
Appendix to �Fiscal Shocks and Fiscal Risk
Management� by Huw Lloyd-Ellis and Xiaodong Zhu

1 Data

All of the data and the code used in this paper can be downloaded from the internet at

http://qed.econ.queensu.ca/pub/faculty/lloyd-ellis/papers/Þscrisk.html.

Fiscal Variables

The quarterly primary surplus was calculated as the difference between total federal revenues

and expenditures less interest payments on the debt, as published by Statistics Canada. For

institutional reasons, this data exhibits considerable seasonal variation. SpeciÞcally, annual crown

corporation cash ßows are attributed only to the second quarter yielding a large �spike�. We

therefore used seasonally adjusted data. The surplus data does not include charges and subsidies

relating to the Petroleum Compensation fund. Quarterly public debt Þgures are taken from IMF

International Financial Statistics. The effective interest rate was calculated as the ratio of actual

interest payments on the debt to value of the debt.

Asset Returns

VWR is the index of value�weighted returns on the NYSE taken from the CRSP tape. DIV is

the dividend yield on the NYSE from the CRSP tape. LONGR is the nominal interest rate on

10 year US. government bonds. TBILL is the nominal 3�month US. treasury bill rate. TBMA

is a one�year Þxed�weight moving average of TBILL. All of these returns were converted into

Canadian dollars using the spot U.S.�Canadian exchange rate taken from CITIBASE. Note that

these returns should therefore be interpreted as the return in Canadian dollars on each U.S. dollar

invested.

Data used to Compute the Epstein—Zin Stochastic Discount Factor

Real per capita US consumption was calculated using data from CITIBASE. The real rate of

return on the market portfolio was taken to be equal to VWR divided by the US CPI.

2 Sensitivity of Results to Empirical Specification

2.1 Endogeneity of the Exchange Rate

In our benchmark regressions, we specify all of our variables in Canadian dollars. We convert US

asset returns by multiplying them by the Canada/US exchange rate. This implies that payments
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made by the Canadian government to investors are denominated in US dollars and so the Canadian

government cannot affect their value by inßating, for example. However, by converting in this

way it is not so clear that these variables are independent of Canadian Þscal policy and truly

represent exogenous shocks. To address this issue, we allow for the possibility of endogeneity by

estimating the regression equation using the US dollar�denominated asset returns as instruments..

The results are reported in Table A1. As can be seen, the results are fairly insensitive to the

alternative speciÞcation, suggesting that the endogeneity is of little importance empirically. This

is conÞrmed by the Hausman tests reported at the bottom of each column. These indicate that

the hypothesis that the coefficients are signiÞcantly different when estimated by two�stage least

squares is be rejected at the 10% level.

Table A1

Shocks Only Shocks + Shift
Variable OLS 2SLS OLS 2SLS
Constant .0134 (18.71) .0130 (17.65) .0126 (23.15) .0124 (21.93)
VWR .0052 (0.57) .0021 (0.66) -.0010 (0.55) -.0031 (0.42)
DIV -.3190 (12.97) -.3140 (12.32) -.2722 (14.18) -.2600 (13.48)
LONGR -.0561 (3.57) -.0548 (3.45) -.1272 (9.24) -.1300 (9.00)
TBILL .0469 (3.34) .0500 (3.36) .0874 (7.71) .0880 (7.64)
T3MA .0954 (5.92) .0935 (5.50) .1036 (8.46) .0985 (7.96)
DUM � � .0039 (10.30) .0039 (10.19)

R2 0.69 0.69 0.82 0.82
R
2 0.68 0.68 0.82 0.81
D�W 0.69 0.69 1.20 1.15
Hausman χ2(5) = 5.3097 [0.38] χ2(5) = 7.2839 [0.20]

Notes:

(1) t-statistics are in parenthesis.

(2) P-values are in square brackets

(3) Instruments are the US denominated asset returns and the dummy variable.

(4) The X-variables are demeaned.

2.2 Stability

To test the stability of the parameters on the shocks and the lagged surplus across the two regimes,

we regress the residuals from our preferred regression on the explanatory variables within each

regime. Table A2 documents the results. FTEST indicates that we cannot reject the joint

hypothesis that these parameters are constant across regimes. In other words, the change in

policy stance is largely consistent with an increase in the permanent components of the surplus
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after the Þrst quarter of 1985 rather than a change in the marginal responsiveness of the surplus

to the exogenous shocks.

Table A2: Forecasting the Primary Surplus
Variable In�Sample Forecast

VWR 0.004 0.004
(0.04)

DIV -0.70 -0.70
(5.05)

X LONGR -0.30 -0.30
(2.55)

TBILL 0.22 0.22
(2.47)

TBMA 0.28 0.28
(2.47)

Constant 0.0319 0.0276
(5.39) (7.24)

SLAG 0.24 0.24
(2.26)

DUM � 0.0108
(10.72)

NOBS 76
R2 0.75
D�W 1.96
F-TEST 2.09
[P�value] [0.08]

Notes:

(1) t�statistics are given in parenthesis.

(2) In the out of sample regression we restrict the coefficients on the X�variables to be the

same as in the in�sample regression. FTEST tests this restriction.

2.3 Inclusion of Other Variables

Our baseline regression includes only Þnancial asset returns. However, it may be the case that

the inclusion of other cyclical variables will affect the results. In their multi�country panel data

analysis, Roubini and Sachs (1989) Þnd the effects of changes in the unemployment rate and the

growth rate to be signiÞcant. Table A3 reports regression results for the effects of changes in real

GNP growth, DG, and the unemployment rate, DU, in our sample. Although the unemployment

variable is signiÞcant, it does not add much to the explanatory power of the model. Moreover

the coefficients on the shock variables are robust to the inclusion of these alternative cyclical

variables.
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Table A3
Variable Basic Model Extended Model

VWR 0.00 0.00
(0.43) (0.43)

DIV -0.70 -0.62
(7.09) (6.40)

X LONGR -0.33 -0.32
(5.68) (5.54)

TBILL 0.27 0.23
(6.34) (4.97)

TBMA 0.22 0.24
(3.97) (4.41)

DG � -0.07
(1.85)

DU � -0.37
(2.38)

Constant 0.0317 0.0287
(3.70) (4.13)

SLAG 0.38 0.43
(5.86) (6.47)

DUM 0.0108 0.0097
(6.70) (5.93)

R
2

0.85 0.86
D�W 2.04 2.14

Notes:

(1) t�statistics are given in parenthesis.

(2) Unemployment data is take from OECD, Main Economic Indicators, various issues.
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2.4 VAR Estimates

Table A4
VWR DIV TBILL LONGR µ r

VWR(-1) -0.10 -0.01 0.01 0.01 -0.08 -0.002
(1.18) (3.99) (1.25) (0.70) (1.57) (1.82)

DIV(-1) 3.82 0.96 0.05 0.18 -2.00 -0.01
(4.45) (37.06) (0.58) (1.27) (3.12) (0.81)

TBILL(-1) -0.25 0.004 0.90 0.05 -0.44 -0.005
(0.47) (0.03) (17.43) (0.54) (1.36) (0.49)

LONGR(-1) -1.01 0.02 0.06 0.81 0.14 0.02
(2.16) (1.62) (1.28) (10.33) (0.49) (2.98)

r(−1) � � � � � 0.91
(32.3)

Constant -0.10 -0.01 0.01 0.01 -0.02 0.22
(0.31) (0.03) (0.79) (0.32) (4.09) (3.18)

3 Details of Calibration

3.1 Calibration of the Real Output Process

Given our speciÞcations for the real stochastic discount factor and productivity, we have

yt =

µ
ψ0e

µψt+b0ψX̃t−1+νt
¶α(1− τ)eµψt+b0

ψ
X̃t−1+

1
2
σ2
ν−µm−b0mX̃t−1+

1
2
σ2
m

1− (1− δ(1− τ))e−µm−b0mX̃t−1+
1
2
σ2
m

 α
1−α

. (1)

Taking logs on both sides yields

ln yt =
1

1− α
µ
lnψ0 +

1

2
ασ2v + α ln (α(1− τ))

¶
+

µψ
1− αt+

b0ψ �Xt−1
1− α + νt (2)

− α

1− α ln
³
eµm−

1
2
σ2
m+b0mX̃t−1 − (1− δ(1− τ))

´
Now taking a Þrst�order linear approximation around b0m �Xt−1 = 0 for the last term, we can write

ln yt ≈ q0(τ) + µyt+ q(τ)0 �Xt−1 + νt (3)

where

q0(τ) =
1

1− α
µ
lnψ0 +

1

2
ασ2v + α ln (α(1− τ))

¶
− α

1− α ln
³
eµm−

1
2
σ2
m − (1− δ(1− τ))

´
, (4)

q(τ) =
1

1− α

Ã
bψ− αeµm−

1
2
σ2
m

eµm−
1
2
σ2
m − (1− δ(1− τ))

bm

!
, (5)

5



and

µy = µy − µp −
1

2
σ2p. (6)

Regressing ln yt − µyt on the state variables over a period during which the effective tax rate is
deemed constant yields the coefficients q0, and q, plus the variance of νt, σ2ν . The stochastic

process followed by the productivity parameter can then be backed out using the method of

undetermined coefficients.1

3.2 Calibrating the Two—factor Asset Pricing Model

The moment condition for the risk premium be written as follows:

exp

µ
Et
£
Rm,nt+1

¤− rnt + 12σ21,u − ρ1σ21,u − ρ4σ14,u
¶
= 1 (7)

or

Et
£
Rm,nt+1

¤− rnt + 12σ21,u − ρ1σ21,u − ρ4σ14,u = 0. (8)

Taking unconditional expectations of the left hand side of the equation yields

E [Rm,nt − rnt ] +
1

2
σ21,u − ρ1σ21,u − ρ4σ14,u = 0. (9)

Replacing the theoretical moments with sample moments, we have

1

T

TX
t=1

(Rm,nt − rnt ) +
1

2
σ21,u − ρ1σ21,u − ρ4σ14,u = 0. (10)

Then we have

Et

"
Mn
t+2j

Mn
t

#
= exp

µ
−
µ
E[rnt ] +

1

2
σ2n

¶
2j −mnz (t, 2j) +

1

2
V nzz(t, 2j)

¶
. (11)

where mnz (t, 2j) = Et
h
−(lnMn

t+2j − lnMn
t )− 2µnj

i
and

V nzz(t, 2j) = Et

·³
−(lnMn

t+2j − lnMn
t )− 2µnj −mz(t, 2j)

´2¸
. So, the moment condition for the

term premium can be written as

1 =
1

2

 20X
j=1

exp

µ
−
µ
E[rnt ] +

1

2
σ2n

¶
2j −mnz (t, 2j) +

1

2
V nzz(t, 2j)

¶ rn,Lt (12)

+exp

µ
−
µ
E[rnt ] +

1

2
σ2n

¶
40−mnz (t, 40) +

1

2
V nzz(t, 40)

¶
.

Taking the sample average of the right hand side of this equation yields

1 =
1

T

TX
t=1

12
 20X
j=1

exp

µ
−
µ
E[rnt ] +

1

2
σ2n

¶
2j −mnz (t, 2j) +

1

2
V nzz(t, 2j)

¶ rn,Lt


+
1

T

TX
t=1

exp

µ
−
µ
E[rnt ] +

1

2
σ2n

¶
40−mnz (t, 40) +

1

2
V nzz(t, 40)

¶
. (13)

1Note also that µψ = (1− α)µy.
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We choose the values of ρ1 and ρ4 so that they are the solutions to the equations (10) and (13).

We do so by Þrst using (10) to express ρ1 as a linear function of ρ4 and substituting it into

equation (13). We then numerically look for the value of ρ4 that solves equation (13).

4 Details Relating to Monte Carlo Simulation

To compute the probability of policy shifts and the associated welfare impacts, we conducted a

Monte Carlo simulation. For each set of parameters, we estimated the underlying VAR to deter-

mine the parameters of the system and the associated joint distribution of the errors. We used

this to generate N paths of T periods for the entire system. For each path and at each date, we

computed the implied debt level, Dt, and the present value of future forecasted primary surpluses

under the current policy, Vt(τ t). We did this for both the hedged and unhedged government cash

ßow processes. We then computed the associated net debt and used it to determine the tax rate

to be set in the next period according to the policy rule described in the paper. This generated a

joint numerical distribution over the tax rate and the discount factor which we used to compute

welfare. Since changes in the tax rate occur infrequently (i.e. only when the bounds on the

net debt are hit), a large number of paths and time periods were required before our estimated

welfare gain converged. SpeciÞcally, N = 5, 000, 000 and T = 500 were sufficient for convergence

of the welfare gain estimate up to the second decimal place.

4.1 Nominal Present Value Calculations

We need to calculate present value of nominal cash�ßows of the following form:

Λ(t, j) =
1

Mt
Et[M

n
t+j

³
η0 + η

0
1
eXt+j + η02X5,t+j´Y t+j] (14)

Let Zn(t, j) = − lnMn
t+j − µnj. Then

Zn(t, j) = Zn(t, j − 1) + b0n �Xt+j−1 + ωn,t+j, (15)

where Zn(t, 0) = − lnMn
t . It follows that

Λ(t, j) = Y te
(µy−µn)jEt[e−Z

n(t,j)
³
η0 + η

0
1
eXt+j + η02X5,t+j´] (16)

≡ Y te
(µy−µn)j

h
η0Et[e

−Zn(t,j)] + η01Et[e
−Zn(t,j) eXt+j] + η02Et[e−Zn(t,j)X5,t+j ]i . (17)

Letmx(t, j) = Et
h
�Xt+j

i
, mnz (t, j) = Et [Z

n(t, j)] ,Vxx(j) = Et

·³
�Xt+j −mx(t, j)

´³
�Xt+j −mx(t, j)

´0¸
,

Vn
xz(j) = Et

h³
�Xt+j −mx(t, j)

´
(Zn(t, j)−mz(t, j))

i
, and V nzz(j) = Et

h
(Zn(t, j)−mz(t, j))2

i
.
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These moments can be calculated recursively as follows:

mx(t, j) = Amx(t, j − 1), (18)

mnz (t, j) = mnz (t, j − 1) + b0nmx(t, j − 1), (19)

Vxx(j) = AVxx(j − 1)A0 +Σ, (20)

Vn
xz(j) = AVn

xz(j − 1) +AVxx(j − 1)bn + vn, (21)

V nzz(j) = V nzz(j − 1) + 2b0nVn
xz(j − 1) + b0nVxx(j − 1)bn + σ2n (22)

where mnz (t, 1) = b
0
n
eXt − lnMn

t , V
n
zz(1) = σ

2
n, mx(t, 1) = A eXt, Vxx(1) = Σ, and Vn

xz(1) = vn.

Given these moments, one can calculate the present values as follows:

Et[e
−Zn(t,j)] = e−m

n
z (t,j)+

1
2
V nzz(t,j), (23)

Et[e
−Zn(t,j) eXt+j] = e−mn

z (t,j)+
1
2
V nzz(t,j) (mx(t, j)−Vn

xz(t, j)) , (24)

and

Et[e
−Zn(t,j)X5,t+j ] = e−m

n
z (t,j)+

1
2
V nzz(t,j)

³
mn5,x(t, j)− V n5,xz(j)

´
, (25)

where

m5,x(t, j) =
1

4
104 [mx(t, j − 1) +mx(t, j − 2) +mx(t, j − 3) +mx(t, j − 4)] , (26)

V5,xx(j) =
1

4

h
Vxx(j − 1) +AVxx(j − 2) +A2Vxx(j − 3) +A3Vxx(j − 4)

i
14, (27)

V n5,xz(j) =
1

4
104[V

n
xz(j − 1) +Vn

xz(j − 2) +Vnxz(j − 3) +Vnxz(j − 4) +Vxx(j − 1)bn
+(I+A)Vxx(j − 2)bn + (I+A+A2)Vxx(j − 3)bn + (I+A+A2 +A3)Vxx(j − 4)bn](28)

Here, 14 denotes the vector (0, 0, 0, 1)0.

4.2 Real Present Value Calculation

We need also to calculate present value of real cash�ßows of the following form:

Λ(t, j) =
1

Mt
Et[Mt+jyt+j

³
η0 + η

0
1
eXt+j + η02X5,t+j´] (29)

Let Z(t, j) = − lnMt+j − µmj. Then

Z(t, j) = Z(t, j − 1) + b0m �Xt+j−1 + ωm,t+j , (30)

where Z(t, 0) = − lnMt and let

Q(t, j) = −Z(t, j) + q0 �Xt+j−1 (31)
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It follows that

Λ(t, j) = eq0+µyte(µy−µm)jEt[exp(Q(t, j))
³
η0 + η

0
1
eXt+j + η02X5,t+j´]. (32)

≡ eq0+µyte(µy−µm)j
h
η0Et[e

Q(t,j)] + η01Et[e
Q(t,j) eXt+j] + η02Et[eQ(t,j)X5,t+j]i (33)

Let mz(t, j), Vxz(t, j) and Vzz(t, j) denote the real counterparts of mnz (t, j), V
n
xz(t, j) and

V nzz(t, j) and let mQ(t, j) = Et [Q(t, j)] , VxQ(j) = Et
h³
�Xt+j −mx(t, j)

´
(Q(t, j)−mQ(t, j))

i
,

and VQQ(j) = Et
h
(Q(t, j)−mQ(t, j))2

i
. These moments can be calculated recursively as follows:

mz(t, j) = mz(t, j − 1) + b0mmx(t, j − 1), (34)

mQ(t, j) = −mz(t, j) + q0mx(t, j − 1) (35)

Vxz(t, j) = AVxz(t, j − 1) +AVxx(t, j − 1)bm + vm, (36)

Vzz(t, j) = Vzz(t, j − 1) + 2b0mVxz(t, j − 1) + b0mVxx(t, j − 1)bm + σ2m (37)

VQQ(t, j) = Vzz(t, j − 1)− 2(q− bm)0Vxz(t, j − 1) + (q− bm)0Vxx(t, j − 1)(q− bm)+σ2ν(38)
VxQ(t, j) = −Vxz(t, j) +AVxx(t, j − 1)q (39)

where mz(t, 1) = b0m eXt− lnMt, mQ(t, 1) = (bm−q)0 eXt− lnMt, Vzz(t, 1) = σ
2
m,mx(t, 1) = A eXt,

VQQ(t, 1) = σ
2
ν , and VxQ(t, 1) = −vm. Given these moments, we can calculate the present values

as follows:

Et[e
Q(t,j)] = emQ(t,j)+

1
2
VQQ(t,j). (40)

Et[e
Q(t,j) eXt+j ] = emQ(t,j)+

1
2
VQQ(t,j) (mx(t, j) +VxQ(t, j)) , (41)

and

Et[e
Q(t,j)X5,t+j ] = e

mQ(t,j)+
1
2
VQQ(t,j)

¡
m5,x(t, j)− V5,xz(j) + q0V5,xx(j − 1)

¢
, (42)

where m5,x(t, j), V5,xz(j), and V5,xx(j) are deÞned as above.

4.3 Second—Order Approximation of Present Values

For computational speed it was necessary to take a second�order approximation in computing

these present values. Using the same notation as above, we can write

mx(t, j) = A
jXt (43)

and for the nominal discount factor

mnz (t, j) = b0n
jX
i=1

Ai−1Xt − lnMn
t (44)

= b0n (I−A)−1
³
I−Aj

´
Xt − lnMn

t (45)
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Let

B0(j) = −b0n (I−A)−1
³
I−Aj

´
(46)

and let Bi(j) denote the ith row of B(j) and let [Aj ]i denote the ith row of Aj .

The present value of an asset with return stream
n
Y t+jXi,t+j

o∞
j=1

is

Πi(t) =
Y t
Mn
t

∞X
j=1

exp[(µy − µn)j −mnz (t, j) +
1

2
V nzz(j)] (mi(t, j) + V

n
iz(j))

= Y t

∞X
j=1

exp[(µy − µn)j +B0(τ)Xt +
1

2
V nzz(τ)]

³
[Aj ]iXt + V

n
iz(j)

´

= Y t

∞X
j=1

exp

µ
(µy − µn)j +

1

2
V nzz(j)

¶h
eB(j)0Xt [Aj ]iXt + e

B(j)0XtV niz(j)
i

(47)

Taking second�order Taylor series expansions around Xt = 0 yields

eB0Xt ' 1 +B0Xt + 1
2
X0tBB

0Xt (48)

and

eB0Xt [Aj]iXt ' [Aj]iXt + 1
2
X0t
³
B[Aj]i +B

0[Aj]0i
´
Xt (49)

Substituting and collecting terms, it follows that the present value can be approximated by

Πi(t) = Y t

∞X
j=1

exp

µ
(µy − µn)j +

1

2
V nzz(j)

¶
V niz(j) (50)

+Y t

∞X
j=1

exp

µ
(µy − µn)j +

1

2
V nzz(j)

¶h
[Aj ]i + V

n
iz(j)B

0(j)
i
Xt

+X0t

Y t
2

∞X
j=1

exp

µ
(µy − µn)j +

1

2
V nzz(j)

¶³
B(τ)[Aj ]i +B

0(j)[Aj ]0i + V
n
iz (j)B(j)B

0(j)
´Xt.

Note also that the present value of the asset with return stream {Y t+j}∞j=1 is

Π0(t) = Y t

∞X
j=1

exp

µ
(µy − µn)j +

1

2
V nzz(j)

¶µ
1 +B0(j)Xt +

1

2
X0tB(j)B

0(j)Xt
¶

(51)

Π0(t) = Y t

∞X
j=1

exp

µ
(µy − µn)j +

1

2
V nzz(j)

¶
(52)

+

Y t ∞X
j=1

exp

µ
(µy − µn)j +

1

2
V nzz(j)

¶
B0(j)

Xt
+X0t

Y t
2

∞X
j=1

exp

µ
(µy − µn)j +

1

2
V nzz(j)

¶
B(j)B0(j)

Xt
Analogous second�order approximations were also made for real cash ßows.
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4.4 Decomposition of Welfare Gains

The welfare function can be written in the following form:

�W0 = (1− δ(1− τ0))k0 + (1− α) 1
M0

∞X
t=0

E0 [Mtf(τ t, zt)] , (53)

where zt is a random variable that is independent of Þscal policy. If the tax rate follows a three

point process, we can express the tax rate as

τ t = τhIAt + τ lIBt + τ0IΩ−At∪Bt , (54)

where IA is the indicator function for set A, At is the collection of states in which the tax rate

will be high, Bt the collection of states in which the tax will be low. A generic term of the welfare

function can then be written as

E0Mt[f(τh, zt)IAt + f(τ l, zt)IBt + f(τ0, zt)IΩ−At∪Bt ]

= E0[Mtf(τ0, zt)] +E0[Mt(f(τh, zt)− f(τ0, zt))IAt ] +E0[Mt(f(τ l, zt)− f(τ0, zt))IBt ] (55)
= E0[Mtf(τ0, zt)] +E0[Mt(f(τh, zt)− f(τ0, zt))]PtH +Cov[Mt(f(τh, zt)− f(τ0, zt)), IAt ]

+E0[Mt(f(τ l, zt)− f(τ0, zt))]PtL +Cov[Mt(f(τ l, zt)− f(τ0, zt)), IBt ] (56)

= E0[Mtf(τ0, zt)]−E0[Mt(2f(τ0, zt)− f(τh, zt)− f(τ l, zt)]PtH +
E0[Mt(f(τ l, zt)− f(τ0, zt)](PtL − PtH) +
−Cov[Mt(f(τ 0, zt)− f(τh, zt)), IAt ] +Cov[Mt(f(τ l, zt)− f(τ0, zt)), IBt ] (57)

= Wt0 +Wt1 +Wt2 +Wt3 (58)

Note that Mt(f(τ0, zt)− f(τh, zt)) and Mt(f(τ l, zt)− f(τ0, zt)) are respectively the marginal
cost of a tax hike and marginal beneÞt of a tax cut, both of which are unaffected by hedging.

The welfare gains of hedging can come from three potential sources:

(1) Hedging reduces both PtH and PtL equally and does not change either of the covariances. In

this case, W2t and W3t do not change with hedging. But W1t increases because f is a concave

function. This gain is purely due to the tax smoothing effect.

(2) The reduction in PtH is more than the reduction in PtL. This will increase W2t.

(3) Hedging increases the covariance between the marginal beneÞt of tax cut and the even of tax

cut or reduces the covariance between the marginal cost of tax hike and the event of tax hike.

That is, hedging may cause the tax hike to occur in the states when the marginal cost of tax hike

is low or the tax cut to occur in the states when the marginal beneÞts of tax cut is high. This

gain is due to diversiÞcation.
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4.5 An Alternative Asset Pricing Model

Here we detail the speciÞcation and calibration of the real stochastic discount factor implied by

Epstein-Zin�s consumption CAPM:

Mt =

µ
βtC

− 1
σ

t

¶θ µ
Πts=0

1

Rms

¶1−θ
. (59)

Here, Cτ denotes real US per capita consumption, Rmt denotes the gross real return on the

market portfolio (measured by the real value�weighted stock return index on the NYSE), σ

is the elasticity of intertemporal substitution, and θ is deÞned, following Campbell (1993), as

θ = (1− γ)/(1− (1/σ)), where γ is the coefficient of relative risk aversion.
By the deÞnition of Rmt , we have X1,t = (lnR

m
t −E [lnRmt ])+ln(Pt/Pt−1)−µp, which implies

lnRmt = E [lnR
m
t ] + (a

0
(1) − b0p) �Xt−1 + u1,t − ωp,t, (60)

where a0(1) is the Þrst row vector of the coefficient matrix A from the VAR. If we assume that the

real US consumption growth rate evolves according to:

ln

µ
Ct
Ct−1

¶
= µc + b

0
c
�Xt−1 + ωc,t, (61)

where ωc,t is i.i.d., ωc,t ∼ N(0,σ2c), E [ωc,tut] = vc and E [ωc,tωp,t] = σpc, then, we can write the
growth rate of the real stochastic discount factor as

− ln
µ
Mt

Mt−1

¶
= −θ lnβ + θ

σ
ln

µ
Ct
Ct−1

¶
+ (1− θ) lnRmt (62)

≡ µm + b
0
m
�Xt−1 + ωm,t, (63)

where µm = −θ lnβ+ θ
σµc+(1− θ)E [lnRmt ] , bm = θ

σbc+(1− θ)(a(1)−bp), ωm,t =
θ
σωc,t+(1−

θ)(u1,t − ωp,t).

Calibration. The moment conditions in this case can be written as follows:

1 = exp

µ
rnt − (µn −

1

2
σ2n)− b0n �Xt

¶
, (64)

1 = exp

µ
Et
£
Rm,nt+1

¤− (µn − 12σ2n)− b0n �Xt + 12σ21,u − 101vn
¶
; (65)

or

0 = rnt − (µn −
1

2
σ2n)− b0n �Xt, (66)

0 = Et
£
Rm,nt+1

¤− (µn − 12σ2n)− b0n �Xt + 12σ21,u − 101vn; (67)

where

µn = −θ lnβ +
θ

σ
µc + (1− θ)(E [lnRmt ]− µp) + µp, (68)
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bn =
θ

σ
bc + (1− θ)(a(1) − bp) + bp, (69)

vn =
θ

σ
vc + (1− θ)(Σ11 − vp) + vp, (70)

σ2n =

µ
θ

σ

¶2
σ2c + (1− θ)2 σ21,u + θ2σ2p (71)

+2

"
θ (1− θ)

σ
101vc +

θ2

σ
σcp +

θ (1− θ)
100

101vp

#
.

Taking unconditional expectations yields

0 = E [rnt ]− (µn −
1

2
σ2n)− b0nE[ �Xt], (72)

0 = E [Rm,nt ]− (µn −
1

2
σ2n)− b0nE[ �Xt] +

1

2
σ21,u − 101vn; (73)

or

b0nE[ �Xt]−E [rnt ] = µn −
1

2
σ2n, (74)

E [Rm,nt − rnt ] = −1
2
σ21,u + 1

0
1vn; (75)

Replacing the theoretical moments with sample moments, we have

1

T

TX
t=1

³
b0n �Xt − rnt

´
= µn −

1

2
σ2n, (76)

1

T

TX
t=1

(Rm,nt − rnt ) = −1
2
σ21,u + 1

0
1vn. (77)

Using the above notation, we can write

Et

"
Mn
t+2j

Mn
t

#
= exp

µ
−
µ
µn −

1

2
σ2n

¶
2j

¶
exp

µ
−mnz (t, 2j) +

1

2
eV nzz(t, 2j)¶ , (78)

where eV nzz(t, 2j) = V nzz(t, 2j)− σ2n2j. (79)

Also from above, we have mnz (t, 1) = b
0
n
eXt, eV nzz(t, 1) = 0, and, for any i > 1,

mnz (t, i)−mnz (t, i− 1) = b0nmx(t, i− 1), (80)eV nzz(t, i)− eV nzz(t, i− 1) = 2b0nV
n
xz(t, j − 1) + b0nVxx(t, j − 1)bn, (81)

Vn
xz(t, j) = AVnxz(t, j − 1) +AVxx(t, j − 1)bn + vn. (82)
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Thus, both mnz (t, 2j) and eV nzz(t, 2j) are independent of µn and σ2n, and are functions of bn and
vn only. Let η1 =

θ
σ and η2 = 1 − θ. Then, both bn and vn are linear functions of η1 and η2.

Thus, (78) can be written as

Et

"
Mn
t+2j

Mn
t

#
= exp

µ
−
µ
µn −

1

2
σ2n

¶
2j

¶
H (t, 2j, η1, η2) , (83)

where H (t, 2j, η1, η2) = exp
³
−mnz (t, 2j) + 1

2
eV nzz(t, 2j)´. From (76), the moment condition can

be written as

1 =
1

T

TX
t=1

12
 20X
j=1

exp

Ã
− 1
T

TX
t=1

³
b0n �Xt − rnt

´
2j

!
H (t, 2j, η1, η2)

 rn,Lt


+
1

T

TX
t=1

exp

Ã
− 1
T

TX
t=1

³
b0n �Xt − rnt

´
40

!
H (t, 40, η1, η2) . (84)

Furthermore, equation (74) can be written as follows:

1

T

TX
t=1

(Rm,nt − rnt ) = −
1

2
σ21,u + 1

0
1vp + η11

0
1vc + η2(

1

100
101Σ11 − 101vp). (85)

We choose the values of η1 and η2 that solve equation (84) and (85). Given η1 and η2, we can

determine the values of θ and σ as follows:

θ = 1− η2, (86)

σ =
1− η2
η1

. (87)

Finally, given the solutions to θ and σ, we choose the parameter β so that it solves equation (68).

4.6 Convergence

The one-period nominal interest rate is

rnt = µn + b
0
n
eXt − 1

2
σ2n, (88)

and, more generally, the j-period nominal interest rate is given by

rn(t, j) = µn +

µ
mnz (t, j)−

1

2
V nzz(t, j)

¶
j−1. (89)

Furthermore, the one-period forward rate between t+ j and t+ j + 1 is

fn(t, j) = (j+1)rn(t, j+1)− jrn(t, j) = µn+b0nmx(t, j)−b0nVn
xz(t, j)−

1

2
b0nVxx(t, j)bn− 1

2
σ2n.

(90)
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Since the eigenvalues of the matrix A are all within the unit circle, mx(t, j) should converge to

zero and bothVxx(t, j) andVn
xz(t, j) should converge to a constant matrix or vector as j increases.

Let Vxx and Vn
xz denote the limit of Vxx(t, j) and Vn

xz(t, j), respectively, then, we have

Vxx = AVxxA
0 +Σ, (91)

Vn
xz = AVn

xz +AVxxbn + vn. (92)

Note that Vxx is simply the unconditional variance-covariance matrix of eXt, which can be solved
as

vec
³
Vxx

´
= (I−A⊗A)−1 vec (Σ) . (93)

Given Vxx, Vn
xz is given by the following formula

Vn
xz = (I−A)−1

³
AVxxbn + vn

´
. (94)

Thus, the limiting one-period forward rate is given by

f
n
= µn − b0nVn

xz−
1

2
b0nVxxbn − 12σ

2
n. (95)

The real interest rates can be determined in the same way as that used for the nominal interest

rates. In particular, the one-period real interest rate is

rt = µm + b
0
m
eXt − 1

2
σ2m, (96)

and the limiting one-period forward rate is

f = µm − b0mVxz−1
2
b0mVxxbm − 12σ

2
m, (97)

where Vxz = (I−A)−1
³
AVxxbm + vm

´
.

The present value of nominal surplus converges if and only if the nominal growth rate is less

than the limiting nominal forward rate, i.e.,

µy < f
n
= µn − b0nVn

xz−
1

2
b0nVxxbn − 12σ

2
n, (98)

and the present value of real surplus converges if and only if the real growth rate is less than the

limiting real forward rate, i.e.

µy < f = µm − b0mVxz−1
2
b0mVxxbm − 12σ

2
m (99)
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