
has four (4) parts and is worth 24% of the final mark.

2. Consider the nonlinear regression model

yi = β1 + β2x
β3

2i x
1−β3

3i + ui, ui ∼ IID(0, σ2), (2)

where the regressors x2i and x3i are assumed to be exogenous, and there are 76
observations.
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a) When you estimate regression (2) by nonlinear least squares, the SSR is 142.85.
When you impose the restriction that β3 = 0.5, the SSR is 151.26. If you
assume that ui ∼ IID(0, σ2), can you reject the null hypothesis that β3 = 0.5
at the .05 level using an asymptotic test?

b) Explain how to estimate (2) subject to the restriction that β3 = 0.5. Then
explain how you would test the hypothesis that β3 = 0.5 using a Gauss-Newton
regression, or GNR, without doing any nonlinear estimation. If you are not sure
what the needed derivatives are, do not waste time on them.

c) Suppose you relaxed the assumption that ui ∼ IID(0, σ2) and instead assumed
that E(u2

i |Xi) = σ2
i , with the σ2

i unknown. Here Xi denotes the row vector
containing 1, x2i, and x3i. Explain how you could use the GNR of part b) to
test the hypothesis that β3 = 0.5 under this weaker assumption.

d) Suppose you estimate all three parameters by NLS. Discuss how you would
obtain a 99% asymptotic confidence interval for β3 under the assumptions of
part c). Explain how you would compute the needed standard error for β̂3.

ANSWER [6 marks a) and b), 4 for c), 8 for d)]

a) The F statistic, which is already in χ2 form because it has only one degree of
freedom, is

151.26− 142.85

(142.35/73)
= 4.3128.

Since this exceeds the .05 critical value of 3.841, we can reject the null hypo-
thesis that β3 = 0.5.

b) Estimating subject to the restriction is easy. We just regress yi on a constant

and x
1/2
2i x

1/2
3i . This yields restricted estimates of β1 and β2.

The GNR in this case is

yi−β1−β2x
β3

2i x
1−β3

3i = b1+b2x
β3

2i x
1−β3

3i +b3
(
log(x2i)− log(x3i)

)
xβ3

2i x
1−β3

3i +res.

When evaluated at the restricted estimates, this becomes

yi − β̃1 − β̃2x
0.5
2i x0.5

3i = b1 + b2x
0.5
2i x0.5

3i + b3
(
log(x2i)− log(x3i)

)
x0.5
2i x

0.5
3i + res.

The ordinary t-statistic for b3 = 0 can be used to test the hypothesis that
β3 = 0.5.

c) You can still use the same GNR, but now you have to employ a heterosked-
asticity-robust standard error to obtain the t-statistic.

d) This time, we have to run the GNR for the unrestricted model. The estimates
of b1 through b3 should now be zero, but their hetero-robust standard errors
are what we want. A 99% confidence interval for β3 is

[β̂3 − c(.995)se(β̂3), β̂3 + c(.995)se(β̂3)],
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where se(β̂3) is the hetero-robust standard error from the GNR and c(.995)
denotes the .995 quantile of the standard normal distribution, which is 2.5758.

3. Consider the linear regression model

ygi = β1 + β2xgi + ugi, g = 1, . . . , G, i = 1, . . . , Ng, (3)

which is to be estimated using a sample of N = 18,674 observations divided into
G = 16 clusters. The regressor xgi is assumed to be exogenous. You are interested
in the parameter γ ≡ exp(β2).

a) Explain how you would obtain an estimate γ̂ and an asymptotically valid stan-
dard error s(γ̂) analytically under the assumption that the disturbances in (3)
are independent across clusters but may be correlated and/or heteroskedastic
within each cluster. Then show how to construct two 95% asymptotic confi-
dence intervals for γ, one symmetric and one asymmetric.

b) There are two natural ways to generate bootstrap samples for (3) under the
assumptions of part a) without imposing any restrictions. Briefly explain how
each of them would work in this case. Will both of them generate bootstrap
samples with 18,674 observations? Explain.

c) Using whichever of the methods from part b) you prefer, explain how you
could obtain a bootstrap standard error s∗(γ̂) and how you would you use that
standard error to construct a 95% confidence interval for γ. Would this interval
be symmetric around γ̂? Explain.

d) Explain how you would construct a 95% studentized bootstrap confidence in-
terval for γ using the standard error s(γ̂) from part a) and the bootstrap DGP
from part c). Would this interval be symmetric around γ̂? Explain.

ANSWER [7 marks for part a), 5 for part b), 6 for c) and d)]

a) Run an OLS regression of y on a constant and x. Obtain a CRVE for the two

parameters. Then set γ̂ = exp(β̂2). Use the delta method to obtain a standard
error for γ̂. Because the derivative of exp(x) is just exp(x), the standard error is

se(γ̂) = exp(β̂2)se(β̂2),

where se(β̂2) is a cluster-robust standard error.

Two 95% asymptotic confidence intervals are

[γ̂ − 2.131se(γ̂), γ̂ + 2.131se(γ̂)]

and [
exp
(
β̂2 − 2.131se(β̂2)

)
, exp

(
β̂2 + 2.131se(β̂2)

)]
.

Note that 2.131 is the 0.975 quantile of t(15).
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b) The natural choices are the pairs cluster bootstrap and the wild cluster boot-
strap. The former resamples [yg,Xg] pairs from the 16 clusters. The latter
generates bootstrap data as

y∗
g = β̂1 + β̂2xg + vgûg,

where vg is Rademacher.

All the wild cluster bootstrap samples will have the same number of observa-
tions, but the pairs cluster bootstrap samples will have different numbers.

c) They should prefer the wild cluster bootstrap. For each bootstrap sample,
estimate the model to obtain γ̂∗. Then estimate the bootstrap standard error

se∗(γ̂) =

(
1

B

B∑
b=1

(γ̂∗
b − γ̄∗)2

)1/2
.

Use this to construct a symmetric confidence interval in the usual way, as γ̂
plus or minus 1.96 (or 2.131?) standard errors.

d) For each bootstrap sample, construct the bootstrap test statistic

t∗b =
γ̂∗ − γ̂

se(γ̂∗)
.

Find the .025 and .975 quantiles of the t∗b . Call these c∗.025 and c∗.975. Then the
studentized bootstrap interval is[

γ̂ − c∗.975se(γ̂), γ̂ − c∗.025se(γ̂)
]
.

This interval will not be symmetric, because c∗.975 ̸= −c∗.025.

4. This question deals with the linear regression model

yi1 = β0 + β1zi1 + β2zi2 + β3yi2 + ui, (4)

which is to be estimated using a dataset with 516 observations. The matrix X
has typical row [1 zi1 zi2 yi2], where the zij are predetermined and yi2 may
be endogenous. It is assumed that both X⊤X and the matrix that 1/N times
it tends to asymptotically have full rank, and that the ui are homoskedastic and
independent. Three predetermined variables, wi1, wi2, and wi3, are also observed.
They are believed to be uncorrelated with ui but correlated with yi2. They are also
assumed to satisfy standard regularity conditions.

a) Explain how you would test the null hypothesis that the OLS estimates of
the coefficients in (4) are consistent. What would you conclude if the null
hypothesis were rejected?
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b) How would you obtain consistent estimates of all the coefficients in (4) using
an IV estimator? Write down the covariance matrix of the IV estimates that
you would report. Would you expect the standard error of β̂3IV to be larger or
smaller than the standard error of β̂3OLS? Explain.

c) The IV estimator of part b) involves a first-stage regression. Just what is this
regression? Investigators often report the value of a certain test statistic asso-
ciated with this regression. What is this test statistic, how many restrictions is
it testing, and how is it distributed asymptotically? What would you conclude
if the P value associated with this test statistic were 0.00013? Explain.

d) Suppose the ui in (4) are assumed to be heteroskedastic. What is the covariance
matrix of the IV estimates that you would report now? If the t-statistic for
β3 = 0 based on the appropriate diagonal element of this matrix were 2.027,
would you be comfortable rejecting the hypothesis that β3 = 0 at the .05 level?
Explain why or why not.

ANSWER [6 marks for each part]

a) First, run the first-stage regression and retrieve either the residuals or the fitted
values. This regression is

yi2 = π0 + π1zi1 + π2zi2 + π3wi1 + π4wi2 + π5wi3 + vi.

Call the residuals v̂i. Next, run the regression

yi1 = β0 + β1zi1 + β2zi2 + β3yi2 + δv̂i + ui.

Perform an ordinary t-test or F test for δ = 0. If the null is rejected, then
either y2 should be treated as endogenous or at least one of the wj should have
been included as a regressor in (4).

b) The IV estimator is

β̂IV = (X⊤PWX)−1X⊤PWy1,

where X contains N observations on the constant, the two zji regressors, and
the three wji instruments. The IV covariance matrix that you would report is

σ̂2
IV(X

⊤PWX)−1,

where σ̂2
IV is 1/N times the sum of squared IV residuals. Note that the vector

of IV residuals is
y1 −Xβ̂IV.

It is not the vector of residuals from the second-stage regression.
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You would expect the standard error of β̂3IV to be larger than the standard
error of β̂3OLS. This follows from the fact that the length of PWX is less than
the length of X. Hence the difference between (X⊤PWX)−1 and (X⊤X)−1

is a positive semidefinite matrix.

c) We already wrote down the first-stage regression. It is

yi2 = π0 + π1zi1 + π2zi2 + π3wi1 + π4wi2 + π5wi3 + vi.

The test statistic of interest here is the F statistic for π3 = π4 = π5 = 0. It is
testing 3 restrictions, and it is approximately distributed as F (3, 510). Since
normality was not assumed, this distribution is not exact. Asymptotically,
3 times it is distributed as χ2(3). A P value of 0.00013 suggests that the
test statistic is quite large, so that IV inference should not be too unreliable.
However, it is actually not large enough to gain the approval of the Stock-Yogo
tables.

d) The covariance matrix is now a sandwich estimator:

(X⊤PWX)−1

(
516∑
i=1

û2
iv i(PWX)⊤i (PWX)i

)
(X⊤PWX)−1.

With a t-statistic of 2.027, I would definitely not feel comfortable rejecting the
null hypothesis. Even when the Stock-Yogo conditions are satisfied (and they
are not here), IV t-statistics often do not follow their asymptotic distribution
very well. We know nothing about the correlation between the reduced-form
and structural errors (the vi and the ui). If we knew that correlation was small,
we might be more comfortable. But there are 2 over-identifying restrictions,
and since 2.027 is only a little larger than 1.96, the evidence seems pretty weak.

5. Suppose you are given a sample of 2,365 observations on the incomes of cor-
porate lawyers in 2019. The largest income is $14,688,455 and the second-largest
is $2,371, 346. The mean is $725,234, and the median is about 2/3 of the mean.
The rest of the distribution is more or less as you would expect it to be given these
values.

a) If you were to plot the empirical distribution function for this sample, what
would it look like? Would it have any interesting features? For example, how
would the distance between the α quantile and the median be related to the
distance between the median and the 1 − α quantile for α = 0.10?

b) Explain how you would estimate the first quartile, the median, and the third
quartile of the population distribution using this sample. Then explain how you
would construct standard errors for these estimates using the bootstrap. Which
of the three bootstrap standard errors would you expect to be the largest?
Explain.
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c) For the sample mean, you could easily construct a sample standard error. Then
you could use the bootstrap to form a studentized bootstrap confidence interval
at the 0.95 level. Explain how you would do this. Would this interval be
symmetric around $725,234? What would it look like?

d) Suppose that, in addition to the original sample of 2,365 incomes for corporate
lawyers, you are given a sample of 1,465 incomes for tax lawyers. Discuss
how you could use bootstrap methods to test the hypothesis that the income
distributions for corporate lawyers and tax lawyers are the same.

ANSWER [4 marks for a), 7 for b) and d), 6 for c)]

a) The EDF will be very asymmetrical. Half the observations are below the me-
dian, which is about 2/3 × 725,234 = 483,490, and half are above it. But the
former run from an unspecified minimum above zero to 483,490, and the lat-
ter run from 483,490 to 14,688,455. Evidently, the distance between the 0.10
quantile and the median is going to be much smaller than the distance between
the median and the 0.90 quantile.

b) The estimates are approximately numbers 0.25× 2365, 0.5× 2365, and 0.75×
2365 in the sorted list. These indices are 591.25, 1182.5, and 1772.75, respec-
tively. For the median, a good estimate is the average of numbers 1182 and
1183. For the two quartiles, you could just use numbers 591 and 1773, or
you could take weighted averages with weights 1/4 and 3/4. For example, the
estimate of the third quartile would be 0.25×#1772 + 0.75×#1773.

This is a case where the classic resampling bootstrap makes sense. Generate B
bootstrap samples by resampling without replacement. Pick, say, B = 10,000.
In this case, there is no reason for B to end in 99. For each bootstrap sample,
estimate the three quartiles in the same way as you did with the real data. Then
calculate the variances of each set of estimates. For example, if the estimated
medians are m∗

1 through m∗
B , compute

m̄∗ =
1

B

B∑
b=1

m∗
b and Var(m∗) =

1

B − 1

B∑
b=1

(m∗
b − m̄∗)2.

Then the bootstrap standard error is the square root of Var(m∗).

The bootstrap standard error for the third quartile is sure to be much larger
than the other two bootstrap standard errors, because the EDF is much flatter
in the neighborhood of that quartile. It is not obvious which of the other two
will be largest. For a symmetric distribution, the median will be estimated
more accurately than either of the other quartiles. But, in this case, the EDF
might possibly be steeper near the 0.25 quartile than near the median.

c) For the sample mean ȳ, we can compute s(ȳ) in the usual way. The square of
it is just the sum of squared deviations between yi and ȳ, divided by N(N−1).
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Equivalently, we could regress yi on a constant and use the standard error for
the constant terms from the regression. Then, for B bootstrap samples (where
B now should end in 99, so perhaps B = 9999), we can compute

t∗i =
y∗i − ȳ

s(ȳ∗)
.

Find the .025 and .975 quantiles of the t∗i . When B = 9999, these are numbers
250 and 9750. Call them c∗.025 and c∗.975. Then the studentized bootstrap
interval is [

ȳ − c∗.975s(ȳ), ȳ − c∗.025s(ȳ)
]
.

This is evidently not symmetric. It will be skewed to the left (!), because c∗.975
is almost certainly greater than |c∗.025|.

d) The first step is to combine the two samples and resample from them jointly.
If the null hypothesis is true, then any quantity that can be calculated for each
of the two samples should follow the same distribution. Since distributions can
differ in many respects, there is potentially a large number of bootstrap test
statistics that can be computed.

A simple one is the difference between the sample medians. For each of the
two subsamples, we can compute the medians mc and mt and their difference
∆ = mc − mt. Then we can generate B pairs of bootstrap samples (ending
in 99), by resampling from the joint empirical distribution, and use each of
them to compute ∆∗

b . If ∆ is extreme relative to the distribution of the ∆∗
b , we

can reject the null hypothesis. Here an equal-tail test makes sense. We would
compute

2

B
min

(
B∑

b=1

I(∆∗
b −∆),

B∑
b=1

I(∆−∆∗
b)

)
.

If this is less than α, we can reject the null at level α.

A test based on a difference of medians is not very interesting. We could base
it on anything that can be computed separately for the two subsamples. For
example, we could use the Kolmogorov-Smirnov statistic, which is the largest
vertical distance between the EDFs for the two samples.

It is tempting to use several tests, such as differences for several quantiles in
addition to the median. However, the probability that at least one test out of,
say, J , will reject is greater than the probability that just one test rejects. So
care will have to be taken to avoid over-rejection.

If you want to use multiple tests, one approach would be to define ∆ and its
bootstrap analog as a function of all the test statistics. For example, it could
be the (signed) maximum difference between nine estimated quantiles (from
.10 to .90) for the two subsamples. Then we could calculate a bootstrap P
value just as we did above.
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6. Consider the linear regression model

yi = β1 + β2x2i + β3x3i + ui, (5)

where the regressors are assumed to be exogenous and the error terms are assumed
to be independent and identically distributed with mean zero and variance σ2.

a) Suppose you have 270 observations, which naturally divide into two subsamples,
the first with 160 observations and the second with 110. The sums of squared
residuals from OLS estimation of (5) over the whole sample and each of the
two subsamples are 23.61, 13.33, and 9.45, respectively. Can you reject the null
hypothesis that all the parameters are the same for both subsamples using an
asymptotic test at the .01 level? Explain.

b) Explain precisely how you would perform a bootstrap test of the hypothesis
that all the parameters are the same for both subsamples using no more than
104 bootstrap samples. Be sure to specify the bootstrap DGP and explain how
you would decide whether or not to reject the null hypothesis at the .01 level.

c) A more restrictive alternative hypothesis is that

yi = γ1d1i + γ2(1− d1i) + β2x2i + β3x3i + ui, (6)

where d1i is a dummy variable that is equal to 1 if observation i belongs to
the first subsample and equal to 0 otherwise. Suppose the SSR from OLS
estimation of (6) were 23.18. Using an asymptotic test, would you reject (5)
against (6) at the .01 level?

d) Because of the IID assumption, the tests you have done so far must have
assumed that the variance of the error terms is the same for both subsamples.
Suppose you want to relax this assumption by allowing each of the ui to have
its own variance σ2

i . Explain how you would generate 9999 bootstrap samples
assuming that (5) holds under this weaker assumption. Then explain how you
would use these bootstrap samples to test (5) against (6). Be sure to explain
why you would, or would not, use the same test statistic as in part b).

ANSWER [5 marks a), 6 for b) and c), 7 for d)]

a) The F statistic is

(23.61− 13.33− 9.45)/3

(13.33 + 9.45)/(270− 6)
= 3.2063.

In χ2 form, it is 9.619. Since the .01 critical value for χ2(3) is 11.345, we cannot
reject at the .01 level.
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b) Because of the IID assumption, we can use the residual bootstrap. Estimate
the model for the entire sample to obtain β̃ and ũ. Then resample from the ũi

and generate bootstrap samples as

y∗i = Xiβ̃ + u∗
i , u∗

i ∼ EDF(ũi).

The best choice of B given the restriction that it not exceed 104 is 9999. For
each bootstrap sample, compute the F statistic in the same way as in part a).
Then the bootstrap P value is

p∗ =
1

B

B∑
b=1

I(F ∗
b > F ).

Reject the null if p∗ < 0.01.

c) This hypothesis involves 4 parameters, so there is just one restriction. The F
statistic is now

23.61− 23.18

23.18/(270− 4)
= 4.9344.

This is less than the .01 critical value of 6.635, so we do not reject the null.

d) Use the restricted wild bootstrap to generate the bootstrap samples:

y∗i = Xiβ̃ + u∗
i , u∗

i = v∗i ũi,

where v∗i is Rademacher.

You cannot use the same test statistic as before, because it assumes that the
disturbances are homoskedastic. Instead, you need one that is hetero-robust.
A natural one is the Wald statistic, in t form,

tγ =
γ̂1 − γ̂2

se(γ̂1 − γ̂2)
,

where se(γ̂1 − γ̂2) is a hetero-robust standard error. This just requires OLS
estimation of (6), rewritten so that γ1 − γ2 is a coefficient, using an HR var-
iance matrix. You can calculate t∗γ for each of the bootstrap samples and then
compute the bootstrap P value

p∗ =
1

B

B∑
b=1

I(t∗2γ − t2γ).

This yields a symmetric bootstrap P value, which is comparable to what we
used in the homoskedastic case.
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