Instrumental Variables for Dummies

January 2011

Instrumental Variables (2SLS) Methodology

• Hypothesized structural model:

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

$$X_i = \gamma + \delta Y_i + \theta Z_i + \eta_i$$

where

- Y_i = dependent variable (e.g. price)
- X_i = key explanatory variable (e.g. quantity)
- Z_i = vector of exogenous instrumental variables (e.g. costs)

• Reduced form for X_i:

$$X_i = \frac{\gamma + \delta \alpha + \theta Z_i + \delta \varepsilon_i + \eta_i}{1 - \delta \beta}$$

• If Z_i is uncorrelated with ε_i and η_i then we can estimate the "first stage regression"

$$X_i = a + bZ_i + u_i$$

using OLS where

$$a=rac{\gamma+\deltalpha}{1-\deltaeta}$$
 and $b=rac{ heta}{1-\deltaeta}$

• Then run "second-stage regression"

$$Y_i = \alpha + \beta \hat{X}_i + \varepsilon_i$$

using the fitted value

$$\hat{X}_i = \hat{a} + \hat{b}Z_i$$

 Estimate of β should reflect impact of variations in X_i that are due to exogenous variation in Z'_is only

- Three key requirements of "good instruments":
- $\,\,\hookrightarrow\,\, R^2$ in first stage regression must be reasonably high
- \hookrightarrow must clearly be an exogenous determinant of X_i
- \hookrightarrow no other theoretical channels through which Z_i effects Y_i (i.e. Z_i is not correlated with ε_i in theory)
 - Testing identification restrictions
- \hookrightarrow the last requirement can be tested for if the system is "over-identified": if there are more Z's than X's
- \hookrightarrow Sargan test