Rural Labour Markets

Fall 2010

Example: Labour Markets in the ICRISAT Villages

- Mahbubnagar and Akola in Maharastra
- $\,\hookrightarrow\,$ hired labour constitutes 60–80% of total
 - Casual labour:
- \hookrightarrow hired on a day–to–day basis
- \hookrightarrow high turnover rates
- \hookrightarrow high rates of unemployment (esp. off season)
- \hookrightarrow some paid on a piece rate basis (harvesting)
- \hookrightarrow others with daily wages

- Permanent Labour: "regular farm servant"
- \hookrightarrow contractual period: 3 to 12 months (often renewed)
- \hookrightarrow verbal contracts
- $\,\hookrightarrow\,$ hired by wealthier landed households
- $\hookrightarrow\,$ earn higher wages than casual labourers
- \hookrightarrow increasing contract violation since 1980s

The Neoclassical Labour Market

- No distinction between casual and long-term labour
- No distinction between numbers of workers and labour power (nutrition)
- Assumes away problems of asymmetric information
- No involuntary unemployment
- Ignores uncertainty

()

Poverty, Nutrition and Labour Markets

Energy Use

- Resting Metabolism
- \hookrightarrow body temperature, heart, respiratory action
- \hookrightarrow minimum energy for resting tissues and cell membranes
- \hookrightarrow FAO estimate: 65 kg male requires 1700 kcal per day for this
 - Energy required for work
- $\,\hookrightarrow\,$ depends on type and intensity of work

Energy Balance

- Energy Input
- \hookrightarrow determined by food which is in turn determined by labour supply and non–labour income (e.g. land)
 - Storage and Borrowing
- \hookrightarrow in short run:

```
energy deficit = energy use - energy input
```

- Met by running down stores in human body
- \hookrightarrow sustained deficit leads to undernutrition, illness and, ultimately, death

The Nutritional Efficiency–Wage Model

• The capacity curve

- $\,\hookrightarrow\,$ at low incomes most nutrition used to maintaining resting metabolism
- \Rightarrow little extra energy left over for work
- \hookrightarrow once critical nutrition level achieved, work capacity increases rapidly
- \hookrightarrow eventually diminishing returns to nutrition due to natural limits

Figure: Work Capacity Curve

Piece Rates

 \hookrightarrow assume income received on the basis of tasks completed:

Figure: Piece Rate

• Labour Supply

- \hookrightarrow how does capacity supplied vary with income ?
- \hookrightarrow assume worker maximizes her income

Figure: Determination of Labour Supply

Figure: Labour Supply Curve

Implications

Involuntry unemployment

 \hookrightarrow employers will not reduce piece rate below v^* despite unemployment, because this will reduce work capacity

Viscious cycle

- \hookrightarrow lack of job opportunities
- \hookrightarrow low income
- \hookrightarrow low nutrition
- \hookrightarrow low capacity to work
- \hookrightarrow less access to labour markets

Dynamics of Nutritional Status

- low wages paid today
- \Rightarrow low nutritional status in the future
- \Rightarrow reduced productivity
 - if probability of hiring same worker again is low
- \Rightarrow employers do not take full account of impact of wage on nutritional status

Example

- Worker's "reservation" wage = \$5
- Minimum wage to maintain nutritional status = \$7
- Current value of work effort = \$10
- If w < \$7 nutritional status deteriorates \Rightarrow productivity falls to \$7
- Two employers: E1 and E2
- Random matching of workers with employers
- \Rightarrow probability or re-hiring a worker = 1/2

Should each employer pay \$5 or \$7 ?

• Payoffs to E1 :

Wage	Profit Today	Profit Tomorrow		Total
w = 7	10 – 7	∫ 10−5	if E2 pays \$7	8
		$1 \frac{10}{2} + \frac{7}{2} - 5$	if E2 pays \$5	6.5
w = 5	10 – 5	$\int \frac{10}{2} + \frac{7}{2} - 5$	if E2 pays \$7	8.5
		1 = 7 - 5	if E2 pays \$5	7

• Payoff matrix:

E2

$$w = 7$$
 $w = 5$
E1 $w = 7$ $8, 8$ $6.5, 8.5$
 $w = 5$ $8.5, 6.5$ $7, 7$

- Nash equilibrium: both employers pay \$5
- Superior outcome (both for wages and profits) is to pay \$7
- $\,\hookrightarrow\,$ BUT each employer will deviate if he thinks the other is paying \$7
- → "Prisoner's dilemma"
 - if situation is repeated over time
- \hookrightarrow continuous degradation of nutritional status

- Also referred to as "tied" or "attached" labour
- Two main theories of why permanent labour markets arise:
- (1) to provide incentives for workers performing specialized tasks that are difficult to monitor
- (2) as a substitute for casual labour markets where there is risk and imperfect credit markets

To Induce Effort on Non–Contractible Tasks

• Employer induces effort by paying a high wage and threatening to end contract if the worker "shirks"

• Example:

- $\hookrightarrow w_c =$ wage in casual labour market
- $\hookrightarrow w_p =$ permanent wage
- $\hookrightarrow L_c =$ casual labour force
- $\hookrightarrow L_p =$ permanent labour force
- \hookrightarrow *e* = work effort required of permanent labour
- \hookrightarrow N = mental planning horizon

• Payoff to not shirking:

$$w_p - e + N(w_p - e)$$

Payoff to shirking:

$$w_p + Nw_c$$

To induce effort employer must set the permanent wage so that

$$(N+1)(w_p - e) \ge w_p + Nw_c$$

 \hookrightarrow which implies

$$w_p = w_c + \left(rac{N+1}{N}
ight) e.$$

 \hookrightarrow last term is a "bribe" not to shirk

Relative wage

$$rac{w_p}{w_c} = 1 + \left(rac{N+1}{N}
ight) rac{e}{w_c}.$$

Implications of Growth

- Demands for both types of worker rise, pushing up w_p and w_c .
- $\hookrightarrow \ \frac{w_p}{w_c} \ \text{falls} \\ \hookrightarrow \ \frac{L_p}{L_c} \ \text{increases}$
 - Consistent with some empirical studies on agricultural booms
 - But inconsistent with long term trend

Tied Labour and Seasonal Fluctuations

- If workers are more risk-averse than employers, they may accept a lower average wage in return for transferring the income fluctuations to the employer
- Why do permanent labour contracts become less prominent as economy develops:
- \hookrightarrow decline in seasonality
- \hookrightarrow greater access to credit
- \hookrightarrow greater opportunities (e.g. manfacturing) may reduce enforceability

Intermediate Societies

- General problem of "unbalanced" economic development:
- \hookrightarrow increased mobility, wealth and change in some sectors
- \hookrightarrow once economy is sufficiently wealthy, can be replaced with formal contracts supported by more advanced information and legal systems
 - BUT there may be a phase in which it becomes an intermediate society
- $\,\hookrightarrow\,$ growth in advanced sectors undermines traditional institutions