
Appendix

Proof of Proposition 1: From the household�s Euler equation we have

σg(t) + ρ = r(t). (58)

Differentiating (18) yields
úV (t)
V (t) =

úw(t)
w(t) = g(t). Substituting into (17) and rearranging gives

r(t) =
δ(1− e−γ)(1−X(t))

e−γ
+ δγX(t)− δX(t) (59)

Equating (58) and (59) and solving for the stationary allocation of labor to entrepreneurship thus

yields

X(t) = X∗ =
δ(1− e−γ)− ρe−γ
δ − (1− σ)e−γδγ . (60)

Substituting into (16) gives (20). Note that with σ < 1, the existence of a positive growth path

requires that δ(1−e−γ) > ρe−γ which rearranges to the second inequality in (19). Also for utility
to bounded and the transversality condition to hold requires that r(t) > g(t). Using (20) and

(58) a sufficient condition given by the Þrst inequality in (19).

Proof of Lemma 1 We show: (1) that if a signal of success from a potential entrepreneur is

credible, other entrepreneurs stop innovation in that sector; (2) given (1) entrepreneurs have no

incentive to falsely claim success.

Part (1): If entrepreneur i0s signal of success is credible then all other entrepreneurs believe that i
has a productivity advantage which is eγ times better than the existing incumbent. If continuing

to innovate in that sector, another entrepreneur will, with positive probability, also develop a

productive advantage of eγ. Such an innovation yields expected proÞt of 0, since, in developing

their improvement, they do not observe the non-implemented improvements of others, so that

both Þrms Bertrand compete with the same technology. Returns to attempting innovation in

another sector where there has been no signal of success, or from simply working in production,

w (t) > 0, are thus strictly higher, .

Part (2): If success signals are credible, entrepreneurs know that upon success, further innovation

in their sector will cease from Part (1) by their sending of a costless signal. They are thus

indifferent between falsely signalling success when it has not arrived, and sending no signal.

Thus, there exists a signalling equilibrium in which only successful entrepreneurs send a signal of

success.

Proof of Lemma 2: From the production function we have ln y(t) =
R 1
0 ln

y(t)
pi(t)

di. Substituting

for pi(t) using (8) yields 0 =
R 1
0 ln

w(t)eγ

Ai(Tv−1)di 0 which re-arranges to (27).

Proof of Lemma 3: Note that in any preceding no-entrepreneurship phase, r (t) = ρ. Thus,

since, in a cycling equilibrium, the date of the next implementation is Þxed at Tv, the expected
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value of entrepreneurship, δV D, also grows at the rate ρ > 0. Thus, if under X(TEv ) = 0,

δV D(TEv ) > wv, then the same inequality is also true the instant before, i.e. at t→ TEv , since wv
is constant within the cycle. But this violates the assertion that entrepreneurship commences at

TEv . Thus necessarily, δV
D(TEv ) = wv at X

³
TEv

´
= 0.

Proof of Proposition 2: From (28), long�run productivity growth is given by

Γv+1 = (1− P (Tv))γ (61)

Integrating (37) over the entrepreneurship phase and substituting for X(·) using (34) yields

1− P (Tv) = δ
Z Tv+1

TEv+1

³
1− e− ρ

σ
[t−TEv+1]

´
dτ . (62)

Substitution into (61) and integrating gives (39).

Proof of Proposition 3: The increase in output from the beginning of one cycle to the beginning
of the next reßects only the improvement in productivity y0(Tv) = eΓvy0(Tv−1). Moreover, since
all output is consumed it follows that c0(Tv) = eΓvc0(Tv−1). This implies that the long run
discount factor is given by β(t) = σΓv + ρ (Tv+1 − Tv)−

R t
Tv
r(s)ds. In particular, since r(t) = 0

during the downturn, β(t) = σΓv + ρ∆
E
v ∀ t ∈ (TEv , Tv). Combining this with (43) and (44)

yields (45).

Proof of Proposition 4: The discounted monopoly proÞts from owning an innovation at time

Tv is given by V I0 (Tv) = (1− e−γ)
R Tv+1
Tv

e
−

R τ

Tv
r(s)ds

y(τ )dτ + P (Tv)e
−β(Tv)V I0 (Tv+1). Substituting

for V I0 (Tv+1) using (48), and integrating yields

V I0 (Tv) =

Ã
(1− e−γ)y0(Tv)
1− P (Tv)eΓ−β(Tv)

! "
1− e−ρ(TEv+1−Tv)

ρ
+ e−ρ(T

E
v+1−Tv)

Ã
1− e− ρ

σ
∆E

ρ/σ

!#
. (63)

Asset market clearing during the boom and the fact that X(Tv) = 0 implies (using (11)) that

δV I0 (Tv) = wv+1 = e
−γy0(Tv). Substituting into (63) we have

(1− e−γ)δ
"
1− e−ρ(TEv+1−Tv)

ρ
+ e−ρ(T

E
v+1−Tv)

Ã
1− e− ρ

σ
∆E

ρ/σ

!#
= e−γ

³
1− P (Tv)eΓ−β(Tv)

´
. (64)

But β(Tv) = ρ(TEv+1 − Tv) + Γ, so that multiplying through by eρ(T
E
v+1−Tv) and collecting terms

yieldsÃ
(1− e−γ)δ

ρ
− e−γ

! ³
eρ(T

E
v+1−Tv) − 1

´
= e−γ (1− P (Tv))− (1− e−γ)δ

Ã
1− e− ρ

σ
∆E

ρ/σ

!
. (65)

Since [1− P (Tv)] γ = Γv from (45) we have that 1− P (Tv) = ρ∆E

γ(1−σ) , substituting this into the
above, using (46) to substitute out the second term on the right hand side, and rearranging yields

eρ(T
E
v+1−Tv) = 1 + µ∆E , (66)
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where µ is deÞned in (50). Taking logs and noting that TEv+1 − Tv = Tv+1 − Tv −∆E = ∆v −∆E
yields (49).

Proof of Proposition 5: It is easily veriÞed that under (51) there does exist a unique triple
(∆E ,∆,Γ) > 0 which solves (39), (45) and (49). The remainder of the proof shows that each of

the conditions (E1) through (E4) under (51):

(E1): Since V I0 (Tv+1) = e
ΓV I0 (Tv), we can write V

D
0 (Tv) = e

−β(Tv)+ΓV I0 (Tv). From the proof of

Proposition 3, β(Tv) = ρ∆ + σΓ, so that condition (E1) requires that ρ∆ > (1 − σ)Γ, which
must be true for the consumer�s optimization problem to be bounded. Using (45), this condition

simply requires that ∆ > ∆E , which, from (49) and the deÞnition of µ in (50) is true as long as
ρ
δ > γ(1− σ) (1− e−γ) . This holds if the left�hand inequality in (51) is satisÞed.
(E2): This inequality can be written as

V I(t) =
Z Tv

t
e−

R τ

t
r(s)dsπ(τ)dτ +

P (Tv)

P (t)
V D(t) < V D(t) ∀ t ∈ (TEv , Tv) (67)

During the downturn we know that V D(t) = wv−1/δ = e−γy0/δ and r(t) = 0. Substituting these
and rearranging yields

e−γ
µ
1− P (Tv)

P (t)

¶
− (1− e−γ)δ

Ã
1− e− ρ

σ
(Tv−t)

ρ/σ

!
> 0, (68)

where P (t) = 1 − R t
TEv
δ

³
1− e− ρ

σ
[τ−TEv ]

´
dτ = 1 − δ[t − TEv ] + δ

µ
1−e− ρ

σ [t−TEv ]

ρ/σ

¶
. When t = Tv,

this becomes P (Tv) = 1− δ∆E + δ
µ
1−e− ρ

σ∆
E

ρ/σ

¶
. It is easily veriÞed that lnP (t) is decreasing and

convex in t. It follows that

− lnP (Tv)− lnP (t)
Tv − t ≥ d lnP (t)

dt

¯̄̄̄
t=Tv

(69)

Let

q = −σ
ρ

d lnP (t)

dt

¯̄̄̄
t=Tv

=
δ

µ
1−e− ρ

σ∆
E

ρ/σ

¶
1− δ∆E + δ

µ
1−e− ρ

σ∆
E

ρ/σ

¶ . (70)

Now note that condition (51) implies that q > 1. To see this, note that it follows from (70)

that q > 1, if and only if δ∆E > 1. So we Þrst demonstrate that δ∆E > 1. In Figure 2, at the

positive intersection of (39) and (45), the former (linear function) must be steeper than the latter

(concave function). Differentiating these two curves, this implies that ∆E must satisfy

1− e− ρ
σ
∆E >

ρ

δγ(1− σ) . (71)

Substituting using (46) this implies

δ∆E >
σ

γ(1− σ)− ρ/δ . (72)
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So that a sufficient condition for δ∆E > 1 is that ρδ > γ(1 − σ) − σ, which must be true under
(51).

We now have that q > 1, and it follows that

logP (Tv)− logP (t) ≤ −q ρ
σ
(Tv − t) (73)

Rearranging gives 1− P (Tv)
P (t) ≥ 1− e−q

ρ
σ
(Tv−t). It follows that a sufficient condition for (68) is that

e−γ
³
1− e−q ρσ (Tv−t)

´
− ¡
1− e−γ¢

δ

Ã
1− e− ρ

σ
(Tv−t)

ρ/σ

!
≥ 0 (74)

We know that (68), and hence (74), holds with equality at t = Tv, thus a sufficient condition is

that the left hand side of (74) declines monotonically with t < Tv. That is

−e−γq ρ
σ
e−q

ρ
σ
(Tv−t) +

¡
1− e−γ¢

δe−
ρ
σ
(Tv−t) < 0 ∀ t ∈ [TEv , Tv]. (75)

Since q > 1, e−q
ρ
σ
(Tv−t) ≤ e−

ρ
σ
(Tv−t), and so a sufficient condition is q > σ(1−e−γ)δ

ρe−γ . From (70),

this inequality holds if

δ

Ã
1− e− ρ

σ
∆E

ρ/σ

!
>
σ(eγ − 1)δ

ρ

"
1− δ∆E + δ

Ã
1− e− ρ

σ
∆E

ρ/σ

!#
(76)

Since δ∆E > 1, (E2) will hold if ρδ > σ(e
γ − 1). If, instead, however, ρδ < σ(eγ − 1), (E2) can

still hold, so long as (51) is satisÞed. To see this note that from (46)

∆E =
1− e− ρ

σ
∆E

ρ/σ
³
1− ρ

δγ(1−σ)
´ (77)

Substituting into (76) and rearranging yields:µ
ρ

δγ(1− σ)
¶2
e−γ

µ
1− σ(e

γ − 1)δ
ρ

¶
<

ρ

δγ(1− σ) −
¡
1− e−γ¢

(78)

Since the left hand side is negative when ρ
δ < σ(e

γ−1), it is sufficient that ρδ > (1−e−γ)γ(1−σ),
which is true under the left�hand inequality in (51).

(E3): Long�run market clearing implies that δV I(Tv−1) = wv. It follows that a sufficient condi-
tion for (E3) is dV

I(t)
dt < 0, ∀ t ∈ (0, TEv ). Since during this phase r(t) = ρ and g = 0, the value of

immediate implementation can be expressed as

V I(t) = (1− e−γ)
Ã
1− e−ρ(TEv −t)

ρ

!
y0(Tv−1) + e−ρ(T

E
v −t)V I(TEv ). (79)

Differentiating w.r.t. to t yields

dV I(t)

dt
= −(1− e−γ)e−ρ(TEv −t)y0(Tv−1) + ρe−ρ(TEv −t)V I(TEv ). (80)
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If (51) holds then from (E2), we have that V I(TEv ) < wv/δ = e
−γy0(Tv−1)/δ, and so

dV I(t)

dt
< −e

−ρ(TEv −t)y0
δ

£
(1− e−γ)δ − ρe−γ¤

< 0. (81)

This requires that ρ
δ < eγ − 1. Since eγ − 1 > γ > γ(1 − σ), this follows from the right�hand

inequality of (51).

(E4): This is equivalent to Γ < γ. Substituting for ∆E in (46) using (45) and rearranging slightly
yields

1− e− 1−σ
σ
Γ³

1−σ
σ

´
Γ

= 1− ρ

δγ(1− σ) (82)

The left hand side of this equation is monotonically decreasing in Γ (to see this note that 1− e−x
is an increasing, concave function of x and its slope, e−x, is just equal to 1 at x = 0, and then
declines with x). It follows that Γ < γ requires that

1− e− 1−σ
σ
γ³

1−σ
σ

´
γ

<
1− e− 1−σ

σ
Γ³

1−σ
σ

´
Γ

= 1− ρ

δγ(1− σ) (83)

So a necessary and sufficient condition for (E4) is ρδ < γ(1− σ)− σ
³
1− e− 1−σ

σ
γ
´
, which holds

under the right hand inequality in (51).

Proof of Proposition 6: Growth in the acyclical economy is given by ga in (20). In the cyclical
economy, from (45) the average long run growth rate can be expressed as gc = Γ

∆ = ρ
1−σ

∆E

∆ .

Using (49) and the fact that for any x > 0, ln(1+x) < x we have ∆ < ∆E+ µ
ρ∆

E . It follows that

gc >
ρ

1− σ
∆E³

∆E + µ
ρ∆

E
´ = [δ(1− e−γ)− ρe−γ ]γ

1− (1− σ) γe−γ = ga. (84)

Proof of Proposition 7: Suppose that the economies start at T0 with identical distributions
of implemented innovations and no unimplemented innovations. Hence the maximum level of

output, y(T0), that could be produced if all labor were being used in manufacturing is the same

in both equilibria. In the acyclical equilibrium, household welfare is given by

WA(T0) =
c(T0)

1−σ

1− σ
µ

1

ρ− (1− σ)ga
¶
=
y(T0)

1−σ

1− σ

Ã
(1−X∗)1−σ

ρ− (1− σ)ga
!

(85)

where X∗ is the fraction of labor effort in entrepreneurship given by (60). In the cyclical equilib-
rium, household welfare at the beginning of the Þrst cycle is

WC(T0) =
c(T0)

1−σ

1− σ
∞X
v=0

e−ρ(∆−∆
E)v

(
1− e−ρ(∆−∆E)

ρ
+ e−ρ(∆−∆

E)

Ã
1− e− ρ

σ
∆E

ρ/σ

!)

=
y(T0)1−σ

1− σ
½
1

ρ
+
1

µ

µ
1− ρ

δγ(1− σ)
¶¾

(86)
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Observe that rearranging (84) yields 1µ =
³
1−σ
ρ

´
ga

ρ−(1−σ)ga . Substituting into (86) and noting that
1
ρ ≡ 1

ρ−(1−σ)ga
³
1− (1−σ)ga

ρ

´
yields

WC(T0) =
y(T0)

1−σ

1− σ
µ
1− ga

δγ

¶
1

ρ− (1− σ)ga . (87)

But since ga = δγX∗, it follows that the ratio of welfare in the cyclical economy to that in the
acyclical one is given by WC(T0)

WA(T0)
= (1−X∗)σ < 1.
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