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Abstract

For a small open economy importing its capital goods, a tariff increase may cause the

price of machines to rise, leading to lower investment and slower productivity growth. This

paper develops a structural dynamic programming model of investment and estimates the

model using panel data on Chilean manufacturing plants for 1980-1996. The estimates are

used to examine the impact of a temporary increase in import tariffs imposed in Chile taking

account of endogenous initial conditions and both observed and unobserved heterogeneity

across plants. The model replicates the observed investment patterns at both plant and

aggregate levels well. The differences across trade-sectors and across plants differing in their

use of imported materials are also well captured by the model. A counterfactual experiment

suggests that Chile would have recovered from the economic crisis of 1982-1983 at a sub-

stantially faster rate had there been no temporary increase in import prices associated with

higher tariffs in the mid-1980s.
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1 Introduction

Trade in capital goods is one of the primary channels through which a country adopts new

technology (c.f., Eaton and Kortum, 2001). This is especially true for developing countries whose

productivity crucially depends on its ability to import machines that embody new technology.

Hence, an increase in import tariffs which causes the price of imported machines to rise may

have a large impact on investment and productivity.

This paper develops a structural dynamic programming model of investment and estimates

the model using panel data on Chilean manufacturing plants for 1980-1996. The estimates

are used to quantify the impact of a temporary increase in import tariffs on investment and

productivity in Chile during the mid-1980s taking account of endogenous initial conditions and

both observed and unobserved heterogeneity.

Chile provides an ideal setting for studying the impact of tariffs. In 1983, the Chilean

government increased import tariffs (uniformly across industries), partly as a response to a

balance of payments crisis. As shown in Figure 1, this led to a significant, although temporary,

increase in the price of imported goods measured relative to the wholesale price. Since Chile is a

small open economy that imports more than 80 percent of its machines (c.f., Banco Central De

Chile, 2000), higher tariffs may have discouraged investment by increasing the price of imported

machines. A negative relationship between import prices and machine investment rates for the

period 1976-1996 is apparent in Figure 1.

The model extends models of machine replacement including Rust (1987), Cooper, Halti-

wanger, and Power (1999), and Jovanovic and Rob (1999). Higher import tariffs slow plants’

replacement by increasing the machine price. If the high tariff regime is viewed as temporary,

the expectation of a future drop in machine prices provides an incentive to delay replacement,

thereby magnifying the impact of an increase in machine prices. Reversion from the high tariff

regime to the low tariff regime causes a burst of aggregate investment because of synchronized

replacement decisions due to lower machine prices.

The estimation method involves the repeated numerical solution of a dynamic optimization

problem to maximize a likelihood function that accounts for machine replacement decisions and

plant productivity. The empirical specification incorporates other potentially important factors,

such as aggregate productivity shocks and the financial crisis of 1982-1983. I also accommodate
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Figure 1: Machine Investment, Import Price, and Tariff Rate

unobserved heterogeneity by assuming that plants differ in their types (c.f., Keane and Wolpin,

1997), where each type is characterized by distinct technology parameters. Accounting for

unobserved heterogeneity is crucial to correctly infer the decision rule of machine replacement.

The newer the machines, the larger the fraction of plants with unobserved characteristics that

lead to higher replacement probability. Without accounting for unobserved heterogeneity, it may

appear that replacement probability is decreasing in machine ages even if any individual plant’s

replacement probability is actually increasing with machine ages. The presence of unobserved

heterogeneity also leads to the important issue of how to treat the initial observations which are

not independent of the unobserved type (c.f., Heckman, 1981).

The estimation algorithm developed here explicitly deals with the initial conditions problem.

Specifically, utilizing the long time-series aggregate data that includes the pre-sample periods

of the panel data, I construct a transitory distribution of machine age of the initial year of the

panel data by simulating the structural model conditional on both unobserved heterogeneity and

the past realizations of aggregate variables. The constructed initial distribution is used, in turn,

to integrate out the unobserved initial machine age to evaluate the type-specific likelihood.

The estimated model replicates the observed investment patterns well at both plant and

aggregate levels. A counterfactual experiment indicates a substantial negative impact of the

temporary increase in import prices in the mid-1980s. Had there been no increase in relative

import prices between 1983 and 1987, the aggregate investment rate would have been 6.8 percent

higher in 1985. The accumulated loss in output per worker for 1983-1996 is estimated as 11.1
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percent of annual output. This suggests that Chile would have recovered from the economic

crisis of 1982-1983 much more quickly if the government had not imposed higher tariffs in the

mid-1980s.

The model’s cross-sectional implications are also examined. First, while a tariff increase may

not significantly affect output prices in an export-oriented industry, it may lead to higher output

prices in an import-competing industry and thus provide greater incentive for plants to hasten

replacement. Such a difference across sectors is well captured by the model; for 1984-1988, the

difference in the dynamics of relative import prices can explain more than half of the observed

difference between export-oriented industries and import-competing industries in investment

rates. Second, a plant that uses imported materials intensively might use imported machines

intensively as well, and hence it might have a larger increase in machine price than others during

the period of high tariffs. I find that import-material-intensive plants experienced substantially

larger declines in investment and productivity during the period of high tariffs than others.

This research complements several branches of literature. First, a number of recent empiri-

cal studies find that trade in capital goods plays a significant role for research and development

(R&D) spillovers across countries (e.g., Coe, Helpman, and Hoffmaister, 1997; Xu and Wang,

1999). While often motivated by the innovation-driven growth model (e.g., Grossman and Help-

man, 1991), the existing empirical literature does not explicitly specify the mechanism through

which trade or R&D affects productivity, nor does it address policy issues, such as the effect

of import tariffs on R&D spillovers. Second, the empirical literature investigating the relation-

ship between trade policy and productivity often finds that trade liberalization is associated

with productivity improvements.1 There is little agreement, however, on why productivity and

trade policy are related.2 Detailed analyses assessing the importance of a specific mechanism

through which trade policy affects productivity are scarce. This paper focuses on the role of

imported capital goods as the main source of productivity change, and quantitatively assesses

its importance in the context of a temporary tariff change. Finally, this work is related to the
1See Tybout, de Melo, and Corbo (1991), Harrison (1994), Tybout and Westbrook (1995), and Pavcnik (2002).
2As discussed in Tybout (2000), a number of empirical studies suggest that productivity improvements through

trade are not due to internal/external scale effects; therefore, intra-plant productivity improvements are a likely

source of productivity change. While there are many possible explanations, there is little direct empirical evidence

on how intra-plant productivity is related to trade liberalization.
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literature on the impact of the price of capital goods on investment and productivity.3 While

most empirical work in this literature is based on cross-country data, I closely examine a single

country experiencing a large variation over time in the price of capital goods. Since the findings

of cross-country studies are essentially from a limited amount of data (i.e., Summers and He-

ston), looking at one country using detailed microdata provides additional important evidence

concerning the relationships between the price of capital goods, investment, and productivity.

The paper is organized as follows. Section 2 provides theoretical analysis. Section 3 develops

the structural dynamic optimization model of machine replacement. The results are provided

in Section 4, and the final section concludes the paper.

2 A Basic Machine Replacement Model with Tariffs

In this section, I extend the machine replacement model of Cooper et al. (1999) and Jovanovic

and Rob (1999) by embedding tariff regime switching in order to analyze the effect of a tariff

change on machine replacement timing.

Consider a risk-neutral producer who owns a single plant in discrete time with the following

Leontief production technology: Yt = Atmin{Lt,
Kt
ak
}, where ak is a parameter; and At is the

vintage specific technology level. An individual producer is assumed to be endowed with one

unit of labor.4 Given the Leontief technology with one unit of labor, the amount of capital a

plant employs is Kt = ak. Thus, the production of a plant with technology level At is Yt = At.

Technology is embodied in the machine. The value of At essentially reflects the “vintage”

of technology embodied in capital. Without replacing its machine, a plant’s technology level At

depreciates over time at the rate of ζ: At+1 = (1− ζ)At. The frontier technology level, denoted

by A∗, grows at the rate of g: A∗t+1 = (1 + g)A∗t . In order to adopt new technology, a plant

has to scrap the old machine. It is by machine replacement, therefore, that a plant adopts the
3De Long and Summers (1991), Jones (1994), and Restuccia and Urrutia (2001) indicate that cross-country

differences in investment rates and productivity are at least partly driven by differences in the relative price

of capital goods in terms of consumption. Greenwood, Hercowitz, and Krusell (1997) argue that the declining

relative price of equipment contributes as much as 60 percent of total factor productivity growth through its effect

on the introduction of new technology embodied in capital in the United States.
4Given the constant returns to scale technology, the scale of production is indeterminate. Thus, it is assumed

that each plant can employ at most one unit of labor.
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frontier technology. Upon replacing its old machine by the new machine with technology A∗t , a

plant has to pay κtA
∗
t , where κt is the efficiency unit price of the new machine. The scrap value

of old machines is assumed to be zero.5

To analyze the effect of tariff rates on the replacement decision, consider a small open

economy that imports capital goods. The domestic machine price, κt, is related to the ad-

valorem import tariff rate, τt, and a constant world price for capital goods, κ, as κt = (1 + τt)κ.

Domestic output price, which is equal to the world price, is normalized to one.

Assume that there are two tariff regimes {τH , τL} with τH > τL ≥ 0. The tariff rate follows

a first-order Markov process where Prob(τ j
t+1|τ j

t ) = λj for j = L,H; accordingly, the transition

matrix is given by: 
 λH 1− λH

1− λL λL


 . (1)

At the beginning of every period, plants observe the realization of tariff τ . Given the state

(A,A∗, τ), each plant makes a discrete choice between continuing to use the existing machine

or replacing it with a new machine by maximizing the discounted expected sum of profits. The

value of a plant at the beginning of period, denoted by V (A,A∗, τ), is the maximum of the value

of the plant if it does not replace its technology, V N (A,A∗, τ), and the value if it does replace,

V R(A, A∗, τ). Thus, it satisfies the following Bellman equation:

V (A,A∗, τ) = max{V N (A,A∗, τ), V R(A,A∗, τ)}, (2)

with V N (A,A∗, τ) = A+BE[V ((1− ζ)A, (1+ g)A∗, τ ′)|τ ] and V R(A, A∗, τ) = A− (1+ τ)κA∗+

BE[V ((1 + g)A∗, (1 + g)A∗, τ ′)|τ ], where the expectation over τ ′ is taken using the transition

matrix (1); B ∈ (0, 1) is a discount factor. Since both the gross profit and the replacement

cost are homogenous of degree one with respect to (A,A∗), the problem may be normalized in

terms of the value A∗. Let v(s, ·) ≡ V (exp(s), 1, ·), vN (s, ·) ≡ V N (exp(s), 1, ·), and vR(s, ·) ≡
5One reason for low resale value of used machines is the “lemons” problem (Akerlof, 1970). Using equipment-

level data from aerospace plants, Ramey and Shapiro (2001) find that (even barely) used capital sells for a

substantial discount.
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V R(exp(s), 1, ·), where s ≡ ln
(

A
A∗

)
.6 Then, the Bellman equation (2) become

v(s, τ) = max
{
exp(s) + βE[v(s− δ, τ ′)|τ ], exp(s)− (1 + τ)κ + βE[v(0, τ ′)|τ ]

}
, (3)

where δ ≡ ln
(

1+g
1−ζ

)
is the rate of technological obsolescence; β ≡ (1 + g)B is a discount factor

adjusted for the rate of technological progress. Notice that s ≡ ln
(

A
A∗

)
is the position of

the plant’s technology relative to the frontier technology—which we call technology position

hereafter.

The timing of replacement is determined by equating the marginal benefit and the marginal

cost of postponing. The benefit of postponing is that a plant can save the replacement cost in

terms of present value since a plant discounts the future. On the other hand, a postponement of

replacement incurs an opportunity cost: the difference between profit with current technology

and the profit that the plant could have had with the new technology. Reflecting an increase

in the opportunity cost of using the old machine over time, the policy rule follows an (S,s) pol-

icy such that a plant replaces its machine whenever its relative technology position falls below

the threshold value. The threshold value for replacement crucially depends on a realization of

tariff rates; this is because the marginal benefit of postponing replacement—the saving in the

replacement cost—is essentially determined by the tariff-dependent machine price. Proofs of all

propositions are in the appendix.

Proposition 1

There exists a unique s∗(τ) ∈ (−∞, 0] for τ ∈ {τL, τH} such that a plant replaces its machine

whenever its technology position falls below s∗(τ).

Thus, the timing of replacement is characterized completely by the regime-dependent thresh-

old technology position s∗(τ). In order to focus on the effect of a temporary increase in tariffs,

consider the case of λL → 1 and λH < 1. In this case, the high tariff regime is a temporary

regime in the sense that the economy will revert to the low tariff regime in the “near” future

and, once the economy goes back to the low tariff regime, τL will persist. In the extreme case of
6More precisely, it can be proved that V (·) defined by the fixed point of (2) is homogenous of degree one with

respect to (A, A∗). It follows that V (A, A∗, ·) = V (A/A∗, 1, ·)A∗. Thus, the number of states may be reduced by

considering A/A∗ instead of (A, A∗).
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λL = 1, the low tariff regime is an absorbing state. The value of 1−λH represents the extent to

which the high tariff regime is temporary; in particular, the mean time for the economy to stay

in the high tariff regime is 1/(1 − λH). The next proposition states that a temporary increase

in the tariff slows machine replacement.

Proposition 2

Suppose that λL → 1 and λH < 1. Then,

(a) s∗(τH) is strictly decreasing in τH , and

(b) s∗(τH) < s∗(τL).

The implications of Proposition 2.(a) are twofold. First, an increase in the tariff rate itself

tends to slow replacement by increasing the replacement cost. Second, as τH increases, a differ-

ence in machine prices between the high tariff regime and the low tariff regime increases; this

larger difference increases the benefit of waiting for the tariff to decrease to τL, since the plant

can incur a lower replacement cost upon reversion of the regime. Here, the temporary nature

of the high tariff regime plays an important role since temporariness provides an incentive to

delay machine replacement. This is intuitive: if a plant’s manager believes that the replacement

machine price will drop very soon, he will delay replacement.

Assuming that all plants are the same size, the aggregate investment rate may be defined as

the fraction of plants replacing their machines. Let the state of the aggregate economy be the

cross-sectional density of technology positions at the beginning of period t, denoted by ft(s),

and the realized tariff rate, τ . The aggregate investment rate, I(τ, f), is determined by the

cross-sectional density of technology positions and the current tariff regime as follows:

I(τt, ft) =
∫

s≤s∗(τt)
ft(s)ds. (4)

That is, the aggregate investment rate I(τ, f) is equal to the fraction of plants with technology

positions less than the tariff-dependent threshold value, s∗(τ). Note that, holding the cross-

sectional density fixed, the aggregate investment rate is nondecreasing in the threshold value

s∗(τ). Thus, in view of Proposition 2, a high tariff tends to lower the aggregate investment

rate. To understand how the tariff rate is related to aggregate investment and the productivity

distribution, consider the extreme case of a constant tariff, i.e., τH = τL = τ and focus on the
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steady state at which technology positions are uniformly distributed.

Proposition 37

Suppose that the tariff rate is a constant over time. Then, in the steady state,

(a) The higher the tariff, the lower the aggregate investment rate.

(b) The higher the tariff, the lower the average technology position but the higher the standard

deviation.

While it presumes a steady state, Proposition 3, together with Proposition 2, provides insight as

to how an increase in the tariff affects the dynamics of aggregate investment and productivity.

In particular, since a temporary increase in the tariff leads to slower replacement, it may lower

temporarily the aggregate investment. The delay in the adoption of frontier technologies em-

bodied in machines results in lower aggregate productivity and higher productivity dispersion

across plants.

3 Structural Estimation

In this section, an empirical dynamic optimization model of machine replacement is developed

and estimated using plant-level Chilean manufacturing data for 1980-1996. Using the estimated

model, I provide various counterfactual experiments to quantify the impact of a temporary

increase in import prices on investment and productivity as well as to examine the differential

responses across trade sectors and across plants differing in their use of imported materials.

3.1 Basic Observations

Before providing the empirical specification, it is helpful to examine the key implications of the

machine replacement model using simple descriptive statistics. More specifically, I investigate

(i) lumpiness in plant-level investment, (ii) the relationship between productivity and machine

age, and (iii) the relationship between the timing of investment spikes and machine age.

The data for the analysis are from the Chilean Manufacturing Census (Encuesta Nacional

Industrial Anual) collected by Chile’s Instituto Nacional de Estadistica (INE). The data set
7Part (b) of this proposition is essentially from Proposition 3 of Jovanovic and Rob (1999).
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includes all Chilean manufacturing plants employing ten or more workers from 1979 to 1996.

The sample includes plants that appeared in the data for the full duration of 1980-1996.8 After

cleaning, the balanced panel data set contains 1441 plants over 17 years.

Lumpiness in investment at the plant level is apparent in the data. Following Cooper et

al. (1999), I define episodes of ”investment spikes” as occurring if the gross investment rate

is greater than 20 percent. In the sample, plants with investment spikes constitute only 22.1

percent, but account for 69.3 percent of aggregate gross investment. On the other hand, 46.8

percent of observations have less than 0.02 percent gross investment rate.9 A large portion

of aggregate investment, therefore, is closely associated with episodes of investment spikes at

the plant level. The observation of investment spikes is consistent with a view of machine

replacement in which plants make discrete replacement decisions. Furthermore, the time-series

fluctuation of the aggregate investment is closely associated with episodes of investment spikes

at the plant level; this can be seen from Figure 2 which plots the aggregate investment rate with

the fraction of plants with investment rates over 20 percent. The correlation between the two

series is 0.944. In view of this close connection between aggregate investment and investment

spikes, identifying the shocks affecting plants’ lumpy investment decisions may be the key to

understanding the dynamics of aggregate investment.

Motivated by the observed lumpiness in plants’ investment, machine replacement is assumed

to be identified with episodes of investment spikes. Accordingly, the age of a machine is defined

as the number of years passed since the last investment spike. Figures 3 shows the relationship
8Although the link between entry, exit, and productivity growth is an important area of research, I focus

attention on those plants continuously staying in the market. Incorporating an exit/entry process into the model

requires analyzing industry equilibrium, which is beyond the scope of this paper.
9Similar findings on investment spikes are reported for U.S. and Norwegian manufacturing. Caballero et al.

(1995), Caballero and Engel (1999) and Cooper and Haltiwanger (2000) emphasize the lumpiness of investment at

the plant level and its association with aggregate investment dynamics. Empirical evidence for lumpy investment

at the plant level and its connection with aggregate investment are presented by Doms and Dunne (1998) among

others. By using the Longitudinal Research Database in the U.S. manufacturing sector for the period 1972-1988,

Doms and Dunne found that plants concentrate about 50 percent of their cumulative 17 year investment in the

three years surrounding the year with the largest investment. Cooper et al. (1999) confirms their basic findings

and also reports that about 13 percent of their observations have less than 0.02 percent gross investment rate.

Based on Norwegian microdata, Nilson and Schiantarelli (1996) found zero equipment investment in 21 percent

of their observation for production units.
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Figure 4: Empirical Hazard

between machine age and the log of plant labor productivity. The solid line plots the relationship

without controlling plant-specific productivity and the dotted line plots the relationship after

controlling plant-specific productivity.10 While both lines show that plant labor productivity is

negatively related to machine age, the negative relationship is much stronger before controlling

plant-specific productivity (the average slope of −0.063) than after controlling plant-specific

productivity (the average slope of −0.028). This difference in the slopes likely reflects a self-

selection among plants with different plant-specific productivity; inherently high productivity

plants may replace their machines more frequently than others and may tend to have lower

machine ages. Without controlling for such differences across plants, it may appear that an

increase in machine age has a larger negative impact on productivity than it actually has. This

finding motivates the inclusion of unobserved plant-specific productivity in the empirical model.

Figure 4 plots the empirical hazard—the actual fraction of plants experiencing investment

spikes against the observed machine age—for the years of 1990-1996. The empirical hazard

is downward-sloping, indicating that the probability of replacement declines with machine age.

This observation contradicts a simple machine replacement model prediction, that a plant is more

likely to replace if its machine is older. However, as is well known in the duration dependence
10Productivity is measured relative to the productivity of machine age 1. The figures are constructed using the

plant sample of 1990-1996 for which machine ages are observable at least up to 8 years. The year-specific effect

is controlled by subtracting the yearly average labor productivity from plant labor productivity. To control for

plant-specific productivity, I subtract the average plant productivity for 1980-1989 from plant productivity and

then use the residual as plant productivity.
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literature, and is discussed in the context of machine replacement problem by Cooper et al.

(1999), the presence of unobserved heterogeneity may lead to downward-sloping hazard even

if individual plants’ hazards are increasing in machine ages. As I show later, the estimated

empirical structural model that incorporates unobserved heterogeneity can predict downward-

sloping hazards even though any individual plant’s hazard is predicted to be upward-sloping.

This is because, in the empirical model, plants with higher ability to use machines, higher

technological obsolescence rate, and lower replacement cost, are more likely to replace their

machines conditional on machine age and thus their machines tend to be relatively young. In

other words, the observed downward-sloping hazard may arise because of a composition effect:

the newer the machine, the larger the fraction of plants with (unobserved) characteristics that

lead to higher replacement probability.

3.2 Empirical Specification

To quantitatively assess the relative importance of the effect of a tariff increase on investment

and productivity, I develop a structural dynamic optimization model that incorporates other po-

tentially important factors. In particular, the empirical specification includes: (A.1) dependence

of machine price on import price, (A.2) aggregate shocks, (A.3) the effect of tax on profits, (A.4)

the 1982-83 financial crisis, and (A.5) the possibility of multiyear investment projects. While

(A.1) is in keeping with the theoretical model in Section 2, (A.2)-(A.4) capture alternative ex-

planations for the observed Chilean investment dynamics; (A.5) attempts to capture the fact

that large investment projects often last more than two years. I allow for three different sources

of unobserved heterogeneity: plant specific productivity, replacement cost, and technological

obsolescence rate [(B.1)]. I also allow for choice-dependent idiosyncratic cost shocks as well as

idiosyncratic productivity shocks [(B.2)].

(A.1) Dependence of Machine Price on Import Price Given that Chile is a small open

economy importing more than 80 percent of its capital goods, a change in the price of imported

machines resulting from a change in tariff rates may affect replacement decisions. Highlighting

the dependence of machine price on import price, the specification relates the time-dependent

component of replacement cost, κt, to the log of the import price index—which is denoted by
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pt—as:

κt = κ · exp(αppt), (5)

where κ is the replacement cost at the base year and αp is a parameter that represents the

elasticity of machine replacement cost with respect to import price. This specification allows

me to examine whether the dynamics of import prices are relevant in determining replacement

decisions. Note that if αp = 0, then the machine replacement cost is independent of the import

price index.

(A.2) Aggregate Productivity Shocks As Cooper et al. (1999) emphasizes, a serially

correlated aggregate productivity shock could be an important determinant of machine replace-

ment. In particular, I incorporate serially correlated aggregate productivity shocks into the

production function as

Yit = Aitexp(α0 + αzzt), (6)

where Ait represents the vintage-specific productivity of the ith plant at the year t, and zt

is the detrended aggregate productivity shock at year t. In practice, the Solow residuals are

constructed from aggregate data on GDP, capital stock, and employed labor force and use its

log after detrending as proxies for aggregate shocks.

(A.3) Tax on Profits In the sample period, there are two major tax reforms: in 1984-1986

and in 1991-1992.11 To capture the effect of tax reforms in the model, I let gross profit depend

on the tax rate. Furthermore, it is assumed that the tax reforms were unanticipated.12 “Unan-

ticipation” of tax reforms tends to magnify the effect of the tax rate changes on replacement

decisions. Thus, by assuming unanticipated tax rate changes rather than anticipated tax rate

changes, the results constitute an upper bound on the effect of the tax rate changes in explaining

variations of aggregate investment over time.
11In 1984-1986, the effective tax rate on profits fell from 46 percent to 10 percent. The tax rate temporarily

reduced to 0 percent in 1991 and increased to 15 percent after 1992.
12More specifically, I assume that, before 1983, plant managers believed that the tax rate in the future would

be a constant pre-tax-reform tax rate (46 percent). In the beginning of 1984, they came to know the exact tax

schedule for the period of 1984-1985 (37 percent in 1984 and 23.5 percent in 1985) and believed that the tax rate

would be a constant at 10 percent indefinitely. In 1991, there was an unexpected tax rate change and plants’

managers came to know that the tax rate would be a constant 15 percent after 1992.
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(A.4) The 1982-83 Financial Crisis Due in part to a combination of external shocks in-

cluding an increase in the world interest rate and the deterioration in its terms of trade, Chile

experienced a major economic crisis in 1982-83. After the abandonment of the fixed exchange

rate regime in June 1982, the government reintroduced exchange control. The financial system

collapsed in the midst of the recession; between the late 1981 and the end of 1983, and the

government intervened 19 financial institutions—including the two largest banks in the private

sector—which were either liquidated or rehabilitated and privatized [c.f., Barandiaran and Her-

nandez (1999)]. I incorporate these events into the model by assuming that the replacement

costs in 1982-83 were higher by αD than in other years, holding other state variables constant.

This specification is motivated by the consideration that the collapse of domestic financial sys-

tem and the reintroduction of exchange control may have increased the actual replacement cost;

the former may have made it hard for plants to find the sources of funding; the latter may have

increased the cost of purchasing imported machines. Further, I assume that the 1982-83 increase

in replacement costs were unanticipated. This assumption seems reasonable since the financial

crisis of 1982-1983 was, at least partly, caused by unanticipated external shocks.

(A.5) Multiyear Investment Projects In the data, plants that had high investment in the

previous year tend to have high investment in the current year. The large probability of further

investment immediately following an investment spike partly reflects a form of measurement

error due to the calender-year nature of the data. As Doms and Dunne (1998) emphasize, large

investment projects often last more than two years. To deal with this issue, I assume that the

cost of machine replacement is less if a plant conducts lumpy investment in the previous two

years; specifically, the replacement cost at t is κit − ϕj , instead of κit, if the plant conducts

investment spike in year t − j for j = 1, 2. Formally, ϕj may be interpreted as the saving in

fixed replacement cost when a plant replaces its machine across two or three years.

(B.1) Unobserved Heterogeneity As the discussion in Section 3.1 suggests, ignoring unob-

served heterogeneity may bias the estimates toward the direction so that the empirical hazard

rate is downward-sloping. Therefore, it is important to incorporate unobserved heterogeneity

into the model. I consider three sources of unobserved heterogeneity: (i) plant-specific pro-

ductivity, (ii) plant-specific replacement cost, and (iii) plant-specific technological obsolescence
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rate.

(i) I assume that individual plants differ in their ability to use machines and parameterize

the plant-specific productivity by u1,i. In particular, by modifying equation (6), the production

function of the ith plant at year t is assumed to be given by Yit = Aitexp(α0 + αzzt + u1,i).

Inclusion of plant-specific productivity is important in explaining a persistence in plant labor

productivity over time that may not be captured by persistence in the machine age. Explicitly

incorporating plant-specific productivity, I may control for a self-selection, implied in Figure 2,

driven by differences in plant-specific productivity.

(ii) Since the machine replacement cost might be systematically different across industries

or types of final products, I assume that replacement costs are plant-specific and parameterized

by u2,i. Specifically, a plant-time specific replacement cost, denoted by κit, is bifurcated into

a time-specific component and a plant-specific component, κit = κtexp(u2,i). Thus, together

with equation (5), κit = κ · exp(αppt + u2,i). The unobserved heterogeneity in replacement cost

controls for plants’ unobserved characteristics that are not relevant to labor productivity but

are relevant to replacement decisions.

(iii) The rate of technological obsolescence, δ, might not be identical across plants if they

face different depreciation rates or different degrees of technological embodiment in machines.13

To allow for such a possibility, it is assumed that the technological obsolescence rates are plant-

specific. Denote the ith plant-specific technological obsolescence rate by δi and assume that

δi ≥ 0 for all i. The rate of technological obsolescence, δi, determines how the plant’s vintage-

specific productivity, Ait, relates to its machine age, which is denoted ait, and the frontier
13Note that, assuming that all technological progress is embodied in machines, the technological obsolescence

rate of machines is expressed in terms of the rate of technological progress, g, and depreciation, ζ, as δ =

ln( 1+g
1−ζ

). Clearly, if the depreciation rates (ζ) are different across plants, so are the technological obsolescence

rates. Furthermore, the degree to which technology is embodied in machines also matters for technological

obsolescence rates. To see this formally in the context of the model, suppose that the production function takes

the form Yit = Aν
itA

∗1−ν
t instead of Yit = Ait, where ν ∈ [0, 1] is the degree of technological embodiment; A∗t

is the frontier technology level, and Ait is the vintage-specific technology level. In this case, the technological

obsolescence rate is δ = ln( (1+g)ν

1−ζ
). If ν = 1, all technology is embodied in machines and thus it is the original

machine replacement model. If ν = 0, however, then technological progress is totally disembodied such that

machine replacement plays no role in adopting the frontier technology. In the empirical specification, differences

in ζ and ν are reflected in different values of δ; ζ and ν are not identified separately.

16



technology level, A∗t : Ait = A∗t exp(−δiait).14 Technological obsolescence is a key parameter,

partially determining the degree of duration dependence. For example, if δ = 0, then machine

age is not systematically related to the probability of machine replacement.

Let the vector ui ≡ (u1,i, u2,i, δi) represents the ith plant-specific unobserved heterogeneity.

I assume that plant-specific productivity is normally distributed with mean zero and variance

σ2
u1

. Further, (u2, δ) is assumed to be independent of u1 and multinomially distributed with

the number of support points equal to K. The kth type for k = 1, 2, . . . ,K is characterized

by a vector (uk
2, δ

k) and the fraction of the kth type in the population is denoted by πk. In

practice, I set K = 4 and assume that each of uk
2 and δk takes either a high value or a low value.

The first type has a low replacement cost and a low depreciation rate, with values u2 = 0 and

δ = 0.15 The second type also has a low replacement cost u2 = 0 but a high depreciation rate

δ = δH > 0. The third type has a high replacement cost u2 = uH
2 > 0 and a low depreciation

rate δ = 0. Finally, the fourth type has a high replacement cost and a high depreciation rate.

The unobserved heterogeneity (u2, δ) is, therefore, specified to have the following multinomial

distribution: Pr((u2, δ) = (0, 0)) = π1, Pr((u2, δ) = (0, δH)) = π2, Pr((u2, δ) = (uH
2 , 0)) = π3,

and Pr((u2, δ) = (uH
2 , δH)) = π4.

(B.2) Idiosyncratic Shocks I allow for a replacement cost shock that is choice dependent,

εit(d)A∗t , for d = {0, 1}, where d = 0 implies that a plant does not replace its machine and d = 1

implies that it does, and A∗t is the frontier technology level. Following Rust (1987), I assume

that, conditional on other state variables, εit(0) and εit(1) are drawn independently from the

Type I extremum distribution conditional on other state variables. I also allow for a serially

uncorrelated idiosyncratic productivity shock, ξit, so that the production function is given by

Yit = Aitexp(α0+αzzt+u1,i+ξit), where ξit is drawn independently from the normal distribution

with mean zero and variance σ2
ξ . It is assumed that εit = (εit(0), εit(1)) and ξit are known to the

plant before the updating decision is made in the beginning of year t.

When a plant replaces its machine in year t, only a fraction ϑ ∈ [0, 1] of a new machine
14I use machine age, ait, instead of technology position, sit, as the state variable in the empirical specification

since the machine age is what I observe in the data. Technology position and machine age are related by the

identity sit ≡ −δiait.
15I initially estimated a low depreciation rate as a free parameter with a non-negativity constraint and found

that it converged to 0.
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is assumed to become productive at year t. Specifically, the production for a plant replacing

its machine at year t is assumed to be given by a geometric average of production under the

new machine (machine age 0) and production under the old machine (machine age ait) so that

Ait = [A∗t ]ϑ[A∗t exp(−δiait)]1−ϑ = A∗t exp(−(1−ϑ)δiait) when dit = 1. It follows that the plant’s

value added (per worker) is

Yit = A∗t exp(α0 + αzzt − (1− ϑdit)δiait + u1,i + ξit). (7)

By incorporating (A.1)-(A.5) and (B.1)-(B.2), the net profit flow normalized by the value

of A∗t with the state (ait, zt, pt, γt, Dt, ui, ξit, εit) and the replacement choice dit ∈ {0, 1} is

Π(ait, zt, pt, γt, Dt, ui, ξit, dit) +εit(dit) where

Π(ait, zt, pt, γt, Dt, ui, ξit, dit) =



(1− γt) exp(α0 + αzzt − δiait + u1,i + ξit) for dit = 0

(1− γt) exp(α0 + αzzt − (1− ϑ)δiait + u1,i + ξit)

−[κ exp(αppt + u2,i)−
∑

j=1,2 ϕjI[ait = j]]− αDDt for dit = 1

where γt is the effective tax rate on profit, zt is the aggregate productivity shock, δi is the

technological obsolescence rate, ait is the machine age, u1,i and u2,i capture unobserved hetero-

geneity in productivity and replacement cost, respectively, ϑ is a fraction of a new machine that

becomes productive at year t upon replacement, αp is the elasticity of machine replacement cost

with respect to import price, I[·] is an indicator function that is equal to one if its argument is

true and zero otherwise, ϕj represents the saving in replacement cost when a plant replaces its

machine across two or three years, αD is the additional replacement cost in 1982-1983, and Dt

is a dummy variable for the years of 1982 and 1983, which is equal to one if t = 1982 or 1983

and zero otherwise.

The aggregate variables zt and pt are assumed to follow a stationary AR(1) process:

zt = cz + ψzzt−1 + ηz,t

pt = cp + ψppt−1 + ηp,t,

where ηz,t and ηp,t are independent, normally distributed innovations with the variance σ2
z and

σ2
p.

16

16Note that zt and pt are assumed to be orthogonal to each other. I also estimated a joint stationary first-order
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A typical plant manager’s decision problem is: maxE
∑∞

t=0 βt[Π(ait, zt, pt, γt, Dt, ui, ξit, dit)+

εit(dit)], where the expectation is taken with respect to the controlled stochastic process of

{ait, zt, pt, γt, Dt, ui, ξit, εit}. The corresponding Bellman’s equation is written as

v(ait, zt, pt, γt, Dt, ui, ξit, εit) = max
dit∈{0,1}

{v∗(ait, zt, pt, γt, Dt, ui, ξit, εit(dit), dit)}

with

v∗(ait, zt, pt, γt, Dt, ui, ξit, εit(dit), dit) = Π(ait, zt, pt, γt, Dt, ui, ξit, dit) + εit(dit)

+βE[v((1− dit)ait + 1, zt+1, pt+1, γt+1, Dt+1, ui, ξi,t+1, εi,t+1)|zt, pt],

where the expectation is taken with respect to (zt+1, pt+1, ξi,t+1) conditional on (zt, pt). Denote

the expected value function v̄θ(ait, zt, pt, γt, Dt, ui, ξit) ≡ Eε[v(ait, zt, pt, γt, Dt, ui, ξit, ε)], where

the expectation on the right hand side is taken with respect to ε ≡ (ε(0), ε(1)). For the purpose

of exposition, I assume that γt and Dt are constants over time. Given the assumption on

the additively separable error terms with the Type I extreme-value distribution, the following

functional equation in terms of the expected value function v̄(·) can be derived (c.f., Ben-Akiva

and Lerman, 1985):

v̄θ(a, z, p, γ,D, u, ξ) =

ln


 ∑

d′=0,1

exp{Π(a, z, p, γ, u, ξ, d′) + βE[v̄θ((1− d′)a + 1, z′, p′, γ,D, u, ξ′)|z, p]}

 . (8)

With the solution to the functional equation (8), the conditional choice probability is given

by the binomial logit formula (c.f., McFadden, 1973; Rust, 1987),

Pθ(d|a, z, p, γ, D, u, ξ) =
exp{Π(a, z, p, γ,D, u, ξ, d) + βE[v̄θ((1− d)a + 1, z′, p′, γ, D, u, ξ′)|z, p]}∑
d′ exp{Π(a, z, p, γ,D, u, ξ, d′) + βE[v̄θ((1− d′)a + 1, z′, p′, γ,D, u, ξ′)|z, p]} . (9)

Evaluation of (9) requires the solution to (8). Since there is no closed-form solution, I

discretize the state space using quadrature grids and solve the approximated decision problem

numerically by backward induction. The integral in (8) is approximately evaluated using the

VAR process zt = cz + ψzzzt−1 + ψzppt−1 + ηz,t and pt = cp + ψpzzt−1 + ψpppt−1 + ηp,t, where ηz,t and ηp,t are

normally distributed innovations with the variances σ2
z and σ2

p and correlation coefficient ρzp. I found that ψzp,

ψpz, and ρzp are not significantly different from zero.
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Hermite quadrature formula (c.f., Tauchen and Hussey, 1991; Stinebricker, 2000). The appendix

discusses the approximation method in greater detail.

Given the rate of technological progress, g, the frontier technology level at time t, lnA∗t , is

related to the frontier technology level at time 0, lnA∗0, as lnA∗t = lnA∗0 + [ln(1 + g)]t. Then,

from equation (7), the log of labor productivity is given by ln(Yit) = αy0 + [ln(1 + g)]t + αzzt −
(1−ϑdit)δiait+u1,i+ξit, where αy0 ≡ ln A∗0+α0. It is plausible that observed labor productivity

is measured with error. Thus, assume that the data generating process of the observed labor

productivity in log form, denote by yit, follows

yit = αy0 + [ln(1 + g)]t + αzzt − (1− ϑdit)δiait + u1,i + ξit + ηit, (10)

where ηit is an i.i.d. normal random measurement error with variance given by σ2
η. Denote

the sum of an idiosyncratic productivity shock ξit and a measurement error ηit by ωit so that

ωit = ξit + ηit.

3.3 Estimation

3.3.1 Likelihood Function

Let the transition density functions of z and p be denoted by qz(z′|z) = φ
(

z′−ψzz
σz

)
/σz and

qp(p′|p) = φ
(

p′−ψpp
σp

)
/σp, where φ(·) is the standard normal density. The partial likelihood

function of aggregate shocks and import prices is given by:

Lp
1(θ1) ≡ q∗z(z70)q∗p(p70)

96∏

t=71

qz(zt|zt−1)qp(pt|pt−1) (11)

where q∗z(z) = φ
(

z′
σz/(1−ψz)

)
/[σz/(1 − ψz)] and q∗p(p) = φ

(
p′

σp/(1−ψp)

)
/[σp/(1 − ψp)]. θ1 =

(cz, cp, ψz, ψp, σz, σp) is a subvector of parameters that appear only in q(·). Note that the ag-

gregate data cover longer periods (1970-1996) than the plant-level panel data (1980-1996). The

availability of the aggregate data in pre-sample period of panel data is crucial to deal with the

initial conditions problem discussed below.

Machine age, ait, is defined as the number of years passed since the last investment spike.

For each value of machine ages in 1980, the ith plant’s machine ages for subsequent years can be

constructed based on the law of motions ai,t+1 = (1− dit)ait + 1 using (observable) replacement

decisions {dit}96
t=80. Denote this sequence of machine ages for the ith plant conditional on ai,80—

the initial machine age in 1980—as {ait(ai,80)}96
t=80. Given the initial machine age ai,80 and the
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unobserved heterogeneity ui = (u1,i, u2,i, δi), the (type-specific) likelihood contribution for labor

productivity and replacement decision of the plant is

Li(θ; ai,80, ui) =
96∏

t=80

1
σω

φ

(
ω̃it(ui, ait(ai,80))

σω

) ∫
Pθ(d|ait(ai,80), zt, pt, γt, Dt, ui, ξ

′)f(ξ′|ω̃it(ui, ait(ai,80)))dξ′, (12)

where ω̃it(ui, ait) ≡ yit−{αy0 + [ln(1 + g)]t + αzzt− (1− ϑdit)δiait + u1,i}, σω =
√

σ2
ξ + σ2

η, and

f(ξ|ω) = 1

σξ

√
1−ρ2

φ

(
ξit−ρ2ω

σξ

√
1−ρ2

)
which is the density of ξ conditional on ω. Here, ρ2 =

σ2
ξ

σ2
ω

is the

fraction of the sum of variances of ξ and η accounted for by idiosyncratic productivity shock.

The partial likelihood function for productivity shocks and replacement decisions is a mixture

of type-specific likelihood functions (12):

Lp
2(θ; {ai,80}N

i=1) ≡
N∏

i=1

[
K∑

k=1

πk

∫
Li(θ; ai,80, (u′1, u

k
2, δ

k))
1

σu1

φ

(
u′1
σu1

)
du′1

]
. (13)

The full likelihood function is the product of the partial likelihood functions (11) and (13):

Lf (θ; {ai,80}N
i=1) = Lp

1(θ1)L
p
2(θ; {ai,80}N

i=1). (14)

3.3.2 Initial Conditions Problem

Defining the machine age as the number of years passed since the last investment spike, the

initial year’s machine ages, {ai,80}N
i=1, are not observable. This is problematic since, if the

initial machine ages are not observable, it is not possible to evaluate the likelihood (14).17 One

way to deal with this problem might be to assume a (type-specific) stationary distribution in

the initial year 1980 and use it to integrate out the unobserved machine ages. Just before

the sample period, however, Chile conducted a major trade liberalization and simultaneously

experienced a major recession in the mid 1970s (c.f., Tybout et al., 1991). These events are

likely to have caused substantial deviation from the steady state, and hence the assumption of

a stationary distribution in 1980 would not be appropriate. The distribution of the unobserved

initial machine ages depends not only on the plant’s type but also on the past realizations of

aggregate variables.
17Even if the initial machine age ai,80 is observable, how to treat the initial observation is an important issue; in

particular, the initial observation is not independent of the type ui = (u1,i, u2,i, δi) and hence cannot be treated

as a nonstochastic starting point. This is the initial conditions problem (c.f., Heckman, 1981).
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To deal with this issue, for each candidate parameter vector θ, I construct a “transitory”

distribution of machine ages in the beginning of 1980 conditioned on both the unobserved het-

erogeneity u and the realization of aggregate variables for 1970-1979 as follows. Denote the

probability distribution of plants with machine age a at year t conditional on the type u by

mθ,t(a|u). At the beginning of 1970, mθ,70(a|u) is assumed to be an invariant distribution.18 In

order to obtain the 1971 distribution mθ,71(a|u), I update the 1970 distribution mθ,70(a|u) using

the conditional choice probability (9) evaluated at the realized values of the aggregate shock

and the import price of 1970, (z70, p70). Similarly, the 1971 distribution mθ,71(a|u) is updated

to obtain the 1972 distribution mθ,72(a|u). Repeating this process up to 1980, I obtain the

(type-specific) transitory machine age distribution in the beginning of 1980, mθ,80(a|u), which is

conditioned on {(zt, pt)}79
t=70. I use this 1980 distribution to integrate out the unobserved initial

machine age from the partial likelihood function (13) as:

L∗p2 (θ) ≡
N∏

i=1




K∑

k=1

πk

∫ ∑

a′80

Li(θ; a′80, (u
′
1, u

k
2, δ

k))mθ,80(a′80|(u′1, uk
2, δ

k))
1

σu1

φ

(
u′1
σu1

)
du′1


 . (15)

The full likelihood function after integrating out the initial machine age is the product of the

partial likelihood functions (11) and (15):

L∗f (θ) = Lp
1(θ1)L

∗p
2 (θ). (16)

The parameter θ is estimated by maximizing the logarithm of the likelihood (16).19

3.4 Variable Definitions

Recall the assumption that a plant’s replacement decision may be identified with a gross invest-

ment rate over 20 percent.20 That is, dit = 1 if the ith plant’s gross investment rate at year t

is more than 0.2 and dit = 0 otherwise. Here, the gross investment rate is defined as the gross

investment in new capital goods during the current year, divided by capital stock at the end of
18The invariant distribution is computed under the transition probability function of a implied by (9) when

aggregate shocks and import prices are constant over time at the means of estimated AR(1) processes, z∗ =

cz/(1− ψz) and p∗ = cp/(1− ψp).
19To maximize the likelihood, I first use the simplex method of Nelder and Mead to reach the neighborhood of

the optimum and then use the BFGS quasi-Newton method.
20This definition is the same as that of Cooper et al. (1999).
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the previous year.21 The measure of gross investment here includes machinery and equipment

and vehicles but excludes buildings.22 Furthermore, since the model focuses on the replacement

of old machines by new machines embodying the frontier technology, I exclude the purchase and

sales of used capital from the measurement of gross investment. The capital stock is constructed

from the 1980 book value of capital (the 1981 book value if the 1980 book value is not available)

using perpetual inventory method.23

The detrended Solow residuals are used as a proxy for the aggregate productivity shock. A

time series of the Solow residuals is first constructed from 1970 to 1996 using growth accounting:

Zt = Yt

K
wk
t L

1−wk
t

, where wk represents the share of capital, Yt, Kt, and Lt are the gross domestic

products in 1986 pesos, aggregate capital stock in 1986 pesos, and working age person (15-64)

in Chile. A value for wk is set to 0.3.24 Then, I regress lnZt on a constant and a time trend and

use the residuals, zt, as the data for the log of aggregate productivity shock.

For relative import prices, pt, the log of the ratio of import wholesale price indices in the

Chilean peso to respective output price indices is used.25 For plants’ labor productivity, yit,
21The original data contains information on five types of investments: purchases of new capital, purchases of

used capital, production of capital for own use, improvements in own capital by third parties, and sales of capital.
22Buildings are more likely to be rented rather than owned by plants, since zero values are found frequently for

buildings. Furthermore, the replacement timing of buildings is likely to be different from that of machines since,

for example, the rates of technological change and depreciation are likely to be different.
23Since the reported book values are evaluated at the end of year t, the book values of capital are deflated by

the (geometric) average deflator of machinery and equipment for years t and t+1. Depreciation rates are set to

10 % for machinery and equipment and 20% for vehicles. Some plants did not report the book values of capital

in either 1980 or 1981. Since it is not possible to construct capital stock without these reports, the plants missing

their book values of capital were excluded from the sample. I also excluded from the sample the plants with

capital-output ratios less than 1 percent, since I consider the observations mis-coded or mis-reported.
24See Bergoeing, Kehoe, Kehoe, and Soto (2001) for the choice of the share of capital in Chile in computing

total factor productivity.
25When the model is estimated for all manufacturing sectors, domestic-material-intensive plants, and import-

material-intensive plants, I use the manufacturing wholesale price index for the output price index. When the

model is estimated by trade-sector, I use the trade-sector-specific Laspeyres output price indices constructed by

aggregating over 2-digit industry output price indices. Some plants change their trade-sector classifications during

the sample period. I did not use these samples for estimating the model by trade-sectors. Data for the import

price and the manufacturing wholesale price index are from IFS and Banco Central De Chile (1989) Indicadores

Economicos Y Sociales 1960-1988. Data for the 2-digit industry output price indices, output, exports, and imports

are from the original data set for the years of 1979-1985 and Banco Central De Chile (2000) Anuario De Cuentas
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I use the log of the ratio of value added, deflated by the respective output price deflators, to

the number of workers.26 Trade orientation is classified into two categories: export-oriented

and import-competing. In particular, plants that belong to a two-digit ISIC industry of which

export-output ratio is more than 20 percent are classified as export-oriented; plants that belong

to a two-digit ISIC industry of which import-output ratio is more than 20 percent are classified

as import-competing.27 To classify plants into domestic-material-intensive and import-material-

intensive, I use the plant-level information on the use of imported materials. Specifically, plants

are classified as import-material-intensive if they use imported materials more than a half of

sample years (i.e., no less than 9 years out of 17 sample years); otherwise, they are classified as

domestic-material-intensive.

4 Results

4.1 All Manufacturing Sectors

Table 1 presents the maximum likelihood estimates of the machine replacement model and their

asymptotic standard errors, which are computed using the outer product of gradients estimator,

for all manufacturing sectors.28 The estimates of coefficients ψz and ψp are both significantly

positive, implying persistence in both aggregate shock and import price series. The parameter

estimates for the microeconomic model of machine replacement are plausible, and standard

errors are generally small. The import price elasticity of replacement cost, αp, is estimated

as 0.819. This estimate is largely consistent with what is expected if the price of machines

is determined by the geometric average of the domestic price and the import price since Chile

Nacionales for the years 1986-1996.
26I excluded from the sample the plants with negative value added. The labor productivity variables are then

trimmed using the sample 1st percentile and the sample 99th percentile.
27While the four-digit ISIC industry classification for each plant is available in the panel data, the output price

indices for the whole sample period are only available at two-digit ISIC industry-level. Since a comparison of

export-oriented and import-competing industries is based on the difference in the dynamics of output prices during

the period of high tariffs, I use the two-digit industry classification to identify plant’s trade orientation. Plants

belong to ISIC 39 (Miscellaneous Industy) are not included in the samples of either export-oriented industry or

import-competing industry since both export-output ratio and import-output ratio of ISIC 39 are more than 20

percent.
28The discount rate β is not estimated but set to 0.95.
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Table 1: Maximum Likelihood Estimates: All Manufacturing Sectors

Parameters Parameters

cp -0.017 (0.033) ϕ2 0.339 (0.051)

ψp 0.842 (0.115) αD 0.693 (0.064)

σp 0.095 (0.016) g 0.012 (0.000)

cz -0.011 (0.019) ϑ 0.486 (0.037)

ψz 0.792 (0.240) σω 0.478 (0.001)

σz 0.069 (0.006) ρ 0.072 (0.140)

α0 6.175 (0.014) σu1 0.592 (0.005)

αz 1.156 (0.022) δH 0.081 (0.001)

αp 0.819 (0.060) uH
2 0.625 (0.035)

αy0 -2.017 (0.837) π1 0.347 (0.030)

κ 1.321 (0.062) π2 0.181 (0.023)

ϕ1 0.677 (0.048) π3 0.265 (0.028)

δ̄ 0.031

κ̄ 1.862

¯exp(α0)/κ̄ 0.096

ln Lf -31830.7

Notes: Standard errors are in parentheses. δ̄ ≡ P4
k=1 πkδk is the average technological obsolescence rate. κ̄ ≡

P4
k=1 πkκ exp(uk

2) is the average replacement cost. ¯exp(α0) ≡ exp(α0 + 0.5σu1 ) is the average value added with the

frontier technology.

imports the 82.5 percent of machines from abroad, on average, for the period of 1985 to 1996 (see

Banco Central De Chile, 2000). The replacement cost during the financial crisis of 1982-1983

is systematically higher than during the other periods as shown by the positive estimate of αD.

The estimate of ϑ implies that only a fraction 0.486 of a new machine becomes productive at

the year of investment. Comparison of the point estimates for αD and κ̄ implies that, holding

constant relative import prices, the replacement cost of 1982-1983 is 37.2(= .693/1.862) percent

higher than that of other years. The coefficients ϕ1 and ϕ2 are significantly positive, indicating

that a multiyear investment phenomenon is present in the data. These point estimates imply

that a plant saved on replacement cost by 36.4(= .677/1.862) and 18.2(= .339/1.862) percent if

it replaced its machine one year or two years prior, respectively.

The technological obsolescence rate, δ, differs across plant-types. The estimated fraction of
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plants with zero technological obsolescence rate in the population is large: π1 + π3 = 0.612.

This indicates that for a majority of plants, machine replacement is not the way to increase

productivity. On the other hand, the technological obsolescence rate for other plants is high:

8.1 percent. Thus, there exists substantial heterogeneity in technological obsolescence rates

across plants. The average technological obsolescence rate δ̄ =
∑4

k=1 πkδk is estimated at 3.1

percent.

Figure 5 graphically depicts the fit of the model to the actual fraction of plants with invest-

ment spikes as well as the aggregate machine investment rate data.29 The model appears to

replicate well the observed aggregate investment patterns. As shown in Figures 6, the model

also performs well in replicating the observed machine age distribution.30 Table 2 compares the

actual and predicted proportion of plants with investment spikes by machine ages for the years

1994 to 1996.31 The model appears to predict the machine replacement probability, conditional

on machine ages, reasonably well. In particular, the model correctly predicts a downward empir-

ical hazard even though the replacement probability for any individual plant is predicted to be

non-decreasing in machine ages. As discussed before, this is because of the composition effect:

plants with younger machines are more likely to have unobserved characteristics that lead to

more frequent replacement.

Figure 7 compares the actual versus predicted average labor productivity for 1980-1996.

According to the estimated model, the average machine age decreases from 5.0 to 5.8 between

1981 and 1986. The shift in the machine age distribution caused a 2.4 percent decline in average

labor productivity for the same period and thus the delay in the adoption of technology embodied

in machines had a non-negligible effect on the labor productivity. The model quantitatively

misses, however, a large decline in the average labor productivity that occurred during 1986-
29The aggregate machine investment rate is defined as Im,t/Km,t−1, where Im,t is the aggregate gross investment

in machinery and equipment and in transportation equipment at the year t; Km,t−1 is the aggregate capital

stock in machinery and equipment and in transportation equipment at the end of year t − 1. I constructed the

capital stock series {Km,t}t—starting from the year of 1960—from the gross investment series {Im,t}t using the

perpetual inventory method with a 13 % depreciation rate, which is roughly equal to the weighted average in the

depreciation rates between machinery and equipment (10 percent) and transportation equipment (20 percent)

used for constructing the capital stock at the plant level.
30Machine Age “10+” includes all machine ages no less than 10.
31The χ2 statistics provided in Table 2 have not been adjusted for the fact that the parameters have been

estimated. The goodness of fit statistics are, therefore, intended as an informal summary of the fit of the model.
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Figure 5: Fraction of Plants with Investment Spike (Predicted vs. Actual)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy

Machine Age

Actual 

Predicted 

1995 

+ 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
F

re
qu

en
cy

Machine Age

Actual 

Predicted 

+ 

1996 

Figure 6: Machine Age Distributions in 1995 and 1996 (Actual vs. Predicted)
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Table 2: Actual and Predicted Machine Replacement Rate by Years and Machine Ages

Year

1994 1995 1996

Machine Age Actual Predicted Actual Predicted Actual Predicted

1 0.418 0.399 0.418 0.411 0.447 0.396

(0.61) (0.06) (4.15)*

2 0.315 0.332 0.299 0.346 0.350 0.332

(0.29) (2.49) (0.33)

3 0.215 0.256 0.280 0.265 0.216 0.253

(1.21) (0.18) (1.31)

4 0.209 0.251 0.198 0.259 0.130 0.244

(0.78) (2.03) (7.61)*

5 0.210 0.244 0.132 0.253 0.282 0.237

(0.64) (5.23)* (0.96)

6 0.208 0.237 0.228 0.246 0.119 0.231

(0.26) (0.14) (4.20)*

7 0.258 0.232 0.190 0.239 0.131 0.224

(0.11) (0.55) (3.05)

8 0.095 0.229 0.130 0.234 0.118 0.217

(2.13) (1.38) (1.98)

9 0.111 0.227 0.211 0.231 0.000 0.212

(1.38) (0.04) (5.39)*

10+ 0.138 0.175 0.114 0.185 0.133 0.172

(3.22) (10.55)* (3.20)

Notes: χ2
1 =

P
d=0,1(na,d − np,d)2/np,d’s are in parentheses, where na,d and np,d are the actual and predicted number of

plants with the choice d. ∗ implies that the actual and predicted are statistically different at the five percent significance

level; χ2
1(0.05) = 3.84. Machine Age “10+” includes all machine ages no less than 10.
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Table 3: Maximum Likelihood Estimates of Selected Coefficients: Export-Oriented and Import-

Competing

Parameters Export-Oriented Import-Competing

αp 0.909 (0.082) 0.850 (0.098)

g 0.015 (0.001) 0.001 (0.001)

δ̄ 0.035 0.030

No. of Plants 649 617

Notes: Standard errors are in parentheses. δ̄ ≡P4
k=1 πkδk is the average technological obsolescence rate.

1988; there were other important factors that are largely responsible for the observed decline in

the average labor productivity in the mid-1980s.

4.2 Import-Competing vs. Export-Oriented

The impact of a tariff increase on output prices may be different across trade-sectors. In an

export-oriented industry, a tariff increase may not significantly affect output prices, while a tariff

increase may lead to higher output prices in an import-competing industry. Export-oriented

industries, therefore, are likely to experience a larger decline in investment rates and productivity

during the period of high tariffs. To examine this issue, I estimate the model while identifying

trade-sectors. Table 3 presents the maximum likelihood estimates of selected coefficients. The

estimate of import price elasticity of replacement cost, αp, is 0.909 for export-oriented and 0.850

for import-competing industry. They are within a reasonable range. The estimated rate of

technological progress, g, in export-oriented industry is larger than that in import-competing

industry. Indeed, the higher technological progress in export-oriented industry might have been

an important factor for the successful export performance in Chile during this period (c.f.,

Dornbusch and Edwards, 1994).

Figures 8 and 9 present the actual and the predicted fractions of plants with investment

spikes for export-oriented and import-competing industry. In both figures, the thick and the

thin lines show the investment rates for export-oriented and import-competing industries, re-

spectively. The estimated models appear to capture aggregate investment patterns as well as

their differences between export-oriented and import-competing industries reasonably well. To

examine how much of the difference in investment rates across trade-sectors is attributable to a
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Figure 8: Actual Fraction of Plants with Investment Spike by Trade Sectors

80 82 84 86 88 90 92 94 96
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
ra

ct
io

n 
of

 P
la

nt
s 

w
ith

 In
ve

st
m

en
t S

pi
ke

Year

High   
Tariff 

Export−Oriented 

Import−Competing 

Import−Competing 
  (Counterfactual
   Import Price) 

Figure 9: Predicted Fraction of Plants with Investment Spike by Trade Sectors
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Table 4: Maximum Likelihood Estimates of Selected Coefficients: Import-Material-Intensive vs.

Domestic-Material-Intensive

Parameters Domestic-Material-Intensive Import-Material-Intensive

αp 0.628 (0.070) 1.473 (0.144)

g 0.012 (0.000) 0.013 (0.001)

δ̄ 0.032 0.031

No. of Plants 921 520

Notes: Standard errors are in parentheses. δ̄ ≡P4
k=1 πkδk is the average technological obsolescence rate.

difference in relative import prices, I conduct a counterfactual experiment—shown as the dotted

line in Figure 9—to test what would happen to the investment rate of import-competing industry

if the realization of its relative import prices were identical to that of export-oriented industry

for 1980-1996. The difference between the thin line and the dotted line in Figure 9 therefore

captures the difference in investment rates between export-oriented and import-competing in-

dustries attributable to the difference in relative import prices. The observed difference in the

dynamics of relative import prices explains a substantial portion of the difference in investment

rates between export-oriented and import-competing industries. In particular, I find that the

gap of investment rates between export-oriented industry and import-competing industry would

have been narrower by 60.0 percent on average for the period of 1984-1988 had there been no

difference in the realization of relative import prices.32

4.3 Import-Material-Intensive vs. Domestic-Material-Intensive

Plants that are importing materials may have a better access to foreign machines and hence

might be more likely to use the imported machines, as oppose to the domestic machines, than

other plants.33 If so, the machine replacement costs of material-importing plants may be more

elastic with respect to import price than those of plants that do not import materials. To examine
32I also conducted a counterfactual experiment to test what would happen to the investment rate of export-

oriented industry if the realization of its relative import prices were identical to that of import-competing industry

for 1980-1996. I find that the gap of investment rates between export-oriented industry and import-competing

industry would have been narrower by 65.5 percent on average for the period of 1984-1988.
33The data for the use of imported machines is not available either at the plant-level or at the industry-level

and thus I use the intensity of imported materials as a proxy for the intensity of imported machines.
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this issue, I estimate the model while identifying the use of imported materials at the plant level.

Plants are classified as import-material-intensive if they use imported materials more than a half

of sample years. Table 4 presents the maximum likelihood estimates of selected coefficients. The

column of “Import-Material-Intensive” presents the parameter estimates for the plants using

imported material intensively while “Domestic-Material-Intensive” presents the estimates for

those using domestic material intensively.34 As expected, the estimate of import price elasticity

of replacement cost, αp, is substantially higher for import-material-intensive plants than for

domestic-material-intensive plants. The point estimate suggests that plants using imported

material intensively experience a higher elasticity of replacement cost by 0.845(=1.473-0.628)

points as compared to plants using domestic material intensively.35 One important implication

of this result is that plants using the imported materials may have experienced a larger decline

in investment than others during the period of high import price due to a larger increase in

machine replacement cost.

To examine the extent to which the higher import price elasticity of replacement cost is

responsible for a large decline in investment for import-material-intensive plants during the

period of high tariffs, I conduct a counterfactual experiment to test what would happen to the

investment rates of import-material-intensive plants if the import price elasticity of replacement

cost is the same as that of domestic-material-intensive plants. This counterfactual experiment

is presented in Figure 10, together with the actual and the predicted fractions of plants with

investment spikes among import-material-intensive plants. While the dashed line shows the

predicted investment rates of import-material-intensive plants given the actual elasticity (αp =

1.473), the dotted line shows the model’s prediction of what would happen to investment rates

of import-material-intensive plants given the counterfactual elasticity (αp = 0.628). Figure 10

demonstrates the importance of the import price elasticity of replacement cost in determining
34See Section 3.4 for the classification of “Import-Material-Intensive” plants and “Domestic-Material-Intensive”

plants.
35I have tried the following two alternative classifications for import-material-intensive plants and also found

that plants using imported material intensively experienced a substantially higher elasticity of replacement cost

as compared to plants using domestic material intensively. In the first alternative, a plant is classified as import-

material-intensive if the 4-digit industry which the plant belongs to uses more than 15 percent of imported

materials in total materials on average over the sample period. Second, a plant that uses more than 15 percent of

imported materials in total materials on average over the sample period is classified as import-material-intensive.
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Figure 10: Actual and Predicted Fraction of Plants with Investment Spike for Import-Material-

Intensitive Plants

the investment dynamics during the period of substantial tariff changes. In particular, the

investment rate of import-material-intensive plants would have been higher by 2.6 percentage

points on average for the period of 1984-1988 if the elasticity of replacement cost for import-

material-intensive plants had been the same as that for domestic-material-intensive plants.

4.4 Experiment: The Effect of a Temporary Increase in Import Prices

To quantitatively examine the effect of a temporary tariff increase, I conduct an experiment to

determine what would have happened to investment and productivity of Chilean manufacturing

if import prices had remained constant at the 1982 level over the period of spanning 1983 to 1987.

Figure 11 presents the simulated fractions of plants with investment spikes for all manufacturing

sectors under this assumption (dotted line) and the fraction of plants with investment spikes

for the actual import prices (dashed line). The gap between the two lines captures the effect

on investment of the high import prices between 1983-1987. The impact of the high import

prices is substantial; for instance, in 1985—when the tariff rate was the highest—the aggregate

investment rate would have been 21.6 % instead of 14.8 % had there been no temporary increase

in import prices from 1983-1987. The figure suggests that Chile would have recovered from

the economic crisis of 1982-1983 much more quickly had there been no temporary increase in

import prices associated with higher tariffs in the mid-1980s. Figure 12 shows what would have

happened to average output per worker for all manufacturing sectors if the import prices of
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Figure 11: Experiment: Investment — All Manufacturing Sector
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Figure 12: Experiment: Productivity — All Manufacturing Sector

1983-1987 were the same as that of 1982. To highlight the impact of the delayed technology

adoption on productivity, the time trend and the aggregate shocks are eliminated from the

graph. According to the experiment, the output per worker would have been higher by 1.9

percent in 1986 if the import prices of 1983-1987 had remained at the 1982 level. The estimated

accumulated output loss from 1983 to 1996 associated with the high import prices of 1983-1987

is substantial: 11.1 percent of annual output.

The results of similar experiments for export-oriented industry and import-competing indus-

try are presented in Figures 13(a)-(d). Reflecting the larger increase in relative import prices

for export-oriented industry than for import-competing industry, the negative impact of tem-
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Figure 13: Experiment: Export-Oriented vs. Import-Competing

porarily high import prices on investment and productivity during the high tariff period was

substantially larger for export-oriented industry than for import-competing industry. While the

investment rate of export-oriented industry would have been higher by 8.7 percent in 1985 had

there been no temporary increase in import prices from 1983 to 1987, the investment rate of

import-competing industry would have been higher only by 3.0 percent [Figures 13(a)-(b)]. The

output per worker of export-oriented industry would have been higher by 2.9 percent in 1986 if

the import prices of 1983-1987 had remained at the 1982 level [Figure 13(c)]; on the other hand,

the impact of temporarily high import prices on import-competing industry’s productivity in

1986 is calculated as only 0.9 percent [Figure 13(d)]. The accumulated output loss from 1983

to 1996 associated with the high import prices of 1983-1987 for export-oriented industry is 18.7

percent of annual output, which is much larger than the accumulated loss for import-competing

industry, calculated as 3.5 percent of annual output.

Finally, the results of similar experiments for import-material-intensive plants and domestic-

material-intensive plants are presented in Figures 14(a)-(d). While the 1985 investment rate of
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Figure 14: Experiment: Domestic-Material-Intensive vs. Import-Material-Intensive

domestic-material-intensive plants would have been higher by 5.3 percent without any temporary

increase in import prices from 1983 to 1987, the investment rate of import-material-intensive

would have been higher as much as by 10.2 percent [Figures 14(a)-(b)]. The negative impact of

temporarily high import prices on the output per worker of domestic-material-intensive plants

in 1986 is 1.5 percent, which is substantially lower than the impact on the output per worker

of import-material-intensive plants, 2.3 percent. Therefore, reflecting the higher import price

elasticity of replacement cost among import-material-intensive plants, the temporarily high im-

port prices during the high tariff period had much larger negative impacts on investment and

productivity among import-material-intensive plants than among domestic-material-intensive

plants.

These results provide important quantitative implications regarding Chile’s tariff policy.

To the extent that a temporary increase in tariffs affected relative import prices, a change in

trade policy may have had a substantial impact on aggregate investment dynamics in the mid-

1980s. The counterfactual experiments also indicate that the impact of temporary increases
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in tariffs may be substantially different across trade-sectors as well as across plants differing

in their use of imported materials. During the high tariff period, export-oriented industry

suffered larger negative effects than did import-competing industry due to the increase in relative

import prices. The negative effects of import price increase are particularly large among import-

material-intensive plants.

There are caveats. First, we should be cautious of interpreting these numbers as the effects of

a temporary increase in tariffs; they rather reflect the effect of a temporary increase in relative

import prices. Although an increase in tariffs may have been the primary factor that led to

higher relative import prices in the mid-1980s, there may have been other factors (e.g., the

real exchange rate) that were also important determinants of relative import prices. Second, I

did not consider a general equilibrium framework. As discussed in Caballero (1999), in general

equilibrium, the effect of the shocks on aggregate investment is smoothed further; the extent

of synchronized investment may be limited because of the short-run inelastic supply of capital

goods, although such a bottleneck might be less important in a small open economy like Chile.

5 Conclusion

This paper empirically examines the impact of a rise in the price of capital goods induced by

an increase in import tariffs on investment and productivity. A structural dynamic optimiza-

tion model of machine replacement is developed and estimated using the Chilean manufacturing

plant-level data for a period characterized by substantial changes in tariff rates. Using the esti-

mated model, I provide counterfactual experiments to quantify the impact of temporarily high

import price on aggregate investment and productivity. I also examined the model’s implications

across trade-sectors and across plants differing in their use of imported materials regarding the

links among relative import prices, investment and productivity.

The main empirical findings are summarized as follows. First, a temporary increase in

import prices in the mid-1980s had a substantial impact on aggregate investment and average

productivity. According to the counterfactual experiment, had there been no temporary increase

in import prices in the period from 1983 to 1987, the aggregate investment rate would have been

higher by 6.8 percent in 1985, the year of the highest tariff rates, and the average output per

worker would have been higher by 1.9 percent in 1986. The accumulated loss in output for 1984-
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1996 is calculated as 11.1 percent of annual output. Second, I identify the differential impact

of a tariff increase on output prices across trade-sectors by comparing export-oriented industry

with import-competing industry. On average for 1984-1988, 60.0 percent of the investment rate

difference between export-oriented industry and import-competing industry is attributable to

the difference in relative import prices. Finally, plants using imported materials intensively are

found to have a much larger import price elasticity of replacement cost and thus have experienced

a larger negative impact of temporarily high import prices on investment and productivity than

those using domestic materials intensively. The finding that the estimated model explains the

differences across trade-sectors and across plants differing in their use of imported materials

provides particularly important evidence for the role of tariff changes in determining investment

and productivity since other potentially important factors (e.g., the tax reform of 1984-1986)

are not likely to be able to explain these differences.

There are at least three directions in which this model may be extended. First, while this

paper focuses on analyzing intra-plant productivity change associated with machine replacement,

others (c.f., Pavcnik, 2002; Melitz, 2003) emphasize the resource reallocation through the process

of entry and exit as an important source of aggregate productivity changes. Developing a

structural model with entry and exit and estimating it using rich microeconomic data to quantify

the role of resource reallocation in explaining the dynamics of aggregate productivity would be

a fruitful exercise. Second, the model developed here abstracts from both capital-labor ratio

choice and worker flows. The incorporation of technology choice and employment movement

into the model is likely to prove useful for analyzing the links between technology choice, worker

flows, and investment. Finally, technology adoption through machine replacement might induce

a plant to start exporting. Incorporating export decisions into the model in view of recent

findings of exporter facts (c.f., Bernard, Eaton, Jensen, and Kortum, 2003) and examining how

machine replacement is related to export decisions at the plant level, remains an important topic

for future research.

Appendix

We first provide Proposition A which states the existence and the uniqueness of a fixed point of

the functional equation (3).
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Proposition A There exists an unique fixed point of the functional equation (3). Further, the

unique fixed point is bounded, continuous, and strictly increasing in s and strictly decreasing in

(τL, τH).

Proof By the standard argument found in Stokey and Lucas (1989).

Proof of Proposition 1 By Proposition A, v(s, τ) is continuous and strictly increasing in

s. Then, vR(s, τ) − vN (s, τ) = −τp + βE[v(0, τ ′) − v(s − δ, τ ′)|τ ] is strictly decreasing in s.

Therefore, for each τ , there exists the unique s∗(τ) such that vR(s∗(τ), τ) − vN (s∗(τ), τ) = 0,

vR(s, τ)− vN (s, τ) > 0 if s < s∗(τ), and vR(s, τ)− vN (s, τ) < 0 if s > s∗(τ).

Proof of Proposition 2 Let τH
1 < τH

2 . Let s∗(τH
1 ) and s∗(τH

2 ) be the threshold value of s

under the high tariff regime for τH
1 and τH

2 . We need to show s∗(τH
1 ) > s∗(τH

2 ). Note that

s∗(τH
i ) for i = 1, 2 is characterized by:

0 = −(1 + τH
i )p + βλH [v(0, τH

i )− v(s∗(τH
i )− δ, τH

i )] + β(1− λH)[v(0, τL)− v(s∗(τH
i )− δ, τL)].

By taking the difference and using v(s∗(τH
i )− δ, τH

i ) = es∗(τH
i )−δ − (1 + τH

i )p + β[λHv(0, τH
i ) +

(1− λH)v(0, τL)] for i = 1, 2, we find

βλHe−δ[es∗(τH
1 ) − es∗(τH

2 )] = −(1− βλH)(τH
1 − τH

2 )p + βλH(1− βλH)[v(0, τH
1 )− v(0, τH

2 )]

+β(1− λH)[v(s∗(τH
2 )− δ, τL)− v(s∗(τH

1 )− δ, τL)]. (17)

Suppose, on the contrary, s∗(τH
1 ) ≤ s∗(τH

2 ). Then, the right hand side of (17) is strictly positive

since (i) the first term is strictly positive by τH
1 < τH

2 , (ii) the second term is strictly positive by

Proposition A [v(0, τH
1 ) > v(0, τH

2 )] with τH
1 < τH

2 , and (iii) the third term is non-negative by

Proposition A if s∗(τH
1 ) ≤ s∗(τH

2 ). On the other hand, the left hand side of (17) is non-negative

if s∗(τH
1 ) > s∗(τH

2 ). A contradiction. Therefore, if τH
1 < τH

2 , then s∗(τH
1 ) > s∗(τH

2 ). This proves

(a). From (a), (b) follows since (i) s∗(τH) = s∗(τL) if τH = τL, (ii) s∗(τH) is strictly increasing

in τH by (a), and (iii) s∗(τL) is independent of τH .

The Approximated Solution to (8) and the Evaluation of (12) and (15) Let the

transition density functions of z and p be denoted by qz(z′|z) = φ
(

z′−ψzz
σz

)
/σz and qp(p′|p) =

φ
(

p′−ψpp
σp

)
/σp. Denote the density function of ξ by qξ(ξ) = φ

(
ξ
σξ

)
/σξ. To obtain the approxi-

mated solution to (8), it is required to evaluate the conditional expectation E[v̄θ(z′, p′, ξ′)|z, p] =
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∫ ∫ ∫
v̄θ(z′, p′, ξ′)qz(z′|z)qp(p′|p)qξ(ξ′)dz′dp′dξ′, where other arguments for v̄θ(·) are suppressed

for brevity. To evaluate this three-hold integrals, I use the Gauss-Hermite quadrature methods

together with the use of an “importance” density as suggested by Tauchen and Hussey (1991) and

Stinebricker (2000). Specifically, by choosing an “importance” density φ
(

z
σz

)
/σz, φ

(
p
σp

)
/σp,

and φ
(

ξ
σω

)
/σω for z, p, and ξ, respectively, I approximate the conditional expectation as

∫ ∫ ∫
v̄θ(z′, p′, ξ′)qz(z′|z)qp(p′|p)qξ(ξ′)dz′dp′dξ′ ≈

N∑

k1

N∑

k2

N∑

k3

v̄θ(zk1 , pk2 , ξk3)q∗(zk1 , pk2 , ξk3 |z, p),

where

q∗(zk1 , pk2 , ξk3 |z, p) =
q∗z(zk1 |z)q∗p(pk2 |p)q∗ξ (ξ

k3)∑
j1

∑
j2

∑
j3

q∗z(zj1 |z)q∗p(pj2 |p)q∗ξ (ξj3)

defines a Markov chain that approximates the true law of motion of (z, p, ξ) with q∗z(zk|z) =
λk√

π
qz(zk|z)

φ(zk/σz)/σz
, q∗p(pk|p) = λk√

π
qp(pk|p)

φ(pk/σp)/σp
, and q∗ξ (ξ

k) = λk√
π

qξ(ξk)

φ(ξk/σω)/σω
. The grid points are chosen

as: zk =
√

2σzv
k, pk =

√
2σpv

k, and ξk =
√

2σωvk.36 Here, vk and λk (k = 1, ..., N) are the

points and weights associated with the Gauss-Hermite quadrature.

Define a discretized Bellman operator:

[ΓN (v̄θ,N )](a, z, p, ·, ξ)

= ln


 ∑

d′=0,1

exp



π(a, z, p, ·, ξ, d′) + β

∑

k1,k2,k3

v̄θ((1− d)a + 1, zk1 , pk2 , ·, ξk3)q∗(zk1 , pk2 , ξk3 |z, p)






 .

The approximate solution to (8), which we denote by v̄θ,N , is obtained as a fixed point of

ΓN that satisfies ΓN (v̄θ,N ) = v̄θ,N . The fixed point v̄θ,N is defined only on the set of finite

grid points of (z, p). We may evaluate nonetheless the value function at any point (z, p) by

v̄θ,N (a, z, p, ·, ξ) = [ΓN (v̄θ,N )](a, z, p, ·, ξ) using the self-approximating property of the operator

ΓN as discussed in Rust (1996). This allows us to evaluate (9) on the realized value of (zt, pt).

To evaluate (12), we need to compute an integral
∫

Pθ(d|ait, zt, pt, γt, Dt, ui, ξ
′)f(ξ′|ω̃it(ui, ait))dξ′.

36We may use ξk =
√

2σξv
k for the grid points of ξ in place of ξk =

√
2σωvk; in such a case, the “importance”

density for ξ is φ(ξ/σξ)/σξ.
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The integral in (12) can be approximated as:
∫

Pθ(d|ait, zt, pt, γt, Dt, ui, ξ
′)f(ξ′|ω̃it(ui, ait))dξ

=
∫

Pθ(d|ait, zt, pt, γt, Dt, ui, ξ
′)

f(ξ′|ω̃it(ui, ait))

φ
(

ξ′
σω

)
/σω

1
σω

φ

(
ξ′

σω

)
dξ′

≈
∑

k

Pθ(d|ait, zt, pt, γt, Dt, ui, ξ
k)

f(ξk|ω̃it(ui, ait))

φ
(

ξk

σω

)
/σω

λk

√
2
,

where the last line used the Gauss-Hermit quadrature method. Here, ξk =
√

2σωvk for k =

1, 2, ..., N where vk and λk are the points and weights associated with the Gauss-Hermite quadra-

ture. The integral in (15) is evaluated similarly by using the Gauss-Hermit quadrature method

with the number of grids equal to N.

In practice, I set N = 10 for p, z, ξ , and u1. This means that the state space for (p, z, ξ, u1)

is approximated by 10000 grid points. The maximum machine age is also set to 10 by assuming

that, once the machine is 10 years or older, machine quality is constant over time. Since there

exist four types for (u2, δ), the state space for (a, p, z, ξ, u1, u2, δ) is approximated by 400000 grid

points.
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