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Abstract

We propose a new methodology for structural estimation of dynamic dis-

crete choice models. We combine the Dynamic Programming (DP) solution

algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a sin-

gle algorithm that solves the DP problem and estimates the parameters si-

multaneously. As a result, the computational burden of estimating a dynamic

model becomes comparable to that of a static model. Another feature of our

algorithm is that even though per solution-estimation iteration, the number of

grid points on the state variable is small, the number of effective grid points

increases with the number of estimation iterations. This is how we help ease

the "Curse of Dimensionality". We simulate and estimate several versions of

a simple model of entry and exit to illustrate our methodology. We also prove

that under standard conditions, the parameters converge in probability to the

true posterior distribution, regardless of the starting values.
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and SSHRC for financial support. All remaining errors are our own.
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1 Introduction

Structural estimation of Dynamic Discrete Choice (DDC) models has become increas-

ingly popular in empirical economics. Examples include Keane and Wolpin (1997)

in labor economics, Erdem and Keane (1996) in marketing, Imai and Krishna (2004)

on crime and Rust (1987) in empirical industrial organization. Structural estimation

is appealing for at least two reasons. First, it captures the dynamic forward-looking

behavior of individuals, which is very important in understanding agents’ behavior in

various settings. For example, in labor market, individuals carefully consider future

prospects when they switch occupations. Secondly, since the estimation is based on

explicit solution of a structural model, it avoids the Lucas Critique. Hence, after the

estimation, policy experiments can be relatively straightforwardly conducted by sim-

ply changing the estimated value of “policy” parameters and simulating the model to

assess the change. However, one major obstacle in adopting the structural estimation

method has been its computational burden. This is mainly due to the following two

reasons.

First, in dynamic structural estimation, the likelihood or the moment conditions

are based on the explicit solution of the dynamic model. In order to solve a dynamic

model, we need to compute the Bellman equation repeatedly until the calculated

expected value function converges. Second, in solving the Dynamic Programming

(DP) Problem, the Bellman equation has to be solved at each possible point in the

state space. The possible number of points in the state space increases exponentially

with the increase in the dimensionality of the state space. This is commonly referred

to as the “Curse of Dimensionality”, and makes the estimation of the dynamic model

infeasible even in a relatively simple setting.

In this paper, we propose an estimator that helps overcome the two computational

difficulties of structural estimation. Our estimator is based on the Bayesian Markov
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Chain Monte Carlo (MCMC) estimation algorithm, where we simulate the posterior

distribution by repeatedly drawing parameters from a pseudo-Markov Chain until

convergence. In contrast to the conventional MCMC estimation approach, we com-

bine the Bellman equation step and the MCMC algorithm step into a single hybrid

solution-estimation step, which we iterate until convergence. The key innovation in

our algorithm is that for a given state space point, we need to solve the Bellman equa-

tion only once between each estimation step. Since evaluating a Bellman equation

once is as computationally demanding as computing a static model, the computa-

tional burden of estimating a DP model is in order of magnitude comparable to that

of estimating a static model1.

Furthermore, since we move the parameters according to the pseudo-MCMC al-

gorithm after each Bellman step, we are “estimating” the model and solving for the

DP problem at the same time. This is in contrast to conventional estimation meth-

ods that “estimate” the model only after solving the DP problem. In that sense,

our estimation method is related to the algorithm advocated by Aguirreagabiria and

Mira (2002) and others, which are an extension of the method developed by Hotz and

Miller (1993), and Hotz, Miller, Sanders and Smith (1994). They propose to iterate

the Bellman equation only once before constructing the likelihood. Their estimation

strategy, which is not based on the full solution of the model, has had difficulties

dealing with unobserved heterogeneity. This is because this estimation method es-

sentially recovers the value function from the observed choices of people at each point

of the state space. But if there are unobserved heterogeneities, the state space points

are unobservable in the data. In contrast to the above estimation algorithm, our esti-

mation algorithm is based on the full solution of the dynamic programming problem,

1Ferrall (2005) also considers optimal mix of model solution and estimation algorithms. Arcidia-
cono and Jones (2003) adopt the computationally more efficient EM algorithm instead of the Nested
Fixed Point altorithm.
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and hence can account for a variety of unobservable heterogeneities. But we only

need to solve the Bellman equation once between each estimation step.2

Specifically, we start with an initial guess of the expected value function (emax

function). We then evaluate the Bellman equation for each state space point, if

the number of state space points is finite, or for a subset of the state space grid

points if the state space is continuous. We then use Bayesian MCMC to update the

parameter vector. We update the emax function for a state space point by averaging

with those past iterations in which the parameter vector is “close” to the current

parameter vector and the state variables are either exactly the same as the current

state variables (if the state space is finite) or close to the current state variables (if

the state space is continuous). This method of updating the emax function is similar

to Pakes and McGuire (2001) except in the important respect that we also include

the parameter vector in determining the set of iterations over which averaging occurs.

Our algorithm also helps in the ‘the Curse of Dimensionality’ situation where

the dimension of the state space is high. In most DP solution exercises involving a

continuous state variable, the state space grid points, once determined, are fixed over

the entire algorithm, as in Rust (1997). In our Bayesian DP algorithm, the state

space grid points do not have to be the same for each solution-estimation iteration.

In fact, by varying the state space grid points at each solution-estimation iteration,

our algorithm allows for an arbitrarily large number of state space grid points by

increasing the number of iterations. This is how our estimation method reduces the

2In contrast to Ackerberg (2004), where the entire DP problem needs to be solved for each
parameter simulation, in our algorithm, the Bellman equation needs to be computed only once for
each parameter value. Furthermore, there is an additional computational gain because our pseudo-
MCMC algorithm guarantees that except for the initial burn-in simulations, most of the parameter
draws are from a distribution close to the true posterior distribution. In Ackerberg’s case, the initial
parameter simulation and therefore the DP solution would be inefficient because at the initial stage,
true parameter distribution is not known. On the other hand, if prior to the estimation, one has
a fairly accurate prior about the location of the parameter estimates, and thus the model needs to
be solved at only very few parameter values upfront, then the algorithm could be computationally
efficient.
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computational burden in high dimensional cases.

The main reason behind the computational advantage of our estimation algo-

rithm is the use of information obtained from past iterations. In the conventional

solution-estimation algorithm, at iteration t, most of the information gained in all

past estimation iterations remains unused, except for the iteration t − 1 likelihood
and its Jacobian and Hessian in Classical ML estimation, and MCMC transition func-

tion in Bayesian MCMC estimation. In contrast, we extensively use the vast amount

of computational results obtained in past iterations, especially those that are helpful

in solving the DP problem. However, notice that if we use information on past iter-

ations to update parameters, then the probability function that determines the next

period parameter values is not a Markov transition function any more. We prove

that under mild conditions, the probability function converges to the true MCMC

transition function as we keep iterating the Bayesian MCMC algorithm. Hence, as

the number of iterations increase, then our algorithm becomes closer to the standard

MCMC algorithm.

We demonstrate the performance of our algorithm by estimating a dynamic model

of firm entry and exit choice with observed and unobserved heterogeneities. The un-

observed random effects coefficients are assumed to have a continuous distribution

function, and the observed characterisitcs are assumed to be continuous as well. It

is well known that for a conventional Dynamic Programming Simulated Maximum

Likelihood estimation strategy, this setup imposes a severe computational burden.

The computational burden is due to the fact that during each estimation step, the

DP problem has to be solved for each firm hundreds of times. Because of the ob-

served heterogeneity, each firm has a different parameter value, and furthermore,

because the random effects term has to be integrated out numerically via Monte-

Carlo integration, for each firm, one has to simulate the random effects parameter
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hundreds of times, and for each simulation, solve for the DP problem. This is why

most practitioners of structural estimation follow Heckman and Singer (1984) and

assume discrete distributions for random effects and only allow for discrete types as

observed characteristics.

We show that using our algorithm, the above estimation exercise becomes one

that is computationally quite similar in difficulty to the Bayesian estimation of a

static discrete choice model with random effects (see McCullogh and Rossi (1994) for

details), and thus is feasible. Indeed, though simulation/estimation exercises we show

that the computing time for our estimation exercise is around 5 times as fast and sig-

nificantly more accurate than the conventional Random Effects Simulated Maximum

Likelihood estimation algorithm. In addition to the experiments, we formally prove

that under very mild conditions, the distribution of parameter estimates simulated

from our solution-estimation algorithm converges to the true posterior distribution in

probability as we increase the number of iterations.

Our algorithm shows that the Bayesian methods of estimation, suitably modified,

can be used effectively to conduct full solution based estimation of structural dynamic

discrete choice models. Thus far, application of Bayesian methods to estimate such

models has been particularly difficult. The main reason is that the solution of the

DP problem, i.e. the repeated calculation of the Bellman equation is computationally

so demanding that the MCMC, which typically involves far more iterations than the

standard Maximum Likelihood routine, quickly becomes infeasible with a relatively

small increase in model complexity. One of the few examples of Bayesian estimation

is Lancaster (1997). He successfully estimates the equilibrium search model where

the Bellman equation can be transformed into an equation where all the information

on optimal choice of the individual can be summarized in the reservation wage, and

hence, there is no need for solving the value function. Another line of research is
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Geweke and Keane (1995) and Houser (2003) who estimate the DDC model without

solving the DP problem. In contrast, our paper accomplishes Bayesian estimation

based on full solution of the DP problem by simultaneously solving for the DP prob-

lem and iterating on the pseudo-MCMC algorithm. The difference turns out to be

important because the estimation algorithms that are not based on the full solution of

the model can only accomodate limited specification of unobserved heterogeneities.3

Our estimation method not only makes Bayesian application to DDC models

computationally feasible, but possibly even superior to the existing (non-Bayesian)

methods, by reducing the computational burden of estimating a dynamic model to

that of estimating a static one. Furthermore, the usually cited advantages of Bayesian

estimation over classical estimation methods apply here as well. That is, first, the

conditions for the convergence of the pseudo-MCMC algorithm are in general weaker

than the conditions for the global maximum of the Maximum Likelihood (ML) esti-

mator, as we show in this paper. Second, in MCMC, standard errors can be derived

straightforwardly as a byproduct of the estimation routine, whereas in ML estima-

tion, standard errors have to be computed usually either by inverting the numerically

calculated Information Matrix, which is valid only in a large sample world, or by

repeatedly bootstrapping and reestimating the model, which is computationally de-

manding.

The organization of the paper is as follows. In Section 2, we present a general

version of the DDC model and discuss conventional estimation methods as well as our

Bayesian DP algorithm. In Section 3, we prove convergence of our algorithm under

some mild conditions. In Section 4, we present a simple model of entry and exit. In

3Since the working paper version of this paper has been circulated, several authors have used
the Bayesian DP algorithm and made some important extensions. Osborne (2005) has applied the
Bayesian DP algorithm to the estimation of the dynamic discrete choice model with random effects,
and estimated the dynamic consumer brand choice model. Norets (2006) has applied it to the
DDC model with serially correlated state variables. Also see Brown and Flinn (2006) for a classical
econometric application of the idea.
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Section 5, we present the simulation and estimation results of several experiments

applied to the model of entry and exit. Finally, in Section 6, we conclude and briefly

discuss future direction of this research. Appendix 1 contains results of the basic

experiment, some standard error tables and estimation of basic model and the random

effects model with the discount factor also estimated, and Appendix 2 contains all

proofs.

2 The Framework

We estimate a dynamic model of a forward looking agent. Let θ be the J dimensional

parameter vector. Let S be the set of state space points and let s be an element of

S. We assume that S is finite. Let A be the set of all possible actions and let a be

an element of A. We assume A to be finite to study discrete choice models.

The value of choice a at parameter θ and state vector s is,

V(s, a, �a, θ) = R(s, a, �a, θ) + βE�0 [V (s
0, �0, θ)] (1)

where s0 is the next period’s state variable, R is the current return function. � is a

vector whose a th element �a is a random shock to current returns to choice a. Finally,

β is the discount factor. We assume that � follows a multivariate distribution F� (�|θ),
which is independent over time. The expectation is taken with respect to the next

period’s shock �0. We assume that the next period’s state variable s0 is a deterministic

function of the current state variable s, current action a, and parameter θ 4. That is,

s0 = s0(s, a, θ).

4This is a simplifying assumption for the theoretical results. Later in the paper, we study random
dynamics as well.
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The value function is defined to be as follows.

V (s, �, θ) = maxa∈A V(s, a, �a, θ).

We assume that the dataset for estimation includes variables which correspond to

state vector s and choice a in our model but the choice shock � is not observed. That

is, the observed data is YNd,Td ≡
©
sdi,τ , a

d
i,τ , G

d
i,τ

ªNd,Td

i=1,τ=1
5, where Nd is the number of

firms and T d is the number of time periods. Furthermore,

adi,τ = argmaxa∈A V(sdi,τ , a, �a, θ)
Gd
i,τ = R(sdi,τ , a

d
i,τ , �adi,τ , θ) if

¡
sdi,τ , a

d
i,τ

¢ ∈ Ψ

0 otherwise.

The current period return is observable in the data only when the pair of state

and choice variables belongs to the set Ψ. In the entry/exit problem of firms that

we discuss later, profit of a firm is only observed when the incumbent firm stays in.

In this case, Ψ is a set whose state variable is being an incumbent (and the capital

stock) and the choice variable is staying in.

Let π() be the prior distribution of θ. Furthermore, let L(YNd,Td|θ) be the likeli-
hood of the model, given the parameter θ and the value function V (., ., θ), which is

the solution of the DP problem. Then, we have the following posterior distribution

function of θ.

P (θ|YNd,Td) ∝ π(θ)L(YNd,Td |θ). (2)

Let ² ≡ {�i,τ}Nd,Td

i=1,τ=1. Because ² is unobserved to the econometrician, the likelihood is

an integral over it. That is, if we define L(YNd,Td|², θ) to be the likelihood conditional
on (², θ), then,

L(YNd,Td|θ) =
R
L(YNd,Td|², θ)dF (²|θ).

5We denote any variables with d superscript to be the data.
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The value function enters in the likelihood through choice probability, which is a

component of the likelihood. That is,

P
£
a = adi,τ |sdi,τ , V, θ

¤
= Pr

∙b�a,i,τ : adi,τ = argmax
a∈A

(R(s, a, �a, θ) + βE�0 [V (s
0, �0, θ)])

¸
.

(3)

Below we briefly describe the conventional estimation approaches and then, the

Bayesian dynamic programming algorithm we propose.

2.1 The Maximum Likelihood Estimation

The conventional ML estimation procedure of the dynamic programming problem

consists of two main steps. First is the solution of the dynamic programming problem

and the subsequent construction of the likelihood, which is called “the inner loop”

and second is the estimation of the parameter vector, which is called “the outer loop”.

Dynamic Programming Step (Inner Loop): Given parameter vector θ, we

solve the Bellman equation, given by equation 1. This typically involves several steps.

Step a : The random choice shock, � is drawn a fixed number of times, say,

M , generating �(m),m = 1, ...,M . At iteration 0, we let the expected value function

(Emax function) to be zero, i.e., E�0
£
V (0)(s, �0, θ)

¤
= 0 for every s ∈ S. Then, we set

initial guess of the value function at iteration 1 to be the current period payoff. That

is,

V (1)(s, �(m), θ) = maxa∈A {R(s, a, �a, θ)}

for every s ∈ S, �(m).

Step b : Assume we are at iteration t of the DP algorithm. Given s ∈ S and

�(m), the value of every choice a ∈ A is calculated. For the Emax function, we use the
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approximated expected value function bE�0
£
V (t−1)(s0, �0, θ)

¤
computed at the previous

iteration t− 1 for every s0 ∈ S. Hence, the iteration t value of choice a is,

V(t)(s, a, �(m)a , θ) = R(s, a, �
(m)
a , θ) + β bE�0

£
V (t−1)(s0, �0, θ)

¤
.

Then, we compute the value function, V (t)(s, �(m), θ) = maxa∈A
n
V(t)(s, a, �(m)a , θ)

o
.This

calculation is done for every s ∈ S and �(m), m = 1, ...,M .

Step c : The approximation for the expected value function is computed by taking

the average of value functions over simulated choice shocks as follows.

bE�0
£
V (t)(s0, �0, θ)

¤ ≡ 1

M

MX
m=1

V (t)(s0, �(m), θ) (4)

Steps b) and c) have to be done repeatedly for every state space point s ∈ S. Further-

more, the two steps have to be repeated until the value function converges. That is, for

a small δ > 0,
¯̄
V (t)(s, �(m), θ)− V (t−1)(s, �(m), θ)

¯̄
< δ for all s ∈ S and m = 1, ..,M .

Likelihood Construction: The important increment of the likelihood is the

conditional choice probability P
£
a = adi,τ |sdi,τ , V, θ

¤
given the state sdi,τ , value function

V and the parameter θ. For example, suppose that the per period return function is

specified as follows:

R(s, a, �
(m)
a , θ) = bR(s, a, θ) + �

(m)
a

6,

where bR(s, a, θ) is the deterministic component of the per period return function.
Also, denote,

bV(s, a, θ) = bR(s, a, θ) + β bE�0 [V (s
0, �0, θ)] ,

to be the deterministic component of the value of choosing action a. Then,

6Having an additive error is not necessary. The dynamic discrete choice model is essentially a
multinomial discrete choice model where the RHS includes future expected value functions.
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P
£
adi,τ |sdi,τ , V, θ

¤
= P

h
�a − �adi,τ ≤ bV(s, adi,τ , θ)− bV(s, a, θ);∀a 6= adi,τ |sdi,τ , V, θ

i
,

which becomes a multinomial probit specification when the error term � is assumed

to follow a joint normal distribution.

Likelihood Maximization routine (Outer Loop): Supppose we have K pa-

rameters to estimate. In a typical Maximum Likelihood estimation routine, where one

uses Newton hill climbing algorithm, at iteration t, likelihhood is derived under the

original parameter vector θ(t) and under the perturbed parameter vector θ(t) +∆θj,

j = 1, ...,K. The perturbed likelihood is used together with the original likelihood

to derive the new direction of the hill climbing algorithm. This is done to derive the

parameters for the iteration t+1, θ(t+1). That is, during a single ML estimation rou-

tine, the DP problem needs to be solved in full K + 1 times. Furthermore, often the

ML estimation routine has to be repeated many times until convergence is achieved.

During a single iteration of the maximization routine, the inner loop algorithm needs

to be executed at least as many times as the number of parameters plus one. Since the

estimation requires many iterations of the maximization routine, the entire algorithm

is usually computationally extremely burdensome.

2.2 The conventional Bayesian MCMC estimation

A major computational issue in Bayesian estimation method is that the posterior

distribution, given by equation 2, is a high-dimensional and complex function of

the parameters. Instead of directly simulating the posterior, we adopt the Markov

Chain Monte Carlo (MCMC) strategy and construct a transition density from current

parameter θ to the next iteration parameter θ0, f (θ, θ0), which satisfies, among other

more technical conditions, the following equality.

P (θ|YN,T ) =
R
f (θ, θ0)P

¡
θ0|YNd,Td

¢
dθ0.
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We simulate from the transition density the sequence of parameters
n
θ(s)
ot
s=1

, which

is known to converge to the correct posterior. The conventional Bayesian estimation

method applied to the DDC model proceeds in the following two main steps.7

Metropolis-Hastings (M-H) Step: The Metropolis-Hastings algorithm is a

Markov Chain simulation algorithm used to draw from a complex target distribution8.

In our case, the traget density is proportional to π(θ)L(YNd,Td|θ). Given θ(t), the

parameter vector at iteration t, we draw the new parameter vector θ(t+1) as follows:

First, we draw the candidate parameter vector θ∗(t) from a candidate generating

density (or proposal density) q
³
θ(t), θ∗(t)

´
. Then, we accept θ∗(t), i.e. set θ(t+1) = θ∗(t)

with probability,

λ
³
θ(t), θ∗(t)

´
= min

⎧⎨⎩π
³
θ∗(t)

´
L
³
YNd,Td |θ∗(t)

´
q
³
θ∗(t), θ(t)

´
π
³
θ(t)
´
L
³
YNd,Td |θ(t)

´
q
³
θ(t), θ∗(t)

´ , 1

⎫⎬⎭ , (5)

and we reject θ∗(t), i.e. set θ(t+1) = θ(t) with probability 1− λ.

Notice that since the likelihood is a function of the value function, during each M-

H step, in order to compute the proposal density, for each θ∗(t) the DP problem needs

to be solved and value function derived. Hence, the MCMC algorithm is the “Outer

Loop” of the estimation algorithm, and we need the following Dynamic Programming

step within the Hastings-Metropolis Step as the “Inner Loop”.

Dynamic Programming Step: The Bellman equation, given by equation 1, is

iterated until convergence for the given parameter vector θ(t) and the candidate vector

θ∗(t). This solution algorithm for the DP Step is similar to the Maximum Likelihood

algorithm discussed above. The full-solution Bayesian MCMC method turns out to

be even more burdensome computationally than the full-solution ML method because

7See Tierney (1994) and Tanner and Wong (1987) for details on Bayesian Estimation.
8See Robert and Casella (2004) for more details on the M-H algorithm
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MCMC typically requires a lot more iterations than the ML routine.

We now present our algorithm for estimating the parameter vector θ. We call it

the Bayesian Dynamic Programming (Bayesian DP) Algorithm. The key innovation

of our algorithm is that we solve the dynamic programming problem and estimate the

parameters simultaneously, rather than sequentially as in the conventional methods

described above.

2.3 The Bayesian Dynamic Programming Estimation

Our method is similar to the conventional Bayesian algorithm in that based on the

value function computed at each estimation step, we construct an algorithm that is

a modified version of the Metropolis-Hastings algorithm described above to generate

a sequence of parameter simulations. The main difference between the Bayesian DP

algorithm and the conventional algorithm is that during each estimation step, we do

not solve the DP problem in full. In fact, during each modified Metropolis-Hastings

step, we iterate the DP algorithm only once.

A key issue in solving the DP problem is the way the expected value function

is approximated. In conventional methods, this approximation is given by equation

4. In contrast, we approximate the emax function by averaging over a subset of

past iterations. Let Ω(t) ≡
n
�(s), θ∗(s), V (s)

ot
s=1

be the history of shocks, parameters

and value functions up to the current iteration t. Let V(t)(s, a, �(t)a , θ∗(t),Ω(t−1)) be

the value of choice a and let V (t)(s, �(t), θ∗(t),Ω(t−1)) be the value function derived at

iteration t of our solution/estimation algorithm. Then, the value function and the

approximation
∧
E
(t)

�0
£
V (s0, �0, θ)|Ω(t−1)¤ for the expected value function E�0 [V (s

0, �0, θ)]
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at iteration t are defined recursively as follows.

∧
E
(t)

�0
£
V (s0, �0, θ)|Ω(t−1)¤ (6)

≡
N(t)X
n=1

V (t−n)(s0, �(t−n), θ∗(t−n),Ω(t−n−1))
Kh(θ − θ∗(t−n))PN(t)
k=1 Kh(θ − θ∗(t−k))

,

V(t−n)(s, a, �(t−n)a , θ∗(t−n),Ω(t−n−1)) =

R(s, a, �
(t−n)
a , θ∗(t−n)) + β

∧
E
(t−n)
�0

h
V (s0, �0, θ∗(t−n))|Ω(t−n−1)

i
,

V (t−n)(s, �(t−n), θ∗(t−n),Ω(t−n−1)) =Maxa∈AV(t−n)(s, a, �(t−n)a , θ∗(t−n),Ω(t−n−1))

where Kh() is a kernel with bandwidth h > 0. That is, Kh(z) =
1
hJ
K( z

h
). Here, K

is a nonnegative, continuous, bounded real function which is symmetric around zero

and integrates to one. i.e.
R
K(z)dz = 1.

The approximated expected value function given by equation 6 is the weighted

average of value functions of N(t) most recent iterations. The sample size of the

average, N(t), increases with t. Futhermore, we let t − N(t) → ∞ as t → ∞. The
weights are high for the value functions at iterations with parameters close to the

current parameter vector θ(t). This is similar to the idea of Pakes and McGuire

(2001), where the expected value function is the average of the past N iterations. In

their algorithm, averages are taken only over the value functions that have the same

state variable as the current state variable s. In our case, averages are taken over the

value functions that have the same state variable as the current state variable s as

well as parameters that are close to the current parameter θ(t).

We now describe the complete Bayesian Dynamic Programming algorithm at iter-

ation t. Suppose that
©
�(l)
ªt
l=1
,
n
θ∗(l)

ot
l=1
, and

n
V (l)(s, �(l), θ∗(l),Ω(t−1))

ot
l=1
are given

and for all discrete s ∈ S. Then, we update the value function and the parameters as

follows.
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Modified Metropolis-Hastings Step:9 We draw the new parameters θ(t+1)

as follows: First, we draw the candidate parameter θ∗(t) from the proposal den-

sity q
³
θ(t), θ∗(t)

´
. Then, we accept θ∗(t), i.e. set θ(t+1) = θ∗(t) with probability

λ
³
θ(t), θ∗(t)|Ω(t−1)

´
, defined in the same way as before, in equation 5, and we re-

ject θ∗(t), i.e. we set θ(t+1) = θ(t) with probability 1− λ.

Bellman Equation Step: During each Metropolis-Hastings step, we need to

solve for the expected value function bE(t)
�0
£
V (., ) |Ω(t−1)¤ for parameters θ(t) and θ∗(t).

To do so for all s ∈ S, we follow equation 6. For use in future iterations, we

simulate the value function by drawing �(t) to derive,V(t)(s, a, �(t)a , θ∗(t),Ω(t−1)) and

V (t)(s, �(t), θ∗(t),Ω(t−1)).

We repeat these two steps until the sequence of the parameter simulations con-

verges to a stationary distribution. In our algorithm, in addition to the Dynamic

Programming and Bayesian methods, nonparametric kernel techniques are also used

to approximate the value function. Notice that the convergence of kernel based ap-

proximation is not based on the large sample size of the data, but based on the

number of Bayesian DP iterations. The Bellman equation step is only done once

during a single estimation iteration. Hence, the Bayesian DP algorithm avoids the

computational burden of solving for the DP problem during each estimation step,

which involves repeated evaluation of the Bellman equation.

Both Osborne (2005) and Norets (2006) approximate the expected value function

using the value functions computed in the past iterations evaluated at the past para-

meter draws θ(t−n)10. Here, we use the value functions evaluated at the past proposal

9We are grateful to Andriy Norets for pointing out a flaw in the Gibbs Sampling scheme adopted
in the earlier draft. We follow Norets (2006) and Osborne (2005) and adopt the modified Metropolis-
Hastings algorithm for the MCMC sampling.
10Another difference between them is that they assume the choice shock to be i.i.d. extremely

value distributed, and use dynamic logit formula of Rust (1987) to integrate out the per period
choice shock analytically. In our case, we assume a more general functional form for the choice
shock where analytical integration is not possible.
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parameter draws θ∗(t−n). We chose to do so because given θ(t) it is easier to con-

trol the random movement of θ∗(t) than the random movement of θ(t+1), since θ∗(t) is

drawn from a known distribution function which we can easily change, whereas θ(t+1)

comes from a complex distribution which involves the solution of the dynamic model.

For example, if in the modified Metropolis-Hastings algorithm the parameter θ(t) is

“stuck” at a value for many iterations, then the value functions are only evaluated

at that parameter value. But even then, θ∗(t) moves around so that we can com-

pute the value functions at the parameter values around θ(t), which becomes useful

in computing the expected value function when the parameter θ(t) finally moves to

a different value. Furthermore, by setting the support of the proposal density to be

the entire parameter set Θ, which we assume to be compact, we can ensure that at

each point θ in Θ, the proposal density draw θ∗(t) will visit the open neighborhood of

θ arbitrarily many times as we increase the iterations to infinity, which turns out to

be the main reason why the expected value function approximation of the Bayesian

DP algorithm converges to the true one. By keeping the conditional variance of the

proposal density given θ(t) small, we can guarantee that the invariant distribution of

θ∗ is not very different from that of θ.

It is important to notice that the modified Metropolis-Hastings algorithm is not

a Markov Chain11. This is because it involves value functions calculated in past

iterations. Hence, convergence of our algorithm is by no means trivial. In the next

section, we prove that under some mild assumptions the distribution of the parameters

generated by our algorithm converges to the true posterior in probability. All proofs

are in Appendix 2.

11We are grateful to Peter Rossi for emphasizing it.
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3 Theoretical Results

In this section, we prove the convergence of the Bayesian DP algorithm. To facilitate

the proof, we modify the Bellman equation step slightly to calculate the expected

value function. That is, we simulate the value function by drawing �(t) to derive,

V(t)(s, a, �(t)a , θ∗(t),Ω(t−1)) = eR(s, a, �(t)a , θ∗(t)) + β
∧
E
(t)

�0

h
V (s0, �0, θ∗(t)) | Ω(t−1)

i
, whereeR(s, a, �(t)a , θ∗(t)) =Min

n
Max

n
R(s, a, �

(t)
a , θ∗(t)),−MR

o
,MR

o
for a large positiveMR. This makes the utility function used in the Bellman equation

uniformly bounded, which simplifies the proof. This modification does not make any

difference in practice because MR can be set arbitrarily large. We also denote V to

be the value function of the following Bellman equation.

V (s, �
(m)
a , θ) =Max

neR(s, a, �a, θ) + βE�0,s0 [V (s
0, �0, θ)]

o
12.

Next we show that under some mild assumptions, our algorithm generates a se-

quence of parameters θ(1), θ(2), ... which converges in probability to the correct poste-

rior distribution.

Assumption 1: Parameter space Θ ⊆ RJ is compact, i.e. closed and bounded

in the Euclidean space RJ . We set the proposal density q(θ, .) to be continuously

differentiable, strictly positive and uniformly bounded in the parameter space given

any θ ∈ Θ.

Compactness of the parameter space is a standard assumption used in proving the

convergence of MCMC algorithm. See, for example, McCullogh and Rossi (1994). It

is often not necessary but simplifies the proofs. An example of the proposal density

that satisfies Assumption 1 is the multivariate normal density, truncated to only cover

the compact parameter space.

12Given the expected value function, per period return in the likelihood construction is set to be
R not eR. See equation 3.
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Assumption 2: For any s ∈ S, a ∈ A, and �, θ ∈ Θ,
¯̄̄ eR(s, a, �a, θ)¯̄̄ < MR

for some MR > 0. Also, eR(s, a, ., θ) is a nondecreasing function in � and eR(s, a, ., .)
satisfies the Lipschitz condition in terms of � and θ. Also, the distribution of �,

has a density function dF (�, θ) which is continuous in θ and satisfies the Lipschitz

condition.

Assumption 3: β is known and β < 1.

Assumption 4: For any s ∈ S, � and θ ∈ Θ, V (0)(s, �, θ) < MI for some MI > 0.

Furthermore, V 0(s, ., .) also satisfies the Lipschitz condition in terms of � and θ.

Assumptions 2 and 3, and 4 jointly make V (t)(s, �, θ) and hence
∧
E
(t)

�0 [V (s
0, �0, θ)],

t = 1, ... uniformly bounded, measurable, continuous and satisfy the Lipschitz condi-

tion as well.

Assumption 5: π(θ) is positive and bounded for any θ ∈ Θ. Similarly, for any

θ ∈ Θ and V uniformly bounded, L(YNd,Td |θ, V (.θ)) > 0 and bounded and uniformly
continuous in θ ∈ Θ.

Assumption 6: The bandwidth h is a nonincreasing function of N and as N →
∞, h(N)→ 0 and Nh(N)9J →∞.
Assumption 7: N(t) is nondecreasing in t, increases at most by one for a unit

increase in t, and N(t) → ∞. Furthermore, t − N(t) → ∞. Define the sequence
t(l), eN(l) as follows. For some t > 0, define t(1) = t, and eN(1) = N(t). Let

t(2) be such that t(2) − N(t(2)) = t(1). Such t(2) exists from the assumption on

N(t). Also, let eN(2) = N(t(2)). Similarly, for any l > 2, let t(l + 1) be such that

t(l+1)−N(t(l+1)) = t(l), and let eN(l+1) = N(t(l+1)). Assume that there exists

a finite constant A > 0 such that eN(l + 1) < A eN(l) for all l > 0.
An example of a sequence that satisfies Assumption 7 is: t(l) ≡ l(l+1)

2
, eN(l) = l

and, N(t) = l for t(l) ≤ t < t(l + 1).
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Assumption 8: Kh() is a multivariate kernel with bandwidth h > 0. That is,

Kh(z) =
1

hJ
K(

z

h
).

K is a nonnegative, continuous, bounded real function which is symmetric around zero

and integrates to one. i.e.
R
K(z)dz = 1. Furthermore, we assume that

R
zK(z)dz <

∞, and R|z|>1/hK (z) dz ≤ Ah4J for some positive constant A where for a vector z,

|z| = supj=1,...,J |zj|, and K has an absolutely integrable Fourier transform.

The following two Lemmas establish some properties that are used in the later

proofs.

Lemma 1: Let h (.), ε0 and g(.) be defined as follows.

h (θ∗) ≡ infθ∈Θ q (θ, θ∗) , ε0 =
R
h
³
θ̃
´
dθ̃, g (θ∗) ≡ h(θ∗)

h(θ̃)dθ̃
.

Then, 0 < ε0 ≤ 1 and for any θ, θ∗ ∈ Θ,

ε0g (θ
∗) ≤ q (θ, θ∗) .

Lemma 1 implies that the proposal density of the modified Metropolis-Hastings

algorithm has an important property: regardless of the current parameter values or

the number of iterations, every parameter value in the compact parameter space is

visited with a strictly positive probability.

Lemma 2: Let eh (.), be a continuously differentiable function which satisfies the
following inequality: eh (θ∗) ≥ supθ∈Θ q (θ, θ∗) . Let ε1 and eg () be defined as follows.

ε1 ≡
R eh³θ̃´ dθ̃, eg (θ∗) ≡ h(θ∗)

h(θ̃)dθ̃

Then, 1 ≤ ε1 <∞ and for any θ, θ∗ ∈ Θ,

q (θ, θ∗) ≤ ε1eg (θ∗) .
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Lemma 2 implies that the proposal density is bounded above, the bound being

independent of the current parameter value or the number of iterations.

Theorem 1: Suppose Assumptions 1 to 8 are satisfied for V (t), π, L, ² and θ.

Then, the sequence of approximated expected value function
∧
E
(t)

�0
£
V (s0, �0, θ)|Ω(t−1)¤

converges to E�0 [V (s
0, �0, θ)] in probability uniformly over s0 ∈ S, θ ∈ Θ. Thus, the

value functions V (t)(s, �, θ,Ω(t−1)) converges in probability uniformly over s, � and

θ ∈ Θ to V (s, �, θ) as t→∞ as well.

Corollary 1: Suppose Assumptions 1 to 8 are satisfied. Then Theorem 1 implies

that λ
³
θ(t), θ∗(t)|Ω(t−1)

´
converges to λ

³
θ(t), θ∗(t)

´
in probability uniformly in Θ.

Theorem 2: Suppose Assumptions 1 to 8 are satisfied for V (t), t = 1, ..., π,

L, � and θ. Suppose θ(t), t = 1, ... is generated by a modified Metropolis-Hastings

Algorithm described earlier, where λ
³
θ(t), θ∗(t)|Ω(t−1)

´
converges to λ

³
θ(t), θ∗(t)

´
in

probability uniformly. Then, θ(t) converges to eθ(t) in probability, where eθ(t) is a Markov
chain generated by the Metropolis-Hastings Algorithm with proposal density q(θ, θ(∗))

and acceptance probability function λ
³
θ, θ(∗)

´
.

Corollary 2: The sequence of parameter simulations generated by theMetropolis-

Hastings algorithm with proposal density q(θ, θ∗) and the acceptance probability

λ (θ, θ∗) converge to the true posterior.

By Corollary 2, we can conclude that the distribution of the sequence of parame-

ters θ(t) generated by the Bayesian DP algorithm converges in probability to the true

posterior distribution.

To understand the basic logic of the proof of Theorem 1, suppose that the para-

meter θ(t) stays fixed at a value θ∗ for all iterations t. Then, equation (6) reduces

to,

bE�0 [V (s
0, �0, θ∗)] = 1

N(t)

PN(t)
n=1 V

(t−n)(s0, �(t−n), θ∗).
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Then, our algorithm boils down to a simple version of the machine learning algorithm

discussed in Pakes and McGuire (2001) and Bertsekas and Tsitsiklis (1996). They

approximate the expected value function by taking the average over all past value

function iterations whose state space point is the same as the state space point s0.
Bertsekas and Tsitsiklis (1996) discuss the convergence issues and show that under

some assumptions the sequence of the value functions from the machine learning

algorithm converges to the true value function almost surely. The difficulty of the

proofs lies in extending the logic of the convergence of the machine learning algorithm

to the framework of estimation, that is, the case where the parameter vector moves

around as well. Our answer to this issue is simple: for a parameter value θ ∈ Θ at an

iteration t, we look at the past iterations and use value functions of the parameters

θ∗(t−n) that are very close to θ. Then, the convergence is very similar to that where the

parameter vector is fixed, as long as the number of the past value functions that can

be used can be made arbitrarily large. We know from Lemma 1 that every parameter

vector in the compact parameter space Θ has strictly positive probability of being

drawn. Then, by increasing the number of iterations, we can make the number of

draws for every finite open cover in the parameter space Θ as large as we want and

still the probability of it can be made arbitrarily close to 1. It is important to note

that for the convergence of the value function, the estimation algorithm does not have

to be Markov. The only requirement is that during the iteration each parameter in

Θ has a strictly positive probability of being drawn.

3.1 Random Effects

Consider a model where for a subset of the parameters each agent has a different valueeθi, which is randomly drawn from a density f ³eθi|θ(1)´. The parameter vector of the
model is θ ≡ ¡θ(1), θ(2)¢ where θ(1) is the parameter vector for the distribution of the
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random coefficients and θ(2) is the vector of other parameters. The parameter vector

of firm i is
³eθi, θ(2)´. Instead of explicitly integrating the likelihood over eθi, we follow

the commonly adopted and computationally effective procedure of treating each eθi as
a parameter and drawing it from its density. It is known (see McCullogh and Rossi

(1994) and Chib and Greenberg (1996)) that instead of drawing the entire parameter

vector
³
{θi}Nd

i=1 , θ(1), θ(2)

´
at once, it is often simpler to partition the parameter vector

into several blocks and draw the parameters of each block separately given the other

ones. Here, we propose to draw them in the following 3 blocks. At iteration t the

blocks are:

Block 1: draw
neθ(t+1)i

oNd

i=1
given θ

(t)
(1), θ

(t)
(2)

Block 2: draw θ
(t+1)
(1) given

neθ(t+1)i

oNd

i=1
, θ(t)(2)

Block 3: draw θ
(t+1)
(2) given

neθ(t+1)i

oNd

i=1
, θ(t+1)(1)

Below we describe in detail the algorithm at each block.

Block 1: Modified Metropolis-Hastings Step for drawing the Random

Effects eθi: For firm i, we draw the new random effects parameters eθ(t+1)i as follows:

We set the proposal density as the distribution function of eθi, that is, f ³eθi|θ(1)´.
Notice that the prior is a function of θ(1) and θ(2), and not of eθi. Hence for drawing eθi
given θ(1) and θ(2), the prior is irrelevant. Similarly given θ(1) the likelihood increment

of firms other than i is also irrelevant in drawing eθi. Therefore, we draw eθi from the

likelihood increment of firm i, which can be written as follows:

Li

³
Yi,T d |

³eθi, θ(2)´´ f ³eθi|θ(1)´ ,
where we denote Li

³
Yi,T d|

³eθi, θ(2)´´ to be
Li

³
Yi,T d |

³eθi, θ(2)´´ ≡ L
³
Yi,T d |

³eθi, θ(2)´ , bE(t)
�0

h
V
³
.,eθi, θ(2)´ |Ω(t−1)i´ .
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Now, we draw the candidate parameter eθ∗(t)i from the proposal density f
³eθ∗(t)i |θ(1)

´
.

Then, we accept eθ∗(t)i , i.e. set eθ(t+1)i = eθ∗(t)i with probability,

λ1
³
θ(t),eθ∗(t)i |Ω(t−1)

´
= min

⎧⎪⎨⎪⎩
Li

³
Yi,T |

³eθ∗(t)i , θ
(t)
(2)

´´
f
³eθ∗(t)i |θ(t)(1)

´
f
³eθ(t)i |θ(t)(1)´

Li

³
Yi,T |

³eθ(t)i , θ
(t)
(2)

´´
f
³eθ(t)i |θ(t)(1)´ f ³eθ∗(t)i |θ(t)(1)

´ , 1

⎫⎪⎬⎪⎭
= min

⎧⎪⎨⎪⎩
Li

³
Yi,T |

³eθ∗(t)i , θ
(t)
(2)

´´
Li

³
Yi,T |

³eθ(t)i , θ
(t)
(2)

´´ , 1

⎫⎪⎬⎪⎭
otherwise, reject eθ∗(t)i , i.e. set eθ(t+1)i = eθ(t)i with probability 1− λ1.

Block 2: Drawing θ
(t+1)
(1) : Conditional on

neθ(t+1)i

oNd

i=1
, the density of θ(t+1)(1) is

proportional to
NY
i=1

f
³eθ(t+1)i |θ(1)

´
. Drawing from this density is straightforward as it

does not involve the solution of the dynamic programming problem.

Block 3: Modified Metroplis-Hastings Algorithm for drawing θ(2): We

draw the new parameters θ(t+1)(2) as follows: First, we draw the candidate parameter

θ
∗(t)
(2) from the proposal density q

³
θ
(t)
(2), θ

∗(t)
(2)

´
. Then, we accept θ∗(t)(2) , i.e. set θ

(t+1)
(2) =

θ
∗(t)
(2) with probability,

λ2
³
θ
(t+1)
(1) , θ

∗(t)
(2) |Ω(t−1)

´

= min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π
³
θ
(t+1)
(1) , θ

∗(t)
(2)

´" NY
i=1

Li

³
Yi,T |eθ(t+1)i , θ

∗(t)
(2)

´#
q
³
θ
∗(t)
(2) , θ

(t)
(2)

´
π
³
θ
(t+1)
(1) , θ

(t)
(2)

´" NY
i=1

Li

³
Yi,T |eθ(t+1)i , θ

(t)
(2)

´#
q
³
θ
(t)
(2), θ

∗(t)
(2)

´ , 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
otherwise, we reject θ∗(t)(2) , i.e. set θ

(t+1)
(2) = θ

(t)
(2) with probability 1− λ2.

Bellman Equation Step: During each Metropolis-Hastings step, for each agent

i we evaluate the expected value function bE(t)
�0

h
V
³
.,eθi, θ(2)´ |Ω(t−1)i. To do so for

each agent, for all s ∈ S, we follow equation 6 as before. For use in future iterations,
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we simulate the value function by drawing �(t) to derive,

V(t)(s, a, �(t)a ,eθi, θ(2),Ω(t−1)) = eR(s, a, �(t)a ,eθi, θ(2)) + β
∧
E
(t)

�0

h
V (s0, �0,eθi, θ(2)) | Ω(t−1)i ,

V (t)(s, �(t),eθi, θ(2),Ω(t−1)) = maxa∈A V(t)(s, a, �(t)a ,eθi, θ(2),Ω(t−1)).
The additional computational burden necessary to estimate the random coefficient

model is the computation of the value function which has to be done separately for

each firm i, because each firm has a different random effects parameter vector. That

is why in this case the adoption of Bayesian DP algorithm results in a large reduction

in computational cost.

3.2 Continuous State Space

So far, we assumed a finite state space. However, the Bayesian DP algorithm can also

be applied in a straightforward manner to other settings of dynamic discrete choice

models, with minor modifications. One example is the Random grid approximation

of Rust (1997). There, given continuous state variable s, action a and parameter θ,

the transition function from state vector s to the next period state vector s0 is defined
to be f(s0|a, s, θ). Then, to estimate the model, the DP part of our algorithm can be
modified as follows.

At iteration t, the value of choice a at parameter θ, state vector s, shock � is

defined to be V(t)(s, a, �a, θ) = R(s, a, �a, θ) + β
∧
Es0,�0 [V (s

0, �0, θ)] , where s0 is the next

period state variable and
∧
Es0,�0 [V (s

0, �0, θ)] is defined to be the approximation for the

expected value function, with the expectation now over future states as well as future

shocks. The value function is defined as before.

Conventionally, randomly generated state vector grid points are fixed through-

out the solution/estimation algorithm. If we follow this procedure, and let sm,

m = 1, ...,M be the random grids that are generated before the start of the so-
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lution/estimation algorithm, then, given parameter θ, the expected value function

approximation at iteration t of the DP solution algorithm using the Rust random

grids method would be,

∧
Es0,�0 [V (s

0, �0, θ)] (7)

≡
MX

m=1

⎡⎣N(t)X
n=1

V (t−n)(sm, �(t−n), θ(t−n))
Kh(θ − θ(t−n))PN(t)
k=1 Kh(θ − θ(t−k))

⎤⎦ f (sm|a, s, θ)PM
l=1 f (sl|a, s, θ)

.

Notice that in this definition of Emax approximation, the grid points remain fixed

over all iterations. In contrast, in our Bayesian DP algorithm, random grids can

be changed at each solution/estimation iteration. Let s(t) be the random grid point

generated at iteration t. Here, s(τ), τ = 1, 2, ... are drawn independently from a

distribution. Then, the expected value function can be approximated as follows.

∧
Es0,�0 [V (s

0, �0, θ)] (8)

≡
N(t)X
n=1

V (t−n)(s(t−n), �(t−n), θ(t−n))
Kh(θ − θ(t−n))f

¡
s(t−n)|a, s, θ¢PN(t)

k=1 Kh(θ − θ(t−k))f (s(t−k)|a, s, θ)

In the Rust method, if the total number of random grids isM , then the number of

computations required for each DP iteration isM . Hence, at iteration τ , the number

of DP computations that is required isMτ . If a single DP solution step requires τ DP

iterations, and each Newton ML step requires K DP solution steps, then, to iterate

Newton ML algorithm once, we need to compute a single DP iteration MτK times.

In contrast, in our Bayesian DP algorithm, at iteration t we only need to draw

one state vector s(t) (so that M = 1) and only compute the Bellman equation on

that state vector. Further, we solve the DP problem only once (so that τ = 1 and

K = 1). Still, at iteration t, the number of random grid points is N(t), which can be

made arbitrarily large when we increase the number of iterations. In other words, in
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contrast to the Rust method, the accuracy of the DP computation in our algorithm

automatically increases with iterations.

Another issue that arises in application of the Rust random grid method is that

the method assumes that the transition density function f(s0|a, s, θ) is not degener-
ate. That is, we cannot use the random grid algorithm if the transition from s to s0,
given a, θ is deterministic. It is also well known that the random grid algorithm be-

comes inaccurate if the transition density has a small variance. In these cases, several

versions of polynomial based expected value function (emax function) approximation

have been used. Keane and Wolpin (1994) approximate the emax function using

polynomials of deterministic part of the value functions for each choice and state

space point. Imai and Keane (2004) use Chebychev polynomials of state variables.

It is known that in some cases, global approximation using polynomials can be nu-

merically unstable and exhibit “wiggling”. Here, we propose a kernel based local

interpolation approach to Emax function approximation. The main problem behind

the local approximation has been the computational burden of having a large number

of grid points. As pointed out earlier, in our solution/estimation algorithm, we can

make the number of grid points arbitrarily large by increasing the total number of

iterations, even though the number of grid points per iteration is one. Thus, if the

continuous state variable evolves deterministically, we approximate the emax func-

tion,
∧
Es0,�0 [V (s

0, �0, θ)] as follows. Let Khs(.) be the kernel function with bandwidth

hs for the state variable and Khθ(.) for the parameter vector θ.

∧
E�0 [V (s

0, �0, θ)] ≡
N(t)X
n=1

V (t−n)(s(t−n), �(t−n), θ(t−n))
Khs

¡
s0 − s(t−n)

¢
Khθ(θ − θ(t−n))PN(t)

k=1 Khs (s
0 − s(t−k))Khθ(θ − θ(t−k))

.

(9)
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4 Examples

We estimate a simple dynamic discrete choice model of entry and exit, with firms in

competitive environment.13 The firm is either an incumbent (I) or a potential entrant

(O). If the incumbent firm chooses to stay, its per period return is,

RI,IN(Kt, �t, θ) = αKt + �1t,

where Kt is the capital of the firm, �t = (�1t, �2t) is a vector of random shocks, and θ

is the vector of parameter values. If it chooses to exit, its per period return is,

RI,OUT (Kt, �t, θ) = �2t.

Similarly, if the potential entrant chooses to enter, its per period return is,

RO,IN(Kt, �t, θ) = −δ + �1t,

and if it decides to stay out, its per period return is,

RO,OUT (Kt, �t, θ) = �2t.

We assume the random component of the current period returns to be distributed

i.i.d normal as follows. �lt ∼ N(0, σl), l = 1, 2. The level of capital Kt evolves as

follows. If the incumbent firm stays in, then,

lnKt+1 = b1 + b2 lnKt + ut+1,

where, ut+1 ˜ N(0, σu), and if the potential entrant enters,

lnKt+1 = be + ut+1.

13For an estimation exercise based on the model, see Roberts and Tybout (1997).
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Now, consider a firm who is an incumbent at the beginning of period t. Let

VI(Kt, �t, θ) be the value function of the incumbent with capital stockKt, and VO(0, �t, θ)

be the value function of the potential entrant, who has capital stock 0. The Bellman

equation for the optimal choice of the incumbent is:

VI(Kt, �t, θ) =Max{VI,IN(Kt, �t, θ), VI,OUT (Kt, �t, θ)}, where,
VI,IN(Kt, �t, θ) = RI,IN(Kt, �1t, θ) + βEt+1VI(Kt+1(Kt, ut+1, θ), �t+1, θ)

is the value of staying in during period t. Similarly,

VI,OUT (Kt, �t, θ) = RI,OUT (Kt, �2t, θ) + βEt+1VO(0, �t+1, θ)

is the value of exiting during period t . The Bellman equation for the optimal choice

of the potential entrant is:

VO(0, �t, θ) =Max{VO,IN(0, �t, θ), VO,OUT (0, �t, θ)}, where,
VO,IN(0, �t, θ) = RO,IN(0, �1t, θ) + βEt+1VI(Kt+1(0, ut+1, θ), �t+1, θ),

is the value of entering during period t and,

VO,OUT (0, �t, θ) = RO,OUT (0, �2t, θ) + βEt+1VO(0, �t+1, θ),

is the value of staying out during period t. Notice that the capital stock of a potential

entrant is always 0.

The parameter vector θ of the model is (δ, α, β, σ1, σ2, σu, b1, b2, be).The state vari-

ables are the capital stock K, and the status of the firm, Γ ∈ {I,O}, that is, whether
the firm is an incumbent or a potential entrant. Notice that capital stock is a contin-

uous state variable with random transition, in contrast to the theoretical framework

where the state space was assumed to be finite and the transition function determin-

istic.
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We assume that for each firm, we only observe the capital stock, profit of the

firm that stays in and the entry/exit status over T d periods. That is, we know

{Kd
i,t, π

d
i,t,Γ

d
i,t}t=1,T

d

i=1,Nd , where, πdi,t = αKd
i,t + ε1t,if the firm stays in. We assume the

prior distribution of all parameters to be uninformative. That is, we set π (θ) = 1.

Below, we explain the estimation steps in detail.

Bellman Equation Step
In this step, we derive the value function, i.e., V (s)

Γ (K, �(s), θ(s)) for iteration s.

First, suppose we have already calculated the approximation for the expected

value function, where the expectation is over the choice shock �. To further integrate

the value function over the capital shock u, we can either use the Rust random

grid integration method which uses a fixed grid or let the grid size increase over the

iterations. Here, we use the Rust method. That is, given that we have drawnM i.i.d.

capital stock grids Km, m = 1, ..,M from a given distribution, we take the weighted

average according to equation 6. Note that if the firm exits or stays out, K 0 = 0.

Hence, the expected value function becomes bE(s)
�

h
VO(0, �, θ

(s))
i
.

Next, we draw �(s) = (�
(s)
1 , �

(s)
2 ).

Then, given �(s) and bE(s)VΓ(K, �, θ(s)), we solve the one-step Bellman equation,

that is, we solve the decision of the incumbent (whether to stay or exit) or of the

entrant (whether to enter or stay out) and derive the value function corresponding to

the optimal decisions, described earlier.

Modified Metropolis-Hastings Step
We draw the new parameter vector θ(s+1) from the posterior distribution. We

denote the vector Ii as follows:

Ii = [I
d
i,1(IN), ..., I

d
i,t(IN), ..., I

d
i,T (IN)]

where Idi,t(IN) = 1 if the firm either enters or decides to stay in, and 0 otherwise.

Similarly, we denote Ki, πi to be the vector of Kd
i,t and π

d
i,t. The likelihood increment
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for firm i at time t is

Li (Ii,Ki,πi|θ)
= Pr

h
�2t ≤ πdit + β

n bE(s)
h
VIN(K

0(K,u, θ(s)), �, θ(s))
i
− bE(s)

h
VO(0, �, θ

(s))
ioi

φ
³
πdit−αKd

it

σ�1

´
1

Kd
it+1

φ
³
lnKd

it+1−b1−b2 lnKd
it

σu

´
Idi,t(IN)I

d
i,t+1(IN)

+Pr
h
�2t − �1t > αKd

it + β
n bE(s)

h
VIN(K

0(K,u, θ(s)), �, θ(s))
i
− bE(s)

h
VO(0, �, θ

(s))
ioi

Idi,t(IN)
¡
1− Idi,t+1(IN)

¢
+Pr

h
�2t − �1t ≤ −δ + β

n bE(s)
h
VIN(K

0(0, u, θ(s)), �, θ(s))
i
− bE(s)

h
VO(0, �, θ

(s))
ioi

1
Kd
it+1

φ
³
lnKd

it+1−be
σu

´ ¡
1− Idi,t(IN)

¢
Idi,t+1(IN)

+Pr
h
�2t − �1t > −δ + β

n bE(s)
h
VIN(K

0(0, u, θ(s)), �, θ(s))
i
− bE(s)

h
VO(0, �, θ

(s))
ioi

¡
1− Idi,t(IN)

¢ ¡
1− Idi,t+1(IN)

¢
We employ the modified Metropolis-Hastings algorithm, where at iteration s

the proposal density q
³
θ(s), θ∗

´
is, δ∗ ∼ N

³
δ(s), σ2δ

´
, α∗ ∼ N

¡
α(s), σ2α

¢
, lnσ∗�1 ∼

N
³
lnσ

(s)
�1 , σ

2
lnσ�1

´
, lnσ∗�2 ∼ N

³
lnσ

(s)
�2 , σ

2
lnσ�2

´
, b∗1 ∼N

³
b
(s)
1 , σ2b1

´
, b∗2 ∼N

³
b
(s)
2 , σ2b2

´
, b∗e

∼ N
³
b
(s)
e , σ2be

´
and lnσ∗u ∼ N

³
lnσ

(s)
u , σ2lnσu

´
14. That is, we adopt the modified ran-

dom walk Metropolis Hastings algorithm. The algorithm sets θ(s+1)1 = θ∗1 with prob-

ability λ
³
θ(s), θ∗|Ω(s−1)

´
.

Expected Value Function Iteration Step
Next, we update the expected value function for iteration s + 1. First, we derive

E
(s+1)
� VΓ(K, �, θ(s+1)|Ω(s)). We adopt the following Gaussian kernel:

Kh(θ
(s) − θ(l)) = (2π)−L/2

QJ
j=1 h

−1
j exp[−1

2
(
θ
(s)
j −θ(l)j
hj

)2]15.

The expected value function is updated by taking the weighted average over the

L value functions of past N(s) iterations where the parameter vector θ(l) was closest

to θ(s+1). Then, if the firm enters or stays in, the expected value function is derived

according to equation 6.

14The standard errors of the innovations of the random walk M-H are all set to be 0.004.
15Kernel bandwidths hj are set to be 0.02.
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As discussed before, in principle, only one simulation of � is needed during each

solution/estimation iteration. But that requires the number of past iterations for

averaging, i.e. N(s) to be large, which adds to computational burden. Instead, in

our example, we draw � ten times and take an average. Hence, when we derive

the expected value function, instead of averaging past value functions, we average

over past average value functions, i.e., 1
M∈

M∈P
m=1

VΓ(K, �
(j)
m , θ(j)), where M� = 10. This

obviously increases the accuracy per iteration, and reduces the need to have a large

N(s). Notice that if the firm stays out or exits, then its future capital stock is zero.

Therefore, no averaging over capital grid points is required to derive the expected

value function, i.e., the emax function is simply E(s+1)
�

h
VO(0, �, θ

(s+1))
i
.

In the next section, we present the results of several Monte Carlo studies we

conducted using our Bayesian DP algorithm. The first experiment is the basic model

using the Rust random grid method. We report its results in Appendix 1. The

second experiment incorporates observed and unobserved heterogeneity, and finally,

we conduct an experiment in which capital stock evolves deterministically.

5 Simulation and Estimation

Denote the true values of θ by θ0, i.e. θ0 = (δ0, σ0�1 , σ
0
�2
, σ0u, α

0, b01, b
0
2, b

0
e, β

0). For the

basic model, we set them as follows: δ0 = 0.4, σ0�1 = 0.3, σ
0
�2 = 0.3, σ

0
u = 0.4, α

0 = 0.1,

b01 = 0.0, b
0
2 = 0.4, b

0
e = 0.5, β

0 = 0.98.

We first solve the DP problem numerically using the conventional full solution

method described earlier in detail. Modifications are made to account for the sto-

chastic state variable K, by using the Rust method. Next, we generate artificial data

based on this DP solution. All estimation exercises are done on a 2.8 GHz Pentium

4 Linux workstation. Notice that for data generation, we only need to solve the DP
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problem once, that is, for a fixed set of parameters. Hence, we took our time and

made sure that the DP solution is accurate.

We first set the MK capital grid points to be equally spaced between 0 and K,

which we set to be 5.0. The total number of capital grid points is set to beMK = 200.

We simulate artificial data of capital stock, profit and entry/exit choice sequences

{Kd
i,t, π

d
i,t, I

d
i,t}N

d,Td

i=1,t=1 using the DP solution. We then estimate the model using the

simulated data with our Bayesian DP routine. In these experiments, we do not

estimate the discount factor β. Instead, we set it at the true value β0 = 0.98.

Below, we report results of two experiments - random effects and continuous state

space with deterministic transition.16 The posterior means and posterior standard

deviations presented are the sample average of 10 simulation/estimation exercises,

where for each exercise a different seed was chosen. We also calculated the sample

standard errors of the posterior means and posterior standard deviations of the 10

simulation/estimation exercises. Those results are reported in Appendix 1. We set

the initial guesses of the parameters to be the true parameter values given by θ0, and

the initial guess of the expected value function to be 0. We used the same 200 capital

grid points in each iteration as used in generating the data.

5.1 Experiment 1: Random Effects

We now report estimation results of a model that includes observed and unobserved

heterogeneities. For the data generation, we assume that the profit coefficient for each

firm i, αi is distributed normally with mean μα = 0.2 and standard error σα = 0.1.

16The basic model was estimated, using Bayesian DP, Full solution based Bayesian MCMC as
well as Full Solution based ML. Our method performed well. We also checked the robustness of
our method by changing the initial parameter values. Results were almost indistinguishable. These
results are available in Appendix 1. We also report the results for the basic model and the random
effects model where we also estimate the discount facter. They are in Appendix 1 as well.
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The transition equation for capital is,

lnKi,t+1 = b1X
d
i + b2 lnKi,t + ui,t+1,

where Xd
i is a firm specific characteristic vector observable to the econometrician. In

our simulation sample, we simulate Xd
i from N(0.0, 1.0). All other parameters are set

at true values given by the vector θ0.

Notice that if we use the conventional simulatedMLmethod to estimate the model,

for each firm i we need to draw αi many times, say Mα times, and for each draw,

we need to solve the dynamic programming problem with the constant coefficient for

capital transition equation being b1Xd
i . If the number of firms in the data is N

d, then

for a single simulated likelihood evaluation, we need to solve the DP problem NdMα

times. This process is computationally demanding and most researchers use only a

finite number of types, typically less than 10, as an approximation of the observed

heterogeneity and the random effect. The only exceptions are economists who have

access to supercomputers or large PC clusters. Since in our Bayesian DP estimation

exercise, the computational burden of estimating the dynamic model is similar to that

of a static model, we can easily accomodate random effects estimation.

As we discussed earlier, in contrast to the solution/estimation algorithn of the

basic model, we solve the one step Bellman equation for each firm i separately. Let

θ−α be the parameter vector except for the random effects term αi. Then, for given

K, bE(s)
� VΓ(K, �, θ

(s)
−α, α

(s)
i ) is derived as follows.

bE(s)
� VΓ(K, �, θ

(s)
−α, α

(s)
i )

=

Ps−1
j=Max{s−1−N(s−1),1}

∙
1
M�

M�P
l=1

V
(j)
Γ (K, �

(j)
l , θ(j))

¸
Kh(θ

(s)
−α − θ

(j)
−α)Kh(α

(s)
i − α

(j)
i )Ps−1

j=Max{s−1−N(s−1),1}Kh(θ
(s)
−α − θ

(j)
−α)Kh(α

(s)
i − α

(j)
i )

.
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As pointed out by Heckman (1981) and others, the missing initial state vector

(that is, the initial status of the firm and initial capital) is likely to be correlated

with the unobserved heterogeneity αi, which would result in bias of the parameter

estimates. To deal with this problem, for each firm i, given parameters (θ−α, αi), we

simulate the model for 100 initial periods to derive the initial capital and the initial

status of the firm. Then, we proceed to construct the likelihood increment for firm i.

The remaining estimation steps are the same as described earlier.

We set N(s) to go up to 1000 iterations. The one-step Bellman equation for each

firm i is the part where we have an increase in computational burden. But it turns

out that the additional burden is far lighter than that of computing the DP problem

for each firm i Mα times to integrate out the random effects αi, as would be done in

the Simulated ML estimation strategy.

We set the sample size to be 100 firms for 100 periods, and the Bayesian DP

iteration was conducted 10, 000 times. Column 2 of Table 1 reports the posterior

mean and standard deviations from the 5, 001th iteration up to 10, 000th iteration.

We also report in column 3 the result of the simulation/estimation exercise of the

Bayesian MCMC algorithm where during each estimation iteration the DP problem

is solved in full. When we solve for the DP problem, we set M�, the number of

simulations for � to be 100, instead of 1, 000 as in the basic model. In column 4, we

show the parameter estimates of the Simulated Maximum Likelihood estimates, which

is based on the full solution of the model. To construct the simulated likelihood, for

each firm, we simulated αi one hundred times (i.e. Mα = 100). We solved the DP

problem using Monte-Carlo integration to integrate over the choice shock �. We set

the simulation size for � to be 10017. If we were to set the simulation size of � to be

17For the ML algorithm, we used the Newton-Raphson routine. Since we took numerical deriv-
atives, in addition to the likelihood evaluation under the original parameter θ, we calculated the
likelihood for the 9 parameter perturbations θ +∆θi, i = 1, ..., 9. We stopped running the program
when either the absolute values of all the gradiants were less than 0.01 or the step size became less
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1, 000 as in the basic experiment (results in Appendix 1), then the CPU time required

for a single likelihood calculation would take us about 23 minutes and 40 seconds.

Since we take numerical derivatives over 9 parameters to derive the gradient of the

likelihood, a single Newton iteration would take about 4 hours and 20minutes, which,

as we will see later, is about the same CPU time required for the entire Bayesian DP

algorithm.

As we can see both the posterior means of the Bayesian DP estimates and those of

the Full solution based Bayesian estimates are very close to the true values. Further-

more, the posterior means and the standard errors of the two estimators are very close

to each other as well. On the other hand, we see a fairly large bias in the parameter

estimates by Simulated ML. The entry cost parameter δ, the mean of profit coefficient

μα and its standard error σα and the standard error of the choice shock σ�2 are all

downwardly biased, and except for σα the magnitude of the bias is larger than the

standard error. The downward bias seems to be especially large for μα, which leads

us to conclude that the simulation size of Mα = 100 is not enough to integrate out

the unobserved heterogeneity sufficiently accurately. The CPU time required for the

Bayesian DP algorithm is about 4 hours, whereas for the Full solution based Bayesian

MCMC estimation we needed about 31 hours, and for the full solution based ML es-

timation, 21 hours. That is, the Bayesian DP is about 8 times as fast as the Full

solution based Bayesian MCMC algorithm and about 5 times as fast as the Simulated

ML algorithm.

Table 1: Panel 1 (Posterior Means (standard errors are in parenthesis))

than 1.0D − 5.
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Parameter Bayesian DP Full Solution Bayes Full Solution ML true value

δ 0.3954 (0.0161) 0.3981 (0.0182) 0.3795 (0.0171) 0.4

μα 0.1974 (0.0105) 0.1977 (0.0105) 0.1701 (0.0135) 0.2

σα 0.1010 (0.00743) 0.1008 (0.00729) 0.09326 (0.0140) 0.1

σ�1 0.3017 (0.00284) 0.3017 (0.00302) 0.3025 (0.00317) 0.3

σ�2 0.3002 (0.0109) 0.3022 (0.0149) 0.2805 (0.0176) 0.3

b1 0.09972 (0.00484) 0.1000 (0.00487) 0.1004 (0.00530) 0.1

b2 0.3970 (0.00960) 0.3971 (0.00978) 0.4003 (0.0101) 0.4

be 0.4982 (0.0128) 0.4965 (0.0137) 0.5054 (0.0145) 0.5

σu 0.4000 (0.00317) 0.4003 (0.00321) 0.3990 (0.00317) 0.4

sample size 100× 100 100× 100 100× 100

CPU time 4 hrs. 0 min. 30 hrs. 59 min. 20 hrs. 47 min.

We also tried to reduce the computational time for the full solution based ML

algorithm by reducing the number of draws for αi from 100 to 20. Then, the CPU

time reduces to 8 hours and 43 minutes, which is about twice as much time required

for the Bayesian DP algorithm. However, the average of the 10 ML estimates of μα

is 0.145, which is even smaller than 0.170 , which is the downward biased result for

the estimation with 100 αi draws. The true value is 0.2. The sample standard error

of σα of the ML estimates are much larger than the Bayesian ones as well. Results

are reported in the following table:

Table 1: Panel 2 (Full Solution ML)
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parameter 20 αi draws 20 � draws true value

δ 0.3795(0.0173) 0.3895(0.0192) 0.4

μα 0.1450(0.0123) 0.1764(0.0157) 0.2

σα 0.1076(0.0203) 0.09527(0.0126) 0.1

σ�1 0.3030(0.00315) 0.3028(0.00315) 0.3

σ�2 0.2790(0.0177) 0.2810(0.0181) 0.3

b1 0.1003(0.00526) 0.09977(0.00524) 0.1

b2 0.3999(0.0100) 0.4000(0.00996) 0.4

be 0.5030(0.0146) 0.5048(0.0145) 0.5

σu 0.3988(0.00318) 0.3988(0.00317) 0.4

CPU time 8 hrs. 43 min. 18 hrs. 15 min.

If we were to try to reduce the bias by increasing the simulation size of unobserved

heterogeneity from Mα = 100 to, say Mα = 1, 000, then the CPU time would be at

least 200 hours, which would be more than a week of computation. We also report the

ML estimation results where the simulation size for � draws is reduced from 100 to 20

while keeping α draws to be 100. The parameter estimates and their standard errors

are very similar to that of the 100 � draws. Notice that the sample average of the

parameter estimates of δ over 10 simulation/estimation exercises is 0.3895, which is

closer to the truth than that of 100 � draws: 0.3795. However, the total CPU time of

the ML estimation with 20 � draws is 18 hours and 15 minutes, hardly different from

20 hours and 47 minutes of the 100 � draws. That is, even though the reduction in

the number of � simulations does not result in any noticeable decline in the accuracy

of the posterior, the gain in CPU time is also small.

Another estimation strategy for the simulated ML could be to expand the state
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variables of the DP problem to include both X and α. Then, we have to assign

grid points for the three-dimensional state space points (K,X,α). If we assign 100

grid points per dimension, then we end up having 10, 000 times more grid points than

before. Hence, the overall computational burden would be quite similar to the orginal

simulated ML estimation strategy.

5.2 Experiment 2: Continuous State Space with Determin-

istic Transition

The framework is similar to the basic model except for the capital transition of the

incumbent, which now is deterministic. Assume that if the incumbent decides to stay

in, the next period capital is, Kt+1 = Kt. If the firm decides to either exit or stay

out, then the next period capital is 0, and if it enters, then the next period capital

is, ln (Kt+1) = b1+ut+1, where, ut+1 ∼ N (0, σu) . Since the state space is continuous,

we use K(t)
1 , ...,K

(t)
MK

as grid points. We set MK = 10 but let the grid points grow

over iterations to 20, 000.

The expected value function for the entrant is given by equation 8 (except that

V (t−n)(s(t−n), �(t−n), θ(t−n)) is replaced with 1
M�

M�P
j=1

V
(t−n)
I (K

(t−n)
m , �

(t−n)
j , θ(t−n))) to in-

crease accuracy per iteration) since unlike the incumbent who stays in, the entrant

faces uncertain future capital. The formula for the expected value function for ei-

ther the firm who stays out or the firm who exits is given by equation 6 (again,

V (t−n)(s(t−n), �(t−n), θ(t−n)) is replaced with 1
M�

M�P
j=1

V
(t−n)
O (0, �

(t−n)
j , θ(t−n))) since the

capital stock is zero. The formula for the expected value function for the incum-
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bent who stays in is as follows.

∧
E [VI(K, �0, θ)] ≡

N(t)X
n=1

MKX
m=1

"
1

M�

M�X
j=1

V
(t−n)
I (K(t−n)

m , �
(t−n)
j , θ(t−n))

#
KhK

³
K −K

(t−n)
m

´
Khθ(θ − θ(t−n))PN(t)

k=1

MKP
m=1

KhK

³
K −K

(t−k)
m

´
Khθ(θ − θ(t−k))

,

where KhK is the kernel for the capital stock with bandwidth hK .

Table 2 shows the estimation results. We can see that the parameter estimates

are close to the true values. The entire exercise took about 47 minutes.

Table 2: Posterior Means (Standard deviations are in parenthesis)

parameter estimate true value

δ 0.1891 (0.0123) 0.2

α 0.1044 (0.00478) 0.1

σ�1 0.3956 (0.00511) 0.4

σ�2 0.3993 (0.0135) 0.4

b1 0.1996 (0.00474) 0.2

σu 0.2017 (0.00301) 0.2

sample size 10, 000

CPU time 47 min 30 sec

6 Conclusion

In conventional estimation methods of Dynamic Discrete Choice models, such as

GMM, Maximum Likelihood or Markov Chain Monte Carlo, at each iteration step,
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given a new set of parameter values, the researcher first solves the Bellman equation

to derive the expected value function, and then uses it to construct the likelihood

or moments. That is, during the DP iteration, the researcher fixes the parameter

values and does not “estimate”. We propose a Bayesian estimation algorithm where

the DP problem is solved and parameters estimated at the same time. In other

words, we move parameters during the DP solution. This dramatically increases the

speed of estimation. We have demonstrated the effectiveness of our approach by

estimating a simple dynamic model of discrete entry-exit choice. Even though we

are estimating a dynamic model, the required computational time is in line with the

time required for Bayesian estimation of static models. The reason for the speed

is clear. The computational burden of estimating dynamic models has been high

because the researcher has to repeatedly evaluate the Bellman equation during a single

estimation routine, keeping the parameter values fixed. We move parameters, i.e.

‘estimate’ the model after each Bellman equation evaluation. Since a single Bellman

equation evaluation is computationally no different from computing a static model,

the speed of our estimation exercise, too, is quite similar to that of a static model.

The additional computational cost of our algorithm is the cost of using information

obtained in past iterations. The more complex the model becomes, it becomes smaller

relative to the cost of computing the full solution, which is what we have seen in the

simulation/estimation examples.

Another computational obstacle in the estimation of a Dynamic Discrete Choice

model is the Curse of Dimensionality. That is, the computational burden increases

exponentially with an increase in the dimension of the state space. In our algorithm,

even though at each iteration, the number of state space points on which we calculate

the expected value function is small, the total number of ‘effective’ state space points

over the entire solution/estimation iteration grows with the number of Bayesian DP
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iterations. This number can be made arbitrarily large without much additional com-

putational cost. And it is the total number of ‘effective’ state space points that

determines accuracy. Hence, our algorithm may help reducing the computational

burden when the dimension of the state space is high. This also explains why our

nonparametric approximation of the expected value function works well under the

assumption of continuous state space with deterministic transition function of the

state variable. In this case, as is discussed in the main body of the paper, the Rust

random grid method may face computational difficulties.

It is worth mentioning that since we are locally approximating the expected value

function nonparametrically, as we increase the number of parameters, we may face

the “Curse of Dimensionality” in terms of the number of parameters to be estimated.

So far, in our examples, this issue does not seem to have made a difference. The

reason is that most dynamic models specify per period return function and transition

functions to be smooth and well-behaved. Hence, we know in advance that the value

functions we need to approximate are smooth, hence well suited for nonparametric

approximation. Furthermore, the simulation exercises in the above examples show

that with a reasonably large sample size, the MCMC simulations are tightly centered

around the posterior mean. Hence, the actual multidimensional area where we need to

apply nonparametric approximation is small. But in empirical exercises that involve

many more parameters, one probably needs to adopt an iterative MCMC strategy

where only up to 4 or 5 parameters are moved at once, which is also commonly done

in conventional ML estimation.
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Experiment A1: Basic Model
All the priors are set to be uninformative. We set the initial guesses of the pa-

rameters to be the true parameter values given by θ0, and the initial guess of the

expected value function to be 0. We used the same 200 grid points in each iteration

as used in generating the data. We let N (s) increase up to 2000. L, the number of

nearest parameter values is set to be 1000. The pseudo-MCMC sampler was generated

10, 000 times. The posterior mean and standard errors from the (5, 001)th iteration

up to (10, 000)th iteration are shown in Panel 1 of Table A1. In Panel 2 we present

the estimation result of the conventional Bayesian MCMC estimation, where during

each estimation step the Dynamic Programming model is solved in full. The posterior

means and posterior standard deviations presented are the sample average of 10 sim-

ulation/estimation exercises, where for each exercise a different seed was chosen. We

also report the sample standard errors of the posterior means and posterior standard

deviations of the 10 simulation/estimation exercises. As we can see, the sample aver-

ages of both the Bayesian DP posterior means and those of the Bayesian estimation

with full solution are very close to the true parameter values. Furthermore, as we

can see from the sample averages and the sample standard errors of the 10 simula-

tion/estimation exercises, both the posterior means and the standard errors of the

Bayesian DP estimation are very close to those of the conventional Bayesian MCMC

estimates. The sample average of the posterior mean of the entry cost parameter

estimate (0.3874) by the Bayesian DP algorithm for the sample size of 2000 seems

to be relatively farther away from the true value (0.4), compared to the full solution

based Bayesian estimate. This could reflect the approximation error of the expected

value function in the Bayesian DP algorithm. That is, with smaller sample size and

larger variance of the parameters, more past iterations may be required to accurately

approximate the expected value functions. Notice also that for the Bayesian DP es-
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timation, as the sample size decreases from 10, 000 to 2, 000, the CPU time decreases

from 18 minutes 21. seconds to 4 minutes 55 seconds, a 3.5 to 1 decrease. On the

other hand, for the full solution based Bayesian estimation the CPU time decreases

from 29 minutes 44 seconds to 15 minutes 44 seconds, only a 50% decrease. That is,

as the sample size decreases, relatively more CPU time is spent on the solution of the

model than on computing the likelihood. Hence, the computational advantage of the

Bayesian DP algorithm becomes more apparent.

In Panel 3 we also report the simulation/estimation exercises of the full solution

based ML estimation18. The standard errors are based on the inversion of the infor-

mation matrix. To compute the Information matrix, we adopt the BHHH algorithm,

i,e. we approximate it by the inner product of the gradient vector of the likelihood

increments. The parameter estimates are again very close to the true values and close

to those of the Bayesian posterior means. However, the standard errors, are quite

different from the standard deviations of the Bayesian estimates. For example, the

standard error for the ML estimate for the entry cost is 0.0185 if the sample size is

10, 000, 0.0255 and 0.0417 if the sample size is 5, 000, and 2, 000, respectively. On the

other hand, the corresponding standard deviations of the Bayesian DP estimates for

the entry cost are 0.0136, 0.0195, and 0.0295, for sample sizes of 10, 000, 5, 000 and

2, 000, respectively, which are close to those of the full solution based Bayesian esti-

mates. This reflects the inaccuracies of the computation of the Information matrix,

which is based on a numerical first derivative of the likelihood increments. The CPU

time required for the ML estimation is much smaller than the Bayesian estimates.

For example, the CPU time for the ML estimation with sample size of 10, 000 is 17

seconds, whereas the Bayesian DP estimation requires about 18 minutes. That is, for

the estimation of a simple dynamic structural model, the standard ML estimation

18The initial parameter values were set to be the true values.
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is computationally superior to the Bayesian estimation. However, the computational

time could become comparable if the standard errors were to be derived by bootstrap

to improve on the accuracy of the standard error.

To check robustness of the Bayesian DP algorithm, we also ran a simulation/estimation

exercise where the starting parameter value was set to be half of the true values. As

we can see from the results reported in Panel 4, the posterior means and the standard

deviations are almost the same as those of Panel 1 where the initial parameter values

were set to be the true ones. These results confirm the theorems on convergence in

Section 1 stating that the estimation algorithm is not sensitive to the initial values.

Table A1: Posterior Means and Standard Errors (standard errors are in

parenthesis)
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Panel 1. Bayesian dynamic programming estimation.

Sample mean of posterior means and std. deviations of

10 simulation/estimation exercises

Parameter estimate estimate estimate true

δ 0.3874 (0.0295) 0.3958 (0.0195) 0.3983 (0.0136) 0.4

α 0.09828 (0.00629) 0.09936 (0.00404) 0.09938 (0.00291) 0.1

σ�1 0.2989 (0.00734) 0.3018 (0.00482) 0.3012 (0.00354) 0.3

σ�2 0.2963 (0.0224) 0.2933 (0.0160) 0.2950 (0.0120) 0.3

b1 0.000925 (0.0117) −0.000318 (0.00751) −0.00179 (0.00537) 0.0

b2 0.4027 (0.0223) 0.4037 (0.0151) 0.4039 (0.0106) 0.4

be 0.5019 (0.0246) 0.5121 (0.0156) 0.5073 (0.0111) 0.5

σu 0.3939 (0.00715) 0.3971 (0.00466) 0.3986 (0.00327) 0.4

sample 2, 000 5, 000 10, 000

CPU time 4 min. 55 sec. 9 min.47 sec. 18 min. 21 sec.

sample std. errors of posterior means and posterior std. dev. of 10 sim./est. exercises

δ 0.0274 (0.00480) 0.0226 (0.00259) 0.0162 (0.00124)

α 0.00505 (0.000404) 0.00422 (0.000250) 0.00245 (0.000174)

σ�1 0.00998 (0.000933) 0.00557 (0.000465) 0.00490 (0.000276)

σ�2 0.0353 (0.0104) 0.0257 (0.00544) 0.0200 (0.00324)

b1 0.0134 (0.000613) 0.00919 (0.000347) 0.00562 (0.000229)

b2 0.0255 (0.00175) 0.0123 (0.00100) 0.00554 (0.000928)

be 0.0146 (0.00446) 0.0165 (0.00137) 0.0123 (0.000457)

σu 0.00878 (0.000599) 0.00496 (0.000298) 0.00378 (8.7E − 5)51



Panel 2. Bayesian estimation based on the full solution of the model.

sample mean of posterior means and std. dev. of 10 simulation/estimation exercises

parameter estimate estimate estimate true

δ 0.4020 (0.0278) 0.3992 (0.0184) 0.4025 (0.0135) 0.4

α 0.09939 (0.00571) 0.09951 (0.00378) 0.09967 (0.00270) 0.1

σ�1 0.2981 (0.00731) 0.3015 (0.00492) 0.3013 (0.00341) 0.3

σ�2 0.3069 (0.0239) 0.2968 (0.0177) 0.2973 (0.0133) 0.3

b1 0.000538 (0.0118) −0.000585 (0.00780) −0.00214 (0.00544) 0.0

b2 0.4040 (0.0234) 0.4040 (0.0151) 0.4047 (0.0105) 0.4

be 0.5006 (0.0241) 0.5121 (0.0157) 0.5075 (0.0109) 0.5

σu 0.3931 (0.00736) 0.3969 (0.00458) 0.3985 (0.00333) 0.4

sample size 2, 000 5, 000 10, 000

CPU time 15 min. 44 sec. 21 min.31 sec. 29 min. 44 sec.

sample std. errors of posterior means and posterior std. dev. of 10 sim./est. exercises

δ 0.0280 (0.00604) 0.0247 (0.00276) 0.0132 (0.00230)

α 0.00457 (0.000516) 0.00453 (0.000299) 0.00199 (0.000228)

σ�1 0.00969 (0.000722) 0.00460 (0.000349) 0.00494 (0.000371)

σ�2 0.0325 (0.0113) 0.0306 (0.00655) 0.0176 (0.00459)

b1 0.0124 (0.000709) 0.00914 (0.000597) 0.00563 (0.000211)

b2 0.0287 (0.00247) 0.0140 (0.00108) 0.00616 (0.00109)

be 0.0154 (0.00203) 0.0177 (0.00106) 0.0126 (0.000473)

σu 0.00863 (0.000630) 0.00537 (0.000411) 0.00399 (0.000233)
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Panel 3. ML estimation based on the full solution of the model.

sample mean of posterior means and std. dev. of 10 simulation/estimation exercises

parameter estimate estimate estimate true

δ 0.3872 (0.0417) 0.3967 (0.0255) 0.4002 (0.0185) 0.4

α 0.09801 (0.00690) 0.09944 (0.00438) 0.09978 (0.00314) 0.1

σ�1 0.2993 (0.00912) 0.3016 (0.00561) 0.3014 (0.00399) 0.3

σ�2 0.2882 (0.0448) 0.2929 (0.0264) 0.2929 (0.0185) 0.3

b1 0.00108 (0.00889) 0.0001493 (0.00613) −0.001721 (0.00383) 0.0

b2 0.4039 (0.0242) 0.4039 (0.0152) 0.4044 (0.0107) 0.4

be 0.5006 (0.0246) 0.5119 (0.0159) 0.5076 (0.0113) 0.5

σu 0.3929 (0.00736) 0.3968 (0.00469) 0.3983 (0.00332) 0.4

sample size 2, 000 5, 000 10, 000

CPU time 4 sec. 6 sec. 17 sec.

sample std. errors of posterior means and posterior std. dev. of 10 sim./est. exercises

δ 0.0220 (0.00840) 0.0159 (0.00291) 0.0135 (0.00207)

α 0.00522 (0.000301) 0.00392 (0.000118) 0.00201 (0.0000653)

σ�1 0.00814 (0.000535) 0.00482 (0.000221) 0.00465 (0.0000962)

σ�2 0.0309 (0.00829) 0.0206 (0.00294) 0.0147 (0.00196)

b1 0.0125 (0.00341) 0.00868 (0.00115) 0.00532 (0.00145)

b2 0.0264 (0.000695) 0.0132 (0.000347) 0.00562 (0.000231)

be 0.0119 (0.00116) 0.0166 (0.000401) 0.0120 (0.000286)

σu 0.00909 (0.000224) 0.00538 (0.000125) 0.00387 (0.0000639)
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Panel 4: Bayesian DP with starting value: 0.5θ∗

sample mean of posterior means and std. errors

parameter estimate true

δ 0.3972 (0.0132) 0.4

α 0.09949 (0.00286) 0.1

σ�1 0.3011 (0.00348) 0.3

σ�2 0.2949 (0.0118) 0.3

b1 −0.00168 (0.00537) 0.0

b2 0.4039 (0.0105) 0.4

be 0.5077 (0.0114) 0.5

σu 0.3986 (0.00325) 0.4

sample size 10, 000

CPU time 18 min. 20sec.

sample std. errors of posterior means and posterior std. errors

δ 0.0165 (0.00139)

α 0.00239 (0.000152)

σ�1 0.00524 (0.000288)

σ�2 0.0206 (0.00306)

b1 0.00573 (0.000231)

b2 0.00522 (0.000888)

be 0.0126 (0.000157)

σu 0.00380
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Experiment A2: Estimation of Discount Factor
Here, we present the results of the Bayesian DP estimation where we also estimate

the discount factor. Notice that in dynamic discrete choice models the discount factor

is nonparametrically unidentified (see Rust (1994) and Magnac and Thesmar (2002)).

Furthermore, even if we were to estimate the discount factor, relying on the functional

form identification, the necessary condition for convergence is that β < 1, which we

have to impose. The likelihood that we estimated is the same as that of the basic

model and the random effects model estimated in the paper, except we imposed the

following prior on the discount factor:

π (β) ˜ N
¡
β, σβ

¢
if β ≤ β

0 otherwise

where σβ = 0.2, β = 0.995. Below, we present the posterior distribution derived using

the Bayesian DP algorithm. The estimation algorithm is the same as the one used

in the paper. The sample size is 100 firms for 100 periods. The posterior standard

deviations are in parenthesis. Both the posterior means and standard errors are the

averages of the 10 simulation/estimation exercises. As we can see, the posterior means

and standard errors are very close to the true values.

Table A2: Posterior Means

(Standard Errors are in Parentheses)
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Parameter Basic true Parameter Random true

Estimate Model value Estimate Effects value

δ 0.3938 (0.0130) 0.4 δ 0.3960(0.0177) 0.4

α 0.09889 (0.00287) 0.1 μα 0.1976(0.0105) 0.2

σα 0.1009(0.00739) 0.1

σ�1 0.3023 (0.00348) 0.3 σ�1 0.3015(0.00285) 0.3

σ�2 0.2877 (0.0112) 0.3 σ�2 0.3024(0.0125) 0.3

b1 −0.001686 (0.00554) 0.0 b1 0.0998(0.00483) 0.1

b2 0.4038 (0.0108) 0.4 b2 0.3968(0.00963) 0.4

be 0.5069 (0.0112) 0.5 be 0.4982(0.0127) 0.5

σu 0.3984 (0.00331) 0.4 σu 0.4004(0.00314) 0.4

β 0.9727 (0.0104) 0.98 β 0.9761(0.0103) 0.98

CPU time 18 min. 12 sec. CPU time 4 hrs. 00 min.

Experiment A3: Sample Standard Errors for Random Ef-
fects Model
Below, we present the sample standard errors of 10 simulation/estimation exercises

calculating the posterior means and standard errors of the parameters. The sample

standard errors of the Bayesian DP algorithm and the Full Solution based Bayesian

algorithm are very similar, except for the posterior mean of μα whose sample standard

error is 0.0118 for Bayesian DP and 0.00560 for the full solution based bayesian

algorithm. On the other hand, full solution based ML algorithm results in estimates

whose sample standard errors are quite different from those of the full solution based

Bayesian algorithm. Both the sample standard errors of the posterior mean and
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standard deviation of μα, and the posterior mean of σα are about twice as much as

those of the full solution based Bayesian estimation. For many other parameters the

posterior standard deviations of the ML estimates also have very different sample

standard deviations than those of the full solution based Bayesian estimates. Similar

discrepancies can also be found for the sample standard errors of the full solution

based ML estimates where the random draws of αi’s were reduced to 20, or the

random draws of � are reduced to 20. These results again indicate the inaccuracies

of the ML estimates.

Table A3: Sample std. errors of 10

simulation/estimation exercises for Panel 1, Table 1

Bayesian DP Full Solution Bayes Full Solution ML

δ 0.0151 (0.00196) 0.0148 (0.00246) 0.0140 (0.00185)

μα 0.0118 (0.000491) 0.00560 (0.000565) 0.00969 (0.000963)

σα 0.00536 (0.000395) 0.00536 (0.000376) 0.00935 (0.00257)

σ�1 0.00258 (0.000187) 0.00249 (0.000184) 0.00225 (0.000289)

σ�2 0.0103 (0.00252) 0.0127 (0.00322) 0.0116 (0.00160)

b1 0.00483 (0.000340) 0.00444 (0.000348) 0.00439 (0.000662)

b2 0.00597 (0.000509) 0.00590 (0.000650) 0.00583 (0.000806)

be 0.0133 (0.00164) 0.0135 (0.00101) 0.0133 (0.00159)

σu 0.00373 (0.000110) 0.00376 (0.000181) 0.00407 (0.000277)

Sample std. errors of 10

simulation/estimation exercises for Panel 2 Table 1
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Parameter 20 α draws 20 � draws

δ 0.0138 (0.00272) 0.0140 (0.00265)

μα 0.0273 (0.00177) 0.0106 (0.00143)

σα 0.0316 (0.00783) 0.0110 (0.00146)

σ�1 0.00234 (0.000311) 0.00235 (0.000303)

σ�2 0.0136 (0.00220) 0.0123 (0.00185)

b1 0.00488 (0.000590) 0.00485 (0.000574)

b2 0.00595 (0.000977) 0.00594 (0.000925)

be 0.0138 (0.00152) 0.0143 (0.00159)

σu 0.00392 (0.000280) 0.00391 (0.000276)

Appendix 2
Proof of Lemma 1: By Assumption 1 (Compactness of parameter space),

for any θ∗ ∈ Θ, h (θ∗) ≡ infθ∈Θ q (θ, θ∗) exists, is strictly positive and uniformly

bounded below. Notice that h(.) is Lebesgue integrable. Furthermore, for any

θ ∈ Θ, ε0g (θ
∗) = h (θ∗) ≤ q (θ, θ∗) . Next, since q satisfies Assumption 1, g(.) is

strictly positive, bounded and
R
g (θ) dθ = 1. Hence, g(.) as a function is a density

function. Also, by construction, ε0 is a strictly positive constant. Finally, since both

g(.) and q (θ, .) are densities and integrate to 1, 0 < ε0 ≤ 1.
Proof of Lemma 2: Using similar logic as in Lemma 1, one can show that for

any θ∗ ∈ Θ, supθ∈Θ q (θ, θ
∗) exists and is bounded. Then, eg (θ) and ε1 satisfy the

conditions of the Lemma.

Proof of Theorem 1

For notational convenience, in the subsequent proofs we omit Ω. We need to show
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that for any s ∈ S, �, θ ∈ Θ,

V (t) (s, �, θ)
p→ V (s, �, θ) uniformly, as t→∞

But since,

V (t)(s, �, θ) = max
a∈A

V(t)(s, a, �, θ), V (s, �, θ) = max
a∈A

V(s, a, �, θ),

it suffices to show that for any s ∈ S, a ∈ A, �, θ ∈ Θ,

V(t) (s, a, �, θ) p→ V (s, a, �, θ) as t→∞.

Define

WN(t),h(θ, θ
(t−n)) ≡ Kh(θ − θ(t−n))PN(t)

k=1 Kh(θ − θ(t−k))
.

Then, the difference between the true value function of action a and that obtained

by the Bayesian Dynamic Programming iteration can be decomposed into 3 parts as

follows.

V (s, a, �, θ)− V(t) (s, a, �, θ)

= β

⎡⎣Z V (s0, �0, θ)dF�0(�
0, θ)−

N(t)X
n=1

V (t−n)(s0, �(t−n), θ∗(t−n))WN(t),h(θ, θ
∗(t−n))

⎤⎦
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= β

⎡⎣Z V (s0, �0, θ)dF�0(�
0, θ)−

N(t)X
n=1

V (s0, �(t−n), θ∗(t−n))WN(t),h(θ, θ
∗(t−n))

⎤⎦

+β

⎡⎣N(t)X
n=1

h
V (s0, �(t−n), θ∗(t−n))− V (t−n)(s0, �(t−n), θ∗(t−n))

i
WN(t),h(θ, θ

∗(t−n))

⎤⎦

≡ A
(t)
1 (θ) +A

(t)
2 (θ)

The kernel smoothing part is difficult to handle because the underlying distri-

bution of θ∗(s) has a density function conditional on θ(s−1). Therefore, instead of

deriving the asymptotic value of 1
N(t)

PN(t)
k=1 Kh(θ − θ∗(t−k)), as is done in standard

nonparametric kernel asymptotics, we sometimes derive and use its asymptotic lower

bound and upper bound. Lemma 1 in the main text is used for the derivation of the

asymptotic lower bound. Lemma 2 is used for the derivation of the asymptotic upper

bound. Using the results of Lemma 1 and 2, in Lemma 3 we prove that A(t)1 (θ)→ 0

uniformly in θ ∈ Θ.

Lemma 3:
¯̄̄
A
(t)
1 (θ)

¯̄̄
P→ 0 uniformly in Θ as t→∞. Furthermore,

Pr

∙
sup
θ∈Θ

¯̄̄
A
(t)
1 (θ)

¯̄̄
< C1h

(3/2)J

¸
> 1− C2p

N (t)h5J

where C1, C2 are positive constants.

Proof: Recall that,

¯̄̄̄
¯A(t)1 (θ)β

¯̄̄̄
¯ =

¯̄̄̄
¯̄Z V (s0, �0, θ)dF�0(�

0, θ)−
N(t)X
n=1

V (s0, �(t−n), θ∗(t−n))WN(t),h(θ, θ
∗(t−n))

¯̄̄̄
¯̄ .
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Rewrite it as,

¯̄̄̄
¯A(t)1 (θ)β

¯̄̄̄
¯ =

¯̄̄̄
¯̄ 1
N(t)

PN(t)
n=1

³R
V (s0, �0, θ)dF�0(�

0, θ)− V (s0, �(t−n), θ∗(t−n))
´
Kh(θ − θ∗(t−n))

1
N(t)

PN(t)
k=1 Kh(θ − θ∗(t−k))

¯̄̄̄
¯̄ .

We show that the numerator goes to zero in probabilty uniformly in Θ and the

denominator is bounded below by a positive number uniformly in Θ with probability

arbitrarily close to one as t→∞.
Let

XN(t),t−n (θ) ≡
∙Z

V (s0, �0, θ)dF�0(�
0, θ)− V (s0, �(t−n), θ∗(t−n))

¸
Kh(θ − θ∗(t−n))

XN(t) (θ) ≡ 1

N(t)

N(t)X
n=1

XN(t),t−n (θ)

First, we show that

E
£
XN(t) (θ)

¤→ 0

uniformly in Θ. Because
¯̄̄R

V (s0, �0, θ∗(t−n))dF�0(�
0, θ∗(t−n))

¯̄̄
is uniformly bounded, by

Bounded Convergence Theorem and by change of variable, we get

E

∙Z
V (s0, �0, θ∗(t−n))dF�0(�

0, θ∗(t−n))Kh(θ − θ∗(t−n))|θ(t−n)
¸

=

Z ∙Z
V (s0, �0, θ − hz)dF�0(�

0, θ − hz)

¸
K(z)q

³
θ(t−n), θ − hz

´
dz.
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where

∙Z
V (s0, �0, θ − hz)dF�0(�

0, θ − hz)

¸
K(z)q

³
θ(t−n), θ − hz

´
→

∙Z
V (s0, �0, θ)dF�0(�

0, θ)
¸
K(z)q

³
θ(t−n), θ

´
as h→ 0

Because
¯̄R

V (s0, �0, θ − hz)dF�0q
¯̄
is uniformly bounded, by Bounded Convergence

Theorem, we obtain

E

∙Z
V (s0, �0, θ∗(t−n))dF�0(�

0, θ∗(t−n))Kh(θ − θ∗(t−n))|θ(t−n)
¸

→
Z

V (s0, �0, θ)dF�0(�
0, θ)q

³
θ(t−n), θ

´
as h→ 0

It is also straightforward to show that

E

∙∙Z
V (s0, �0, θ)dF�0(�

0, θ)
¸
Kh(θ − θ∗(t−n))|θ(t−n)

¸
=

∙Z
V (s0, �0, θ)dF�0(�

0, θ)
¸
E
h
Kh(θ − θ∗(t−n))|θ(t−n)

i
→

Z
V (s0, �0, θ)dF�0(�

0, θ)q
³
θ(t−n), θ

´
as h→ 0

Together, we have shown that

E
h
XN(t),t−n(θ)|θ(t−n)

i
→ 0 as h→ 0

Because
¯̄̄
E
h
XN(t),t−n(θ)|θ(t−n)

i¯̄̄
is uniformly bounded. from Bounded Convergence
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Theorem,

E
£
XN(t)(θ)

¤
= E

⎡⎣ 1

N(t)

N(t)X
n=1

E
h
XN(t),t−n(θ)|θ(t−n)

i⎤⎦→ 0 (A2)

We can also show that the above convergence is uniform. For some M > 0

sup
θ∈Θ

¯̄
E
£
XN(t),t−n(θ)

¤¯̄
≤ sup

θ∈Θ

¯̄̄̄
E

∙∙Z
V (s0, �0, θ)dF�0(�

0, θ)−
Z

V (s0, �0, θ∗(t−n))dF�0(�
0, θ∗(t−n))

¸
Kh(θ − θ∗(t−n))I

³¯̄̄
θ − θ∗(t−n)

¯̄̄
≤
√
h
´i¯̄̄

+sup
θ∈Θ

¯̄̄̄
E

∙∙Z
V (s0, �0, θ)dF�0(�

0, θ)−
Z

V (s0, �0, θ∗(t−n))dF�0(�
0, θ∗(t−n))

¸
Kh(θ − θ∗(t−n))I

³¯̄̄
θ − θ∗(t−n)

¯̄̄
>
√
h
´i¯̄̄

(A3)

Notice that from Lemma 2, where q (θ, θ0) ≤ ε1g (θ
0) for any θ, θ0 ∈ Θ. Furthermore,

because both V (s0, �0, θ) and dF�0(�
0, θ) are assumed to satisfy the Lipschitz conditions,

there exists a constant B such that

RHS of A3 ≤ E

"
sup

θ,θ0∈Θ,|θ−θ0|≤√h
B |θ − θ∗|Kh (θ − θ∗)

#

+2 sup
θ

¯̄̄̄Z
V (s0, �0, θ)dF�0(�

0, θ)
¯̄̄̄
ε1

Z
|z|>1/√h

K(z)eg (θ − hz) dz

≤ ε1 sup
θ,θ0∈Θ,|θ−θ0|≤√h

¯̄̄̄Z
B |θ − θ∗|Kh (θ − θ∗) deg (θ∗)¯̄̄̄

+2 sup
θ

¯̄̄̄Z
V (s0, �0, θ)dF�0(�

0, θ)
¯̄̄̄
ε1

Z
|z|>1/√h

K(z)eg (θ − hz) dz
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From Assumption 8, there exists a constant A > 0 such that

Z
|z|>1/√h

K(z)dz ≤ 2Ah2J

Therefore,

RHS of A3

≤ ε1 sup |K| sup |eg|Z
|z|≤√h

Bh |z| dz + 2 sup
θ

¯̄̄̄Z
V (s0, �0, θ)dF�0(�

0, θ)
¯̄̄̄
sup
θ
eg (θ) ε1Ah2J

≤ ε1 sup |K| sup |eg|Bh2J + 2 sup
θ

¯̄̄̄Z
V (s0, �0, θ)dF�0(�

0, θ)
¯̄̄̄
sup
θ
eg (θ) ε1Ah2J

= B1h
2J (A4)

for some positive constant B1. Therefore, we have shown that the convergence in A2

is uniform in Θ.

Next, we show that XN(t) (θ) converges to zero uniformly in Θ. Here we follow

Section 10.3 of Bierens (1994) closely. Denote

RN(t) (θ) ≡ 1

N (t)

N(t)X
n=1

V
³
s0, �(t−n), θ∗(t−n)

´
Kh(θ − θ∗(t−n))

By using the Fourier transform, we can express the kernel as follows.

K (x) =

µ
1

2π

¶J Z
exp (−iz0x)ψ (z) dz

where

ψ (z) =

Z
exp (iz0x)K (x) dx.
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Because of Assumption 6, Z
|ψ (z)| dz <∞.

Then, by Fourier inversion

RN(t) (θ)

=

∙
1

2π

¸J
1

N (t)hJ

N(t)X
n=1

V
³
s0, �(t−n), θ∗(t−n)

´Z
exp

⎛⎝−iz0
³
θ − θ∗(t−n)

´
h

⎞⎠ψ (z) dz

=

∙
1

2π

¸J
1

N (t)

Z ⎡⎣N(t)X
n=1

V
³
s0, �(t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´⎤⎦ exp (−iz0θ)ψ (hz) dz.
(A5)

Hence,

E

∙
sup
θ∈Θ

¯̄
RN(t) (θ)−E

£
RN(t) (θ)

¤¯̄¸

≤
∙
1

2π

¸J Z
E

¯̄̄̄
¯̄ 1

N (t)

N(t)X
n=1

n
V
³
s0, �(t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´

−E
h
V
³
s0, �(t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´io ¯̄̄̄¯ |ψ (hz)| dz (A6)

Using the Liapunov’s Inequality, and

exp (ia) = cos (a) + i sin (a) ,
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we get

E

¯̄̄̄
¯̄ 1

N (t)

N(t)X
n=1

n
V
³
s0, �(t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´

−E
h
V
³
s0, �(t−n), θ∗(t−n)

´
exp

³
iz0θ∗(t−n)

´io ¯̄̄̄¯
≤

⎧⎨⎩V ar

⎡⎣ 1

N (t)

N(t)X
n=1

V
³
s0, �(t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´⎤⎦
+V ar

⎡⎣ 1

N (t)

N(t)X
n=1

V
³
s0, �(t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´⎤⎦⎫⎬⎭
1/2

Now, because �(t−n), �(t−m) n 6= m are i.i.d,

Cov
h
V
³
s0, �(t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´
, V
³
s0, �(t−m), θ∗(t−m)

´
cos
³
z0θ∗(t−m)

´i
= 0.

Hence,

V ar

⎡⎣ 1

N (t)

N(t)X
n=1

V
³
s0, �(t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´⎤⎦
=

1

N (t)2

N(t)X
n=1

N(t)X
m=1

Cov
h
V
³
s0, �(t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´
, V
³
s0, �(t−m), θ∗(t−m)

´
cos
³
z0θ∗(t−m)

´i
=

1

N (t)2

N(t)X
n=1

V ar
h
V
³
s0, �(t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´i

66



Similarly,

V ar

⎡⎣ 1

N (t)

N(t)X
n=1

V
³
s0, �(t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´⎤⎦
=

1

N (t)2

N(t)X
n=1

V ar
h
V
³
s0, �(t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´i

Together, we derive that

E

∙
sup
θ∈Θ

¯̄
RN(t) (θ)−E

£
RN(t) (θ)

¤¯̄¸

≤
∙
1

2π

¸J Z ⎧⎨⎩ 1

N (t)2

N(t)X
n=1

n
V ar

h
V
³
s0, �(t−n), θ∗(t−n)

´
cos
³
z0θ∗(t−n)

´i

+ V ar
h
V
³
s0, �(t−n), θ∗(t−n)

´
sin
³
z0θ∗(t−n)

´io)1/2
|ψ (hz)| dz

≤
∙
1

2π

¸J⎧⎨⎩ 1

N (t)2

N(t)X
n=1

sup
�,θ∈Θ

|V (s0, �, θ)|2
⎫⎬⎭
1/2 Z

|ψ (hz)| dz

=

∙
1

2π

¸J ½
1

N (t)h2J
sup
�,θ∈Θ

|V (s0, �, θ)|2
¾1/2 Z

|ψ (z)| dz (A7)

Therefore, from Chebychev Inequality, for α = 3/2

Pr

∙
sup
θ∈Θ

¯̄
RN(t) (θ)−E

£
RN(t) (θ)

¤¯̄
< hαJ

¸
> 1− B2p

N (t)h2J(1+α)
(A8)

where B2 =
£
1
2π

¤J
sup�,θ∈Θ |V (s0, �, θ)|

R |ψ (z)| dz.
We next consider the denominator. Let

R(t−n) ≡ ε0
g
³
θ∗(t−n)

´
q
³
θ(t−n), θ∗(t−n)

´ .
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Then, from Lemma 1, 0 ≤ R(t−n) ≤ 1 and 0 < ε0 ≤ 1. Also, define a random variable
Y (t−n) (θ) as follows.

Y (t−n) (θ) =

⎧⎪⎪⎨⎪⎪⎩
Kh

³
θ − θ∗(t−n)(q)

´
with probability R(t−n)

0 with probability 1−R(t−n)
.

We denote θ∗(t−n)(q) to mean that θ∗(t−n) is generated from a distribution function q.

Then, Y (t−n) is a mixture of 0 and Kh

³
θ − θ∗(t−n)(g)

´
, with the mixing probability

being 1− ε0 and ε0. That is,

Y (t−n) (θ) =

⎧⎪⎪⎨⎪⎪⎩
Kh

³
θ − θ∗(t−n)(g)

´
with probability ε0

0 with probability 1− ε0

or, equivalently,

Y (t−n) (θ) = Kh

³
θ − θ∗(t−n)(g)

´
I(t−n)

where

I(t−n) =

⎧⎪⎪⎨⎪⎪⎩
1 with probability ε0

0 with probability 1− ε0

From the construction of Y (t−n),

Y (t−n) (θ) ≤ Kh

³
θ − θ∗(t−n)(q)

´
.

Now, because θ∗(t−n)(g), n = 1, ..., N(t) are i.i.d.. Then, following Bierens (1994),

68



section 10.1, and 10.3, by using the Fourier transform of the kernel,

1

N(t)

N(t)X
n=1

Y (t−n) (θ)

=
1

N(t)

N(t)X
n=1

I(t−n)
µ
1

2πh

¶J Z
exp

⎛⎝−iz0
³
θ − θ∗(t−n) (g)

´
h

⎞⎠ψ (z) dz

=

µ
1

2π

¶J Z ⎡⎣ 1

N(t)

N(t)X
n=1

I(t−n) exp
³
iz0θ∗(t−n) (g)

´⎤⎦ exp (−iz0θ)ψ (hz) dz
Hence, following (10.3.5) and (10.3.6) of Bierens (1994), we get

E

⎡⎣sup
θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Y (t−n) (θ)−E

⎡⎣ 1

N(t)

N(t)X
n=1

Y (t−n) (θ)

⎤⎦¯̄̄̄¯̄
⎤⎦

≤
µ
1

2π

¶J Z
E

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

n
I(t−n) exp

³
iz0θ∗(t−n) (g)

´

−E
h
I(t−n) exp

³
iz0θ∗(t−n) (g)

´io ¯̄̄̄¯ |ψ (hz)| dz
≤

s
E [I2]

N (t)

µ
1

2π

¶J Z
|ψ (hz)| dz =

s
E [I2]

N (t)h2J

µ
1

2π

¶J Z
|ψ (z)| dz

Furthermore,

E

⎡⎣ 1

N(t)

N(t)X
n=1

Y (t−n) (θ)

⎤⎦ = ε0g (θ) .

From Chebychev Inequality, for any κ > 0,

Pr

⎡⎣sup
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Y (t−n) (θ)− ε0g(θ)

¯̄̄̄
¯̄ < κ

⎤⎦ > 1− B3

κ
p
N (t)hJ

. (A9)

where B3 =
¡
1
2π

¢J √
EI2

R |ψ (z)| dz. That is,
69



Pr

⎡⎣ inf
θ∈Θ

1

N(t)

N(t)X
n=1

Y (t−n) (θ) + κ > ε0 inf
θ∈Θ

g(θ)

⎤⎦ > 1− B3

κ
p
N (t)hJ

Now, choose κ = 1
2
infθ∈Θ ε0g(θ). Then,

Pr

⎡⎣ inf
θ∈Θ

1

N(t)

N(t)X
n=1

Y (t−n) (θ) >
1

2
ε0 inf

θ∈Θ
g(θ)

⎤⎦ > 1− B3p
N (t)hJ

.

where B3 =
2
√
EI2 |ψ(z)|dz

(2π)J infθ∈Θ ε0g(θ)
.

Since
N(t)P
n=1

Kh

³
θ − θ∗(t−n)(q)

´
≥

N(t)P
n=1

Y (t−n), we conclude that

Pr

⎡⎣ inf
θ∈Θ

1

N(t)

N(t)X
n=1

Kh

³
θ − θ∗(t−n)(q)

´
>
1

2
ε0 inf

θ∈Θ
g(θ)

⎤⎦ > 1− B3p
N (t)hJ

. (A10)
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Now, we use A4, A8, A10 to derive the following inequality for h < 1.

Pr

⎡⎢⎢⎢⎣supθ∈Θ

¯̄̄̄
¯̄̄̄
¯

1
N(t)

N(t)P
n=1

hR
V (s0, �0, θ)dF�0(�

0, θ)− V (s0, �(t−n), θ∗(t−n))
i
Kh(θ − θ∗(t−n))

1
N(t)

N(t)P
n=1

Kh

³
θ − θ∗(t−n)

´
¯̄̄̄
¯̄̄̄
¯

≤ (1 +B1)h
αJ

1
2
ε0 infθ∈Θ g(θ)

¸

≥ Pr

⎡⎢⎢⎢⎢⎣
supθ∈Θ

¯̄̄̄
¯ 1
N(t)

N(t)P
n=1

hR
V (s0, �0, θ)dF�0(�

0, θ)− V (s0, �(t−n), θ∗(t−n))
i
Kh

¯̄̄̄
¯

infθ∈Θ

¯̄̄̄
¯ 1
N(t)

N(t)P
n=1

Kh

³
θ − θ∗(t−n)

´¯̄̄̄¯
≤ (1 +B1)h

αJ

1
2
ε0 infθ∈Θ g(θ)

¸

≥ Pr

⎧⎨⎩
⎡⎣sup
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

∙Z
V (s0, �0, θ)dF�0(�

0, θ)− V (s0, �(t−n), θ∗(t−n))
¸
Kh

¯̄̄̄
¯̄

≤ (1 +B1)h
α

#\ ⎡⎣ inf
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Kh

³
θ − θ∗(t−n)

´¯̄̄̄¯̄ > 1

2
ε0 inf

θ∈Θ
g(θ)

⎤⎦⎫⎬⎭
≥ 1− Pr

⎡⎣sup
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

∙Z
V (s0, �0, θ)dF�0(�

0, θ)− V (s0, �(t−n), θ∗(t−n))
¸
Kh

¯̄̄̄
¯̄

> (1 +B1)h
α

#
− Pr

⎡⎣ inf
θ∈Θ

¯̄̄̄
¯̄ 1

N(t)

N(t)X
n=1

Kh

³
θ − θ∗(t−n)

´¯̄̄̄¯̄ ≤ 12ε0 infθ∈Θ
g(θ)

⎤⎦
≥ 1− B2p

N (t)h2J(1+α)
− B3p

N (t)hJ
≥ 1− (B2 +B3)p

N (t)h2J(1+α)
(A11)

Let C1 = 1 +B1 and C2 = B2 +B3. Then, we have shown that Lemma holds.

Next, we proceed to prove

A
(t)
2 (θ)

P→ 0 as t→∞
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uniformly in Θ.

Now,

V (s, a, �, θ)− V(t) (s, a, �, θ) = A
(t)
1 (θ)

+β

⎡⎣N(t)X
n=1

h
V (s0, �(t−n), θ∗(t−n))− V (t−n)(s0, �(t−n), θ∗(t−n))

i
WN(t),h(θ, θ

∗(t−n))

⎤⎦ (A12)

Notice that if V (s, �, θ) ≥ V (t) (s, �, θ), then

0 ≤ V (s, �, θ)− V (t) (s, �, θ) =Maxa∈AV (s, a, �, θ)−Maxa∈AV(t) (s, a, �, θ)

≤ Maxa∈A
£V (s, a, �, θ)− V(t) (s, a, �, θ)¤ ≤Maxa∈A

¯̄V (s, a, �, θ)− V(t) (s, a, �, θ)¯̄

Similarly, if V (s, �, θ) ≤ V (t) (s, �, θ), then

0 ≤ V (t) (s, �, θ)− V (s, �, θ) =Maxa∈AV(t) (s, a, �, θ)−Maxa∈AV (s, a, �, θ)

≤ Maxa∈A
£V(t) (s, a, �, θ)− V (s, a, �, θ)¤ ≤Maxa∈A

¯̄V (s, a, �, θ)− V(t) (s, a, �, θ)¯̄

Hence, taking supremum over s0 on the right hand side of A12 and then taking
absolute values on both sides, we obtain:

¯̄
V (s, �, θ)− V (t) (s, �, θ)

¯̄ ≤Maxa∈A
¯̄V (s, a, �, θ)− V(t) (s, a, �, θ)¯̄

≤ sup
s0∈S

¯̄̄
A
(t)
1 (θ)

¯̄̄
+β

⎡⎣N(t)X
n=1

sup
s∈S

¯̄̄
V (bs, �(t−n), θ∗(t−n))− V (t−n)(bs, �(t−n), θ∗(t−n))¯̄̄WN(t),h(θ, θ

∗(t−n))

⎤⎦
(A12’)
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Denote

∆V (t)
³
�(t), θ∗(t)

´
≡ sup

s∈S

¯̄̄
V (bs, �(t), θ∗(t))− V (t)(bs, �(t), θ∗(t))¯̄̄

Now,
¯̄
V (s, �, θ)− V (t) (s, �, θ)

¯̄
appears on the LHS and¯̄̄

V (bs, �(t−n), θ∗(t−n))− V (t−n)(bs, �(t−n), θ∗(t−n))¯̄̄ appears on the RHS of equationA120.
Using this, we can recursively substitute away¯̄̄

V (bs, �(t−n), θ∗(t−n))− V (t−n)(bs, �(t−n), θ∗(t−n))¯̄̄. This logic is used in the following
Lemma. Before we proceed with the Lemman and its proof, we introduce some

additional notation. For τ < t, let

fW (t, τ) ≡ βWN(t),h(θ, θ
0).

where θ is the parameter vector at iteration t and θ0 the parameter vector at iteration

τ . Now, for N ≥ 1 and for m such that 0 < m ≤ N + 1, define

Ψm (t+N, t, τ)

≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+N > tm−1 > .... > t2 > t1 ≥ t, t0 = τ} .

That is, Ψm (t+N, t, τ) is the resulting set of iterations where the largest is t + N

and the smallest is τ , and the other m− 1 iterations are greater than or equal to t.
Furthermore, let

cW (t+N, t, τ) ≡
N+1X
m=1

⎧⎨⎩ X
Ψm(t+N,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭ .

Notice that cW (t, t, τ) ≡fW (t, τ).
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Lemma 4:

For any N ≥ 1, t > 0,

∆V (t+N)(�, θ) ≤ sup
s0∈S

¯̄̄
A
(t+N)
1 (θ)

¯̄̄
+

N−1X
m=0

cW (t+N, t+N −m, t+N −m− 1) sup
s0∈S

¯̄̄
A(t+N−m−1)

³
θ∗(t+N−m−1)

´¯̄̄
+

N(t)X
n=1

∆V (t−n)(�(t−n), θ∗(t−n))cW (t+N, t, t− n). (A13)

Furthermore,
N(t)X
n=1

cW (t+N, t, t− n) ≤ β (A14)

Proof of Lemma 4.

First, we show that inequality A13 and A14 hold for N = 1. For iteration t + 1,

we get

∆V (t+1)(�, θ) ≤ sup
s0∈S

¯̄̄
A
(t+1)
1 (θ)

¯̄̄
+

N(t+1)X
n=1

∆V (t+1−n)(�(t+1−n), θ∗(t+1−n))fW (t+ 1, t+ 1− n)

≤ sup
s0∈S

¯̄̄
A
(t+1)
1 (θ)

¯̄̄
+∆V (t)(�(t), θ∗(t))fW (t+ 1, t)

+

N(t+1)−1X
n=1

∆V (t−n)(�(t−n), θ∗(t−n))fW (t+ 1, t− n)

Now, we substitute away ∆V
³
�(t), θ∗(t)

´
by using A120 and the fact that N(t) ≥

N(t+ 1)− 1,
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∆V (t+1)(�, θ) ≤ sup
s0∈S

¯̄̄
A
(t+1)
1 (θ)

¯̄̄
+sup

s0∈S

¯̄̄
A(t)(θ∗(t))

¯̄̄ fW (t+ 1, t) + N(t)X
n=1

∆V (t−n)
³
�(t−n), θ∗(t−n)

´
{fW (t+ 1, t)fW (t, t− n) +fW (t+ 1, t− n)}

= sup
s0∈S

¯̄̄
A
(t+1)
1 (θ)

¯̄̄
+ sup

s0∈S

¯̄̄
A
(t)
1

³
θ∗(t)

´¯̄̄cW (t+ 1, t+ 1, t)
+

N(t)X
n=1

∆V (t−n)
³
�(t−n), θ∗(t−n)

´cW (t+ 1, t, t− n)

Hence, Inequality A13 holds for N = 1.

Furthermore, because
N(t)P
n=1

fW (t, t− n)/β =
N(t)P
n=1

WN(t),h(θ
∗(t), θ∗(t−n)) = 1,

N(t)X
n=1

cW (t+ 1, t, t− n) =

N(t)X
n=1

fW (t+ 1, t)fW (t, t− n) +

N(t)X
n=1

fW (t+ 1, t− n)

= fW (t+ 1, t)N(t)X
n=1

fW (t, t− n) +

N(t)X
n=1

fW (t+ 1, t− n)

= βfW (t+ 1, t) + N(t)X
n=1

fW (t+ 1, t− n) ≤
N(t)+1X
n=1

fW (t+ 1, t+ 1− n)

Since fW (t+ 1, t+ 1− n) = 0 for any n > N(t+ 1),

N(t)+1X
n=1

fW (t+ 1, t+ 1− n) =

N(t+1)X
n=1

fW (t+ 1, t+ 1− n)

= β

N(t+1)X
n=1

WN(t+1),h(θ
∗(t+1), θ∗(t+1−n)) = β
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Thus,
N(t)X
n=1

cW (t+ 1, t, t− n) ≤ β

Hence, inequality A14 holds for N = 1.

Next, suppose that inequality A13 holds for N =M . Then, using t+1 instead of

t in inequality A13, we get

∆V (t+1+M)(�, θ) ≤ sup
s0∈S

¯̄̄
A
(t+1+M)
1 (θ)

¯̄̄
+

M−1X
m=0

cW (t+ 1 +M, t+ 1 +M −m, t+M −m) sup
s0∈S

¯̄̄
A(t+M−m)

³
θ∗(t+M−m)

´¯̄̄
+∆V (t)(�(t), θ∗(t))cW (t+ 1 +M, t+ 1, t)

+

N(t+1)X
n=2

∆V (t+1−n)
³
�(t+1−n), θ∗(t+1−n)

´cW (t+ 1 +M, t+ 1, t+ 1− n).

Now, using A120 to substitute away ∆V (t)(�(t), θ∗(t)), we get

∆V (t+1+M)(�, θ) ≤ sup
s0∈S

¯̄̄
A
(t+M+1)
1 (θ)

¯̄̄
+

MX
m=0

cW (t+M + 1, t+M + 1−m, t+M −m) sup
s0∈S

¯̄̄
A
(t+M−m)
1

³
θ∗(t+M−m)

´¯̄̄
+

N(t)X
n=1

∆V (t−n)(�(t−n), θ∗(t−n))hcW (t+M + 1, t+ 1, t)fW (t, t− n) +cW (t+M + 1, t+ 1, t− n)
i

(A15)
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Now, we claim that, for any M ≥ 1,

cW (t+M, t+ 1, t)fW (t, t− n) +cW (t+M, t+ 1, t− n)

= cW (t+M, t, t− n) (A16)

Proof of the Claim:

Let

Ψm,1(t+M, t, τ)

≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+M > tm−1 > .... > t2 ≥ t+ 1, t1 = t, t0 = τ} .

Notice that

Ψm(t+M, t+ 1, τ)

≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+M > tm−1 > .... > t2 > t1 ≥ t+ 1, t0 = τ} .

Then,

Ψm(t+M, t, τ) = Ψm,1(t+M, t, τ) ∪Ψm(t+M, t+ 1, τ)

and

Ψm,1(t+M, t, τ) ∩Ψm(t+M, t+ 1, τ) = ∅.

Also,

ΨM+1(t+M, t+ 1, τ) = ∅
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Therefore,

cW (t+M, t, τ)

≡
M+1X
m=1

⎧⎨⎩ X
Ψm(t+M,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

M+1X
m=1

⎧⎨⎩ X
Ψm,1(t+M,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭+
M+1X
m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

M+1X
m=2

⎧⎨⎩ X
Ψm−1(t+M,t+1,t)

m−1Y
k=1

fW (tk, tk−1)

⎫⎬⎭fW (t, τ)

+
MX

m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

MX
m=1

⎧⎨⎩ X
Ψm(t+M,t+1,t)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭fW (t, τ) +
MX
m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
= cW (t+M, t+ 1, t)fW (t, τ) +cW (t+M, t+ 1, τ)

Hence, the claim holds. Substituting this into equation A15 with M + 1 instead of

M yields the first part of the lemma by induction.

Next, suppose that A14 holds for N =M . That is,

N(t)X
n=1

cW (t+M, t, t− n) ≤ β.

Then, denoting t0 = t+ 1 and using A16 with M + 1 instead of M , we get
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N(t)X
n=1

cW (t+M + 1, t, t− n)

=

N(t)X
n=1

cW (t+M + 1, t+ 1, t)fW (t, t− n) +

N(t)X
n=1

cW (t+M + 1, t+ 1, t− n)

≤ cW (t0 +M, t0, t) +
N(t)X
n=1

cW (t0 +M, t0, t− n)

=

N(t0)X
n=1

cW (t0 +M, t0, t0 − n) ≤ β

Hence, induction holds and for any N > 0,

N(t)X
n=1

cW (t+N, t, t− n) ≤ β,

which proves the second part of the Lemma.

Now, for any m = 1, ... eN(l), if we substitute t(l)−m for t+N , t(l− 1) for t, then
equation A13 becomes

∆V (t(l)−m) (�, θ) ≤ sup
s0∈S

¯̄̄
A
(t(l)−m)
1 (θ)

¯̄̄
+

N(l)−m−1X
i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄

+

N(l−1)X
n=1

∆V (t(l−1)−n)
³
�(t(l−1)−n), θ∗(t(l−1)−n)

´cW (t(l)−m, t(l − 1), t(l − 1)− n)

Now, we take weighted sum of ∆V (t(l)−m)
³
�, θ∗(t(l)−m)

´
, m = 1, ... eN(l), where the
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weights are WN(l),h(θ, θ
∗(t(l)−m)). Then,

N(l)X
m=1

∆V (t(l)−m)
³
�(t(l)−m), θ∗(t(l)−m)

´
WN(l),h(θ, θ

∗(t(l)−m))

≤
N(l)X
m=1

½
sup
s0∈S

¯̄̄
A
(t(l)−m)
1

¯̄̄
+

N(l)−m−1X
i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¾
WN(l),h(θ, θ

∗(t(l)−m))

+

N(l)X
m=1

N(l−1)X
n=1

∆V (t(l−1)−n)
³
�(t(l−1)−n), θ∗(t(l−1)−n)

´
cW (t(l)−m, t(l − 1), t(l − 1)− n)WN(l),h(θ, θ

∗(t(l)−m)) (A17)

Now, let,

A(l, l) ≡ B1(l, l) +B2(l, l)

where

B1(l, l) =

N(l)X
m=1

sup
s0∈S

¯̄̄
A
(t(l)−m)
1

¯̄̄
WN(l),h(θ, θ

∗(t(l)−m)),

B2(l, l) ≡
N(l)X
m=1

WN(l),h(θ, θ
∗(t(l)−m))×

N(l)−m−1X
i=0

½cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¾
.

and denote

hl = h (t (l))

Lemma 5

A(l, l)
P→ 0 as l→∞.

80



Proof : We first show that B1(l, l)
P→ 0 uniformly in Θ. Now,

B1(l, l) =

N(l)P
m=1

sups0∈S
¯̄̄
A
(t(l)−m)
1

¯̄̄
1

N(l)
KN(l),h(θ, θ

∗(t(l)−m))

1

N(l)

N(l)X
l=1

KN(l),h(θ, θ
∗(t(l)−k))

(A18)

Recall that

A
(t)
1 (θ) = β

⎡⎣Z V (s0, �0, θ)dF�0(�
0, θ)−

N(t)X
n=1

V (s0, �(t−n), θ∗(t−n))WN(t),h(θ, θ
∗(t−n))

⎤⎦

Because
R
V (s0, �0, θ)dF�0(�

0, θ), and V (s0, �(t−n), θ∗(t−n)) are uniformly bounded in �, �(t−n),

θ, θ∗(t−n) ∈ Θ, A(t)1 is uniformly bounded. Hence, there existsA > 0 such thatA(t)1 ≤ A

for any t. Because of Lemma 3,

E

"
sup

s0∈S,θ0∈Θ

¯̄̄
A
(t)
1 (θ

0)
¯̄̄#

≤ C1h
(3/2)J Pr

"
sup

s0∈S,θ0∈Θ

¯̄̄
A
(t)
1 (θ

0)
¯̄̄
< C1h

(3/2)J

#

+APr

"
sup

s0∈S,θ0∈Θ

¯̄̄
A
(t)
1 (θ

0)
¯̄̄
≥ C1h

(3/2)J

#

≤ C1h
(3/2)J +

AC2p
N (t)h5J

(A19)

81



and

E

"
sup

s0∈S,θ0∈Θ

¯̄̄
A
(t)
1 (θ

0)
¯̄̄2#

≤ C2
1h

3J Pr

"
sup

s0∈S,θ0∈Θ

¯̄̄
A
(t)
1 (θ

0)
¯̄̄
< C1h

(3/2)J

#
+A

2
Pr

"
sup

s0∈S,θ0∈Θ

¯̄̄
A
(t)
1 (θ

0)
¯̄̄
≥ C1h

(3/2)J

#

≤ C1h
3J +

A
2
C2p

N (t)h5J
(A20)

Now, from the Fourier transform method by Bierens (1994), Let

Ym ≡ sup
s0∈S,θ∈Θ

¯̄̄
A
(t(l)−m)
1 (θ0)

¯̄̄
.

Then,

E

⎡⎣sup
θ∈Θ

1eN (l)
N(l)X
m=1

sup
s0∈S,θ∈Θ

¯̄̄
A
(t(l)−m)
1 (θ0)

¯̄̄
KN(l),h(θ, θ

∗(t−m) (q))

⎤⎦
≤ ε1E

⎡⎣sup
θ∈Θ

1eN (l)
N(l)X
m=1

YmKN(t),h(θ, θ
∗(t−m) (eg))

⎤⎦
≤ ε1

µ
1

2π

¶J

⎧⎨⎩E

⎡⎣ 1eN (l)
N(l)X
m=1

Ym cos
³
θ∗(t−m) (eg)´

⎤⎦2 +
E

⎡⎣ 1eN (l)
N(l)X
m=1

Ym sin
³
θ∗(t−m) (eg)´

⎤⎦2⎫⎬⎭
1/2 Z

|ψ (hz)| dz

≤ ε1

µ
1

2π

¶J

⎧⎨⎩2E
⎡⎣ 1eN (l)

N(l)X
m=1

Ym

⎤⎦2⎫⎬⎭
1/2 Z

|ψ (hz)| dz (A21)
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The last inequality holds because Ym > 0. Now,

⎡⎣N(l)X
m=1

Ym

⎤⎦2 =

N(l)X
m=1

Y 2
m + 2

X
m>n

YmYn ≤
N(l)X
m=1

Y 2
m +

X
m>n

£
Y 2
m + Y 2

n

¤

≤ 2 eN (l) N(l)X
m=1

Y 2
m

Hence,

RHS of A21 ≤ ε1

µ
1

2π

¶J

⎧⎨⎩2E
⎡⎣2 eN (l)eN (l)2

N(l)X
m=1

Y 2
m

⎤⎦⎫⎬⎭
1/2 Z

|ψ (hlz)| dz

≤ 2ε1
1

hJl

vuuutC2
1h

3J
l−1 +

A
2
C2q

N (l − 1)h5Jl−1

µ
1

2π

¶J Z
|ψ (z)| dz

= 2ε1

vuuutC2
1h

J
l−1 +

A
2
C2q

N (l − 1)h9Jl−1

µ
1

2π

¶J Z
|ψ (z)| dz

→ 0 as l→∞ (A22)

Therefore, the numerator ofA18 converges to zero in probability uniformly inΘ.Furthermore,

from A10, we know that the probability of the denominator of A18 being larger than

1
2
ε0 infθ∈Θ g(θ) uniformly in Θ can be made arbitrarily close to 1 by making t large

enough. Therefore, B1(l, l)
P→ 0 as l→∞ uniformly in Θ.

We next show that

B2(l, l)
P→ 0

uniformly as t→∞.
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For any t0 > t > 0, let,

eK (t0, t) ≡ Kh

³
θ∗(t

0) − θ∗(t)
´

For τ 1 > τ 2 > τ , and l such that t (l − 1) ≤ τ 1 ≤ t (l), define W ∗ (τ 1, τ 2, τ , j)

recursively to be as follows.

W ∗ (τ 1, τ 2, τ , 1) ≡ fW (τ 1, τ)
W ∗ (τ 1, τ 2, τ , 2) ≡

τ1−τ2X
j=1

fW (τ 1, τ 1 − j)W ∗ (τ 1 − j, τ 2, τ , 1)

...

W ∗ (τ 1, τ 2, τ , k) ≡
τ1−τ2−(k−2)X

j=1

fW (τ 1, τ 1 − j)W ∗ (τ 1 − j, τ 2, τ , k − 1)

Notice that for τ < τ 2 −N (τ 2) ,

W ∗ (τ 1, τ 2, τ , k) = 0

for all k. Similarly,

K∗ (τ 1, τ 2, τ , 1) ≡ 1eN(l) eK(τ 1, τ)
K∗ (τ 1, τ 2, τ , 2) ≡

τ1−τ2X
j=1

1eN(l) eK(τ 1, τ 1 − j)K∗ (τ 1 − j, τ 2, τ , 1)

...

K∗ (τ 1, τ 2, τ , k) ≡
τ1−τ2−(k−2)X

j=1

1eN(l) eK(τ 1, τ 1 − j)K∗ (τ 1 − j, τ 2, τ , k − 1)
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and for τ < τ 2 −N (τ 2),

K∗ (τ 1, τ 2, τ , k) = 0

Then, for any τ 1 > τ 2 > τ ,

cW (τ 1, τ 2, τ) ≡ N(l)+1X
m=1

⎧⎨⎩ X
Ψm(τ1,τ2,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

τ1−τ2+1X
k=1

W ∗(τ 1, τ 2, τ , k) (A23)

Hence,

N(l)−m−1X
i=0

½cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¾

=

N(l)−m−1X
i=0

(
i+1X
k=1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄)

=

N(l)−m−1X
k=1

⎧⎨⎩
N(l)−m−1X
i=k−1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¾
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Also, notice that, for any et such that t(l − 1) ≤ et ≤ t(l)

W ∗(et,et− i,et− i− 1, k)

=
X

Ψk(t,t−i,t−i−1)

kY
j=1

fW (tj, tj−1)

=
X

Ψk(t,t−i,t−i−1)

kY
j=1

β
eK (tj, tj−1)

N(tj)P
i=1

eK (tj, tj−i)
≤ βk

⎡⎣ inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−k X
Ψk(t,t−i,t−i−1)

kY
j=1

eK (tj, tj−1)
= βk

⎡⎣ 1eN(l) inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−k X
Ψk(t,t−i,t−i−1)

kY
j=1

eK (tj, tj−1)eN(l)
= βk

⎡⎣ 1eN(l) inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−kK∗(et,et− i,et− i− 1, k) (A24)

Hence, we get

Pr

⎡⎣N(l)X
k=1

N(l)X
m=1

WN(l),h(θ, θ
∗(t(l)−m))

N(l)−m−1X
i=k−1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥ δ − δN(l)+1

1− δ

#

≤ Pr

⎡⎣N(l)[
k=1

⎧⎨⎩
N(l)X
m=1

WN(l),h(θ, θ
∗(t(l)−m))

N(l)−m−1X
i=k−1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥ δk

¾¸
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≤
N(l)X
k=1

Pr

⎡⎣N(l)X
m=1

WN(l),h(θ, θ
∗(t(l)−m))

N(l)−m−1X
i=k−1

W ∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥ δk

¸

≤
N(l)X
k=1

Pr

⎧⎨⎩
⎡⎣N(l)X
m=1

KN(l),h(θ, θ
∗(t(l)−m))

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥
∙

δ

4Aβ
ε0 inf

θ
g (θ)

¸k#
[⎡⎣ inf

t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦⎫⎬⎭

≤
N(l)X
k=1

Pr

⎡⎣N(l)X
m=1

KN(l),h(θ, θ
∗(t(l)−m))

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
≥
∙

δ

4Aβ
ε0 inf

θ
g (θ)

¸k+1#

+Pr

⎡⎣ inf
t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦ (A25)

First, we consider the first term of the RHS of equation A25. We prove the following

claim.
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Claim 1 : The following inequalities hold.

E

⎧⎨⎩
N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S,θ0∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄⎫⎬⎭
≤ εk+11

(k − 1)!

(
sup

θ0∈Θ,hl≤h≤hl−1
Eθ [Kh (θ

0 − θ(eg))])k

E

∙
sup

s0∈S,θ∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¸
(A26)

E

⎧⎨⎩
N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S,θ0∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄⎫⎬⎭
2

≤ 2

µ
εk+11

(k − 1)!
¶2(

sup
θ0∈Θ,hl≤h≤hl−1

Eθ [Kh (θ
0 − θ∗(eg))])2k E ∙ sup

s0∈S,θ∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄2
(̧A27)

Proof: First, by definition of K∗, note that,

E

⎧⎨⎩
N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S,θ0∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄⎫⎬⎭
=

1eN(l)k
N(l)−m−1X
i=k−1

X
j1,...,jk−1

I (j0 = t(l)−m− i− 1,

t(l)−m− i ≤ j1 < j2 < ... < jk = t(l)−m)

E

∙½
k−1Q
s=0

h
Kh

³
θ∗(js+1) − θ∗js

´i¾
sup

s0∈S,θ∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¸
(A28)

For k ≥ 1, let (j0, j1, ..., jk) satisfy t(l)−m− i− 1 = j0 < j1 < j2 < ... < jk−1 < jk =

t(l)−m. Denote the conditional transition probability from θ∗(t) to θ∗(t+1) given Ω(t)

as p∗
³
θ∗(t), θ∗(t+1)|Ω(t)

´
, or , in shorthand, p∗(t+1) and denote f

³
θ(t+1)|θ∗(t),Ω(t)

´
to
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be the conditional distribution of θ(t+1) given θ∗(t),Ω(t). Then,

p∗
³
θ∗(t), θ∗(t+1)|Ω(t)

´
=

Z
f
³
θ(t+1)|θ∗(t),Ω(t)

´
q
³
θ(t+1), θ∗(t+1)

´
dθ(t+1)

≤ ε1

Z
f
³
θ(t+1)|θ∗(t),Ω(t)

´eg ³θ∗(t+1)´ dθ(t+1) = eg ³θ∗(t+1)´

Notice that from Lemma 2,

⎧⎨⎩
t(l)−mY
s=2

p∗
³
θ∗(s−1), θ∗(s)|Ω(s−1)

´⎫⎬⎭
≤

"
k−1Y
m=0

ε1eg(θ∗(jm))#×⎧⎨⎩
t(l)−mY
s=2

h
p∗
³
θ∗(s−1), θ∗(s)|Ω(s−1)

´
1
³
s 6= {jm}k−1m=0

´
+ 1

³
s = {jm}k−1m=0

´i⎫⎬⎭
(A29)

Because Kh () ≥ 0, for any 0 < t < t0

E
h
Kh(θ

∗(t0) − θ∗(t))
i
= E

h
Kh

³
θ∗(t

0)(p∗(t
0))− θ∗(t)(p∗(t))

´i
≤ ε21E

n
E
h
Kh

³
θ∗(t

0)(eg)− θ∗(t)(eg)´io .
Furthermore,

Eθ0,θ [Kh (θ
0 (eg)− θ(eg))] = Eθ0 [Eθ {Kh (θ

0(eg)− θ(eg))}]
5 sup

θ∈Θ
Eθ

h
Kh

³eθ − θ(eg)´i (A30)
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Using A29 and A30,

E

∙½
k−1Q
i=0

h
Kh

³
θ∗(ji+1) − θ∗(ji)

´i¾
sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
|Ω(j0)

¸
≤ εk+11 E

∙½
k−1Q
i=0

h
Kh

³
θ∗(ji+1)(eg)− θ∗(ji)(eg)´i¾ sup

s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¸
≤ εk+11 E

"(
k−1Q
i=0

sup
θ0∈Θ,hl≤h≤hl−1

h
Kh

³
θ0 − θ∗(ji)(eg)´i) sup

s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄#

= εk+11

(
sup

θ0∈Θ,hl≤h≤hl−1
Eθ [Kh (θ

0 − θ∗(eg))])k

E

∙
sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¸
(A31)

Furthermore, for any i,m such that 0 < m + i ≤ eN(l) and for any k > 1 such that

k ≤ m+ i,

1eN(l)k−1 X
j1,...,jk−1

I(t(l)−m− i ≤ j1 < ... < jk−1 < t(l)−m)

=
1eN(l)k−1

µ
[i]!

(k − 1)!(i− (k − 1))!
¶

≤
h
[i] / eN(l)ik−1
(k − 1)! ≤ 1

(k − 1)! (A32)

Substituting A31 and A32 into A28, A26 follows and hence the first part of Claim 1

is proved.

Now, let Yi = K∗(t(l)−m, t(l)−m−i, t(l)−m−i−1, k) sups0∈S,θ∈Θ
¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
.

Then,
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E

⎧⎨⎩
N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S,θ∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄⎫⎬⎭
2

≤ E

⎡⎣N(l)−m−1X
i=k−1

Yi

⎤⎦2 ≤ 2 eN (l)E
⎡⎣N(l)−m−1X

i=k−1
Y 2
i

⎤⎦
≤ 2 eN (l)eN(l)2k

N(l)−m−1X
i=k−1

E

⎡⎣ X
j1,...,jk−1

I(t(l)−m− i ≤ j1 < ... < jk−1 < t(l)−m)

k−1Q
s=0

h
Kh

³
θ∗(js+1) − θ∗(js)

´i
sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¸2

≤ 2ε
2(k+1)
1eN(l)2k−2

N(l)−m−1X
i=k−1

⎡⎣ X
j1,...,jk−1

I(t(l)−m− i ≤ j1 < ... < jk−1 < t(l)−m)

⎤⎦2

E

"½
k−1Q
s=0

h
Kh

³
θ∗(js+1) (eg)− θ∗(js) (eg)´i sup

s0∈S,θ∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¾2#

≤ 2

µ
εk+11

(k − 1)!
¶2(

sup
θ0∈Θ,hl≤h≤hl−1

Eθ [Kh (θ
0 − θ∗(eg))])2k E ∙ sup

s0∈S,θ∈Θ

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄2¸

Hence, the second part of the Claim 1 is proved.

Now, using the law of iterated expectations and Claim 1, we obtain the following
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inequality:

E

⎡⎣ 1eN (l)
N(l)X
m=1

KN(l),h(θ, θ
∗(t(l)−m))

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄⎤⎦
≤ ε1eN (l)

N(l)X
m=1

E

⎡⎣N(l)X
m=1

KN(l),h(θ, θ
∗(t(l)−m) (eg))

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)
⎤⎦

⎡⎣C1h(3/2)Jl−1 +
AC2q

N (l − 1)h5Jl−1

⎤⎦
≤

"
εk+21 sup

θ0∈Θ,hl≤h≤hl−1
Eθ [Kh (θ

0 − θ(eg))]k+1 1

(k − 1)!

#⎡⎣C1h(3/2)Jl−1 +
AC2q

N (l − 1)h5Jl−1

⎤⎦

Chebychev Inequality implies,

Pr

⎡⎣N(l)X
m=1

1eN (l)KN(l),h(θ, θ
∗(t(l)−m))

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
>

∙
δ

4Aβ
ε0 inf

θ
g (θ)

¸k#

≤

∙
C1h

(3/2)J
l−1 + AC2√

N(l−1)h5Jl−1

¸
εk+21 supθ0∈Θ,hl≤h≤hl−1 E [Kh (θ

0 − θ(eg))]k+1 1
(k−1)!h

δ
4Aβ

ε0 infθ g (θ)
ik+1 (A33)

Next, we consider the second term of the RHS of equation A25. We first prove

the following claim.
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Claim 2: For any t(l − 1) ≤ t ≤ t(l), either
h
t(l − 1)− eN(l − 1)/2, t(l − 1)i ⊆

[t−N(t), t] orh
t(l − 1), t(l − 1) + eN(l − 1)/2i ⊆ [t−N(t), t] or both.

Proof : First, we show that for t satistying t(l − 1) ≤ t ≤ t(l − 1) + eN(l − 1)/2,
h
t(l − 1)− eN(l − 1)/2, t(l − 1)i ⊆ [t−N(t), t] (A34)

Because N() is a nondecreasing function, N(t) ≥ eN(l − 1). Hence,
t− t(l − 1) ≤ eN(l − 1)/2 = eN(l − 1)− eN(l − 1)/2 ≤ N(t)− eN(l − 1)/2

Thus,

t−N(t) ≤ t(l − 1)− eN(l − 1)/2
Since t(l − 1) ≤ t, A34 holds.

Next, we show that for t satisfying t(l − 1) + eN(l − 1)/2 < t ≤ t(l),

h
t(l − 1), t(l − 1) + eN(l − 1)/2i ⊆ [t−N(t), t] . (A35)

From the definition of eN(),
t(l)− eN(l) = t(l − 1)

Furthermore, because N(s) is increasing at most by one with unit increase in s,

s−N(s) is nondecreasing in s. Hence,

t−N(t) ≤ t(l)− eN(l) = t(l − 1).
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Furthermore, t > t(l − 1) + eN(l − 1)/2. Therefore, A35 holds. Hence, Claim 2 is

proved.

Now, from A10, we know that for any η3 > 0, there exists L such that for any

l > L, t1 = t(l − 1) and for t2 = t(l − 1) + eN(l − 1)/2,

Pr

"
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(ti−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#
≤ η3, i = 1, 2

Therefore,

Pr

"(
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(t1−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

) S
(

1eN(l)/2
N(l)/2P
k=1

Kh(θ − θ∗(t2−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

)#

≤ Pr

"
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(t1−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#

+Pr

"
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(t2−k)) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#
≤ 2η3

Therefore,

Pr

"(
1eN(l)/2

N(l)/2P
k=1

Kh(θ − θ∗(t1−k)) >
1

2
ε0 inf

θ∈Θ
g (θ)

) T
(

1eN(l)/2
N(l)/2P
k=1

Kh(θ − θ∗(t2−k)) >
1

2
ε0 inf

θ∈Θ
g (θ)

)#
> 1− 2η3

Now, from Claim 2, for any t such that t(l− 1) ≤ t ≤ t(l),given the same bandwidth

h
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1eN(l)
N(t)P
n=1

Kh(θ − θ∗(t−k)) ≥
eN(l − 1)/2eN(l) 1eN(l − 1)/2

N(l−1)/2P
k=1

Kh(θ − θ∗(s−k))

where either s = t1 = t(l− 1) or s = t2 = t(l− 1)+ eN(l− 1)/2 or both. Furthermore,
notice that N(l−1)/2

N(l)
≥ 1

2A
. Therefore,

Pr

"
inf

t(l−1)≤t≤t(l)
1eN(l)

N(t)P
n=1

Kh(θ − θ∗(t−n)) ≥ 1

4A
ε0 inf

θ∈Θ
g (θ)

#
> 1− 2η3

Thus,

Pr

⎡⎣ inf
t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
n=1

eK(t, t− n)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦ ≤ 2η3 (A36)

By A33 and A36,

RHS of A25

≤
N(l)X
k=1

∙
C1h

(3/2)J
l−1 + AC2√

N(l−1)h5Jl−1

¸
εk+21 supθ0∈Θ,hl≤h≤hl−1 Eθ [Kh (θ

0 − θ(eg))]k+1 1
(k−1)!h

δ
4Aβ

ε0 infθ g (θ)
ik+1 + 2η3

= ε1

⎡⎣C1h(3/2)Jl−1 +
AC2q

N (l − 1)h5Jl−1

⎤⎦ eλλ2 N(l)X
k=1

"
e−λ

λ(k−1)

(k − 1)!

#
+ 2η3

where,

λ =
4Aβε1 supθ0∈Θ,hl≤h≤hl−1 Eθ [Kh (θ

0 − θ(eg))]
δε0 infθ g (θ)

> 0

Notice that e−λ λ
k

k!
is the formula for the distribution function of the Poisson distrib-
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ution. Hence,
N(l)X
k=1

e−λ
λ(k−1)

(k − 1)! ≤
∞X
k=1

e−λ
λ(k−1)

(k − 1)! = 1

Together, we have shown that,

LHS of A25

≤ ε1

⎡⎣C1h(3/2)Jl−1 +
AC2q

N (l − 1)h5Jl−1

⎤⎦λ2 exp (λ) + 2η3 (A37)

Now,

Eθ [Kh(θ
0, θ(eg))]→ eg(θ0) as h→ 0.

Hence, for any B > supθ∈Θ [eg(θ)], there exists H > 0 such that for any positive

h < H,

Eθ {Kh(θ
0, θ(eg))} < B

Therefore, for h < H, λ is uniformly bounded. Hence, for any δ > 0 the RHS of A37

can be made arbitrarily small by choosing h and η3 small enough and N (t)h5J large

enough. Hence, we have shown that B2(l, l)
P→ 0.

We now proceed to show uniform convergence. Similarly as before, we use Fourier

transform. Let

Ym ≡
N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄
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. Then,

E

⎡⎣sup
θ∈Θ

N(l)X
m=1

1eN (l)KN(l),h(θ, θ
∗(t(l)−m) (q))Ym

⎤⎦
≤ ε1E

⎡⎣sup
θ∈Θ

N(l)X
m=1

1eN (l)KN(l),h(θ, θ
∗(t(l)−m) (eg))Ym

⎤⎦
≤ ε1

µ
1

2π

¶J

⎧⎨⎩4E
⎡⎣ 1eN (l)

N(l)X
m=1

Y 2
m

⎤⎦⎫⎬⎭
1/2 Z

|ψ (hz)| dz (A38)

Now, using Claim 1,

RHS of A38

≤ 2εk+21

(k − 1)!

"
sup

θ0∈Θ,hl≤h≤hl−1
E [Kh (θ

0 − θ (eg))]#kvuuutC2
1h

3J
l−1 +

A
2
C2q

N (l − 1)h5Jl−1

µ
1

2π

¶J Z
|ψ (hz)| dz

≤ 2εk+21

(k − 1)!

"
sup

θ0∈Θ,hl≤h≤hl−1
E [Kh (θ

0 − θ (eg))]#kvuuutC2
1h

J
l−1 +

A
2
C2q

N (l − 1)h9Jl−1

µ
1

2π

¶J Z
|ψ (z)| dz
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Hence,

E

⎡⎣sup
θ∈Θ

N(l)X
k=1

N(l)X
m=1

KN(l),h(θ, θ
∗(t(l)−m))×

N(l)−m−1X
i=k−1

K∗(t(l)−m, t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄¸

≤
N(l)X
k=1

2εk+21

(k − 1)!

"
sup

θ0∈Θ,hl≤h≤hl−1
E [Kh (θ

0 − θ (eg))]#kvuuutC2
1h

J
l−1 +

A
2
C2q

N (l − 1)h9Jl−1

µ
1

2π

¶J Z
|ψ (z)| dz

≤ 2ε21

vuuut
⎡⎣C2

1h
J
l−1 +

A
2
C2q

N (l − 1)h9Jl−1

⎤⎦eλλ N(l)X
k=1

"
e−λ

λ(k−1)

(k − 1)!

#µ
1

2π

¶J Z
|ψ (z)| dz

where

λ = ε1 sup
θ0∈Θ,hl≤h≤hl−1

Eθ [Kh (θ
0 − θ(eg))]→ ε1 sup

θ0∈Θ
eg (θ0) .

Because, C2
1h

J
l−1+

A
2
C2√

N(l−1)h9Jl−1
can be made arbitrarily small by increasing t, we have

shown that the numerator converges to zero uniformly. Now, consider the denomina-

tor. We can follow the earlier arguments (see A10) to prove that for any η > 0, there

exists l > 0 , N ≡ N(tη) such that for any t > tη, i.e, N(l) > N,

Pr

⎡⎣ inf
θ∈Θ

1eN(l − 1)/2
N(l−1)/2X

k=1

Kh

³
θ − θ∗(t−k)(q)

´
>
1

2
ε0 inf

θ∈Θ
g(θ)

⎤⎦ > 1− η.

Therefore, for sufficiently large l, the denominator is bounded away from zero uni-

formly in Θ with probability arbitrarily close to 1. Together, we have shown that
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B2(l, l)
P→ 0 uniformly in Θ.Thus, Lemma 5 is proved. That is, we have shown that

A(l, l)
P→ 0 as l→∞

uniformly in Θ.

Let

Ξ (l, l1 + 1)

≡ {(tl, tl−1, ..., tl1+1) : t(l1) ≤ tl1+1 < t(l1 + 1), ..., tl−1 ≤ t(l − 1) ≤ tl < t(l)} .

Now, define,
−→
W (t(l), t(l1), tl1) as follows: For l1 = l,

−→
W (t(l), t(l), tl) ≡WN(l),h(θ, θ

∗(tl)).

For l1 = l − 1,

−→
W (t(l), t(l − 1), tl−1)

=

N(l)X
m=1

WN(l),h(θ, θ
∗(t(l)−m))cW (t(l)−m, t(l − 1), tl−1).

For l1 ≤ l − 2,

−→
W (t(l), t(l1), tl1)

≡
X

(tl,tt−1,...,tl1+1)∈Ξ(l,l1+1)
WN(l),h(θ, θ

∗(tl))

(
l−1Y

j=l1+1

cW (tj+1, t(j), tj)

)cW (tl1+1, t(l1), tl1)
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Recursively, we can express for l1 < l,

−→
W (t(l), t(l1), tl1) =

N(l1+1)X
m=1

−→
W (l, t(l1 + 1), t(l1 + 1)−m)cW (t(l1 + 1)−m, t(l1), tl1).

Hence, A17 can be written as follows.

N(l)X
m=1

∆V
³
�(t(l)−m), θ∗(t(l)−m)

´−→
W (t(l), t(l), t(l)−m)

≤
N(l)X
m=1

−→
W (t(l), t(l), t(l)−m) sup

s0∈S

¯̄̄
A
(t(l)−m)
1

³
θ∗(t(l)−m)

´¯̄̄

+

N(l)X
m=1

−→
W (t(l), t(l), t(l)−m)

×
N(l)−m−1X

i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄

+

N(l−1)X
m=1

∆V (t(l−1)−m)(�(t(l−1)−m), θ(t(l−1)−m))
−→
W (t(l), t(l − 1), t(l − 1)−m)

(A39)

Furthermore, by Lemma 4,

N(l1)P
m=1

cW (tl1+1, t(l1), t(l1)−m) ≤ β

Applying these inequalities to
−→
W yields,

N(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m) ≤ β(l−l1+1) (A40)

Now, let
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A(l, l1) ≡ B1(l, l1) +B2(l, l1)

where,

B1(l, l1) ≡
N(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m) sup

s0∈S

¯̄̄
A
(t(l1)−m)
1

¯̄̄
and

B2(l, l1) ≡
N(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m)

N(l1)−m−1X
j=0½cW (t(l1)−m, t(l1)−m− j, t(l1)−m− j − 1) sup

s0∈S

¯̄̄
A
(t(l1)−m−j−1)
1

¯̄̄¾

Then, for l1 ≤ l,

N(l1)X
m=1

∆V (t(l1)−m)
³
�(t(l1)−m), θ(t(l1)−m)

´−→
W (t(l), t(l1), t(l1)−m)

≤ A(l, l1)

+

N(l1−1)X
m=1

∆V (t(l1−1)−m)
³
�(t(l1−1)−m), θ(t(l1−1)−m)

´−→
W (t(l), t(l1 − 1), t(l1 − 1)−m)

(A41)

Lemma 6

Given ∆ = l − l1 ≥ 0

A(l, l −∆)
P→ 0 as l→∞.

Proof : Lemma 5 proves it with ∆ = 0. Consider ∆ > 0. By definition of
−→
W ,
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−→
W (t(l), t(l1), t(l1)−m)

=

⎡⎣ P
t(l−1)≤tl<t(l)

WN(l),h(θ, θ
∗(tl))

⎧⎨⎩ X
t(l−2)≤tl−1<t(l−1)

cW (tl, t(l − 1), tl−1)

...

⎧⎨⎩ X
t(l1)≤tl1+1<t(l1+1)

cW (tl1+2, t(l1 + 1), tl1+1)cW (tl1+1, t(l1), t(l1)−m)

⎫⎬⎭
⎫⎬⎭
⎤⎦

We prove convergence of B1(l, l −∆).

Consider the numerator of B1(l, l1) divided by eN (l). It is
E

⎡⎣ X
t(l−1)≤tl<t(l)

1eN (l)KN(l),h(θ, θ
∗(tl))

⎧⎨⎩ X
t(l−2)≤tl−1<t(l−1)

X
k

K∗ (tl, t(l − 1), tl−1, k) ...⎧⎨⎩ X
t(l1)≤tl1+1<t(l1+1)

X
k

K∗ (tl1+2, t(l1 + 1), tl1+1, k)
N(l)X
m=1

K∗ (tl1+1, t(l1), t(l1)−m)

⎫⎬⎭
⎫⎬⎭

sup
s0∈S

¯̄̄
A
(t(l1)−m)
1

¯̄̄¸
(A42)
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Then, using the arguments similar to the derivation of A37, we can show that

RHS of A42

≤ ε1 sup
θ0∈Θ,hl≤h≤hl1

Eθ [Kh (θ
0 − θ(eg))]

l−1Y
j=l1

(X
k

εk+11

[(k − 1)!]

"
k−1Q
s=0

sup
θ0∈Θ,hl≤h≤hl1

E [Kh (θ
0 − θ (eg))]#)⎡⎣C1h(3/2)Jl1

+
AC2q

N (l1)h5Jl1

⎤⎦
≤ λ

£
ε1λe

λ
¤∆−1 ⎡⎣C1h(3/2)Jl1

+
AC2q

N (l1)h5Jl1

⎤⎦→ 0 as l1 →∞.

where

λ = ε1 sup
θ0∈Θ,hl≤h≤hl1

Eθ [Kh (θ
0 − θ(eg))] > 0.

Next, we consider the denominator divided by eN (l). let t1(l) ≡ t(l − 1) and t2(l) =

t(l− 1)+ eN(l− 1)/2. Then, arguments similar to ones used in deriving equation A36
can be used to derive the inequality below. Given the bandwidth h > 0

inf
t(l1−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

Kh(θ − θ∗(t−i))

⎤⎦
≥ min

l1−1≤l<l

( eN(el)/2eN(l) 1eN(el)/2 min
(

N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k)),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))

≥ 1

2Al+1−l1
1eN(l∗)/2 min

(
N(l∗)/2P
k=1

Kh(θ − θ∗(t1(l
∗)−k)),

N(l∗)/2P
k=1

Kh(θ − θ∗(t2(l
∗)−k))

)
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where,

l∗ ≡ arg min
l:l1−1≤l<l

(
1

2Al+1−l
1eN(el)/2

min

(
N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k)),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))
.

Hence,

inf
t(l1−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

Kh(θ − θ∗(t−i))

⎤⎦
≥ min

l1−1≤l<l

( eN(el)/2eN(l) 1eN(el)/2
min

hl≤h≤hl1−1

(
N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k)),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))
.

Hence, similarly to A36, we can show that the denominator is positively bounded

away from zero with probability arbitrarily close to 1 by choosing l to be large enough.

Therefore, given ∆ = l − l1 being a constant,

B1(l, l −∆)
P→ 0

as l→∞.
Next, we prove uniform convergence by using the arguments by Bierens (1994).

Let

Ym =

t(l1)X
tl1=t(l1−1)+1

X
k

K∗(t(l)−m, t(l1), tl1 , k) sup
s0∈S

¯̄
A(tl1)

¯̄
.
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Then,

E

⎡⎣sup
θ∈Θ

N(l)X
m=1

1eN (l)KN(l),h(θ, θ
∗(t(l)−m) (q))Ym

⎤⎦
≤ ε1

µ
1

2π

¶J

⎧⎨⎩4E
⎡⎣ 1eN (l)

N(l)X
m=1

Y 2
m

⎤⎦⎫⎬⎭
1/2 Z

|ψ (hz)| dz

E
£
Y 2
m

¤
≤ E

⎡⎣ t(l1)X
tl1=t(l1−1)+1

X
k

K∗(t(l)−m, t(l1), tl1, k) sup
s0∈S

¯̄̄
A
(tl1 )

1

¯̄̄⎤⎦2

= E

⎡⎣⎧⎨⎩X
tl−1

X
k

K∗ (t (l)−m, t(l − 1), tl−1, k)⎧⎨⎩X
tl−2

X
k

K∗ (tl−1, t(l − 2), tl−2, k) ...
⎧⎨⎩X

tl1

X
k

K∗(tl1+1, t (l1) , tl1 , k) sup
s0∈S

¯̄̄
A
(tl1)

1

¯̄̄⎫⎬⎭
⎤⎦2 (A43)
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Using the results in Claim 1, we can show that

RHS of A43

≤
⎡⎣ lY
j=l1

X
k

µ
2εk+11

(k − 1)!
¶2(

sup
θ0∈Θ,hl≤h≤hl1−1

Eθ

£
Kh (θ

0 − θ∗(eg))¤)2k
⎤⎦

⎡⎣C2
1h

3J
l1−1 +

A
2
C2q

N (l)h5Jl1−1

⎤⎦
≤

⎡⎣ lY
j=l1

X
k

4ε2k+21

(k − 1)!

(
sup

θ0∈Θ,hl≤h≤hl1−1
Eθ

£
Kh (θ

0 − θ∗(eg))¤)2k
⎤⎦

⎡⎣C2
1h

3J
l1−1 +

A
2
C2q

N (l1 − 1)h5Jl1−1

⎤⎦
≤ £

4ε41e
λλ
¤∆ ⎡⎣C2

1h
3J
l1−1 +

A
2
C2q

N (l1 − 1)h5Jl1−1

⎤⎦ . (A44)

where

λ = ε21

(
sup

θ0∈Θ,hl1−1≤h≤hl
Eθ [Kh (θ

0 − θ(eg))])2 → ε21 sup
θ0∈Θ

eg (θ0)2 as l1 →∞.

Hence,

E

⎡⎣sup
θ∈Θ

N(l)X
m=1

1eN (l)KN(l),h(θ, θ
∗(t(l)−m) (q))

X
k

K∗(t(l)−m, t(l1), tl1 , k) sup
s0∈S

¯̄
A(tl1 )

¯̄⎤⎦
≤ ε1

£
4ε41e

λλ
¤∆/2

⎡⎣C2
1h

3J
l1−1 +

A
2
C2q

N (l1 − 1)h5Jl1−1

⎤⎦µ 1
2π

¶J Z
|ψ (hz)| dz

= ε1
£
4ε41e

λλ
¤∆/2

⎡⎣C2
1h

J
l1−1 +

A
2
C2q

N (l1 − 1)h9Jl1−1

⎤⎦µ 1
2π

¶J Z
|ψ (z)| dz → 0 as l1 →∞
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Therefore, the numerator divided by eN (l) converges to zero. Because the denomi-
nator divided by eN (l) can be shown to be bounded away from zero uniformly in Θ

with probability arbitrarily close to 1 given sufficiently large l, we have shown that

B1(l, l −∆)
P→ 0

uniformly in Θ.

Next, we prove convergence of B2(l, l1).

Again, the arguments are very similar to that of Lemma 5. That is, we consider

the numerator divided by eN (l). It can be written as
E

⎡⎣ 1eN (l)KN(l),h(θ, θ
∗(t(l)−m))

⎧⎨⎩X
tl−1

X
k

K∗ (t (l)−m, t(l − 1), tl−1, k)⎧⎨⎩X
tl−2

X
k

K∗ (tl−1, t(l − 2), tl−2, k) ...⎧⎨⎩
N(l1)X
k=1

tl1−t(l1−1)−1X
j=k−1

K∗(tl1, tl1 − j, tl1 − j − 1, k) sup
s0∈S

¯̄̄
A
(tl1−j−1)
1

¯̄̄⎫⎬⎭
⎤⎦ (A45)
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Then, again by using Claim 1,

RHS of A45

≤ ε1 sup
θ0∈Θ,hl≤h≤hl1−1

Eθ [Kh (θ
0 − θ(eg))]

l−1Y
j=l1

(X
k

εk+11

[(k − 1)!]

"
k−1Q
s=0

sup
θ0∈Θ,hl≤h≤hl1−1

E [Kh (θ
0 − θ (eg))]#)⎡⎣C1h(3/2)Jl1−1 +

AC2q
N (l1 − 1)h5Jl1−1

⎤⎦
≤ λ

£
ε1e

λλ
¤∆−1 ⎡⎣C1h(3/2)Jl1−1 +

AC2q
N (l)h5Jl1−1

⎤⎦→ 0 as l1 →∞.

where,

λ = ε1 sup
θ0∈Θ,hl≤h≤hl1−1

Eθ [Kh (θ
0 − θ(eg))]→ ε1 sup

θ0∈Θ
eg (θ0) as l1 →∞.

Next, we consider the denominator divded by eN(l). Let t1(l) ≡ t(l − 1) and t2(l) =

t(l− 1)+ eN(l− 1)/2. Then, arguments similar to ones used in deriving equation A36
can be used to derive the inequality below.

inf
t(l1−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦
≥ min

l1−1≤l<l

( eN(el)/2eN(l) 1eN(el)/2 min
hl≤h≤hl1−1

(
N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))

≥ 1

2Al+1−l1
1eN(l∗)/2 min

hl≤h≤hl1−1

(
N(l∗)/2P
k=1

Kh(θ − θ∗(t1(l
∗)−k)),

N(l∗)/2P
k=1

Kh(θ − θ∗(t2(l
∗)−k))

)
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where,

l∗ ≡ arg min
l:l1−1≤l<l

(
1

2Al+1−l
1eN(el)/2

min

(
N(l)/2P
k=1

Kh(θ − θ∗(t1(l)−k)),
N(l)/2P
k=1

Kh(θ − θ∗(t2(l)−k))

))

Hence, we can show that the denominator divided by eN (l) is bounded away from
zero uniformly in Θ with probability arbitrarily close to 1 with sufficiently large l.

Because the numerator divided by eN (l) converges to zero uniformly in Θ, we have

shown convergence. Therefore,

B2(l, l −∆l)
P→ 0

Next, we prove uniform convergence. Let

Ym ≡
tl1−t(l1−1)−1X

j=0

X
k

K∗(t(l)−m, t(l1)− j, tl1 − j − 1, k) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄

Then,

E

⎡⎣sup
θ∈Θ

N(l)X
m=1

1eN (l)KN(l),h(θ, θ
∗(t(l)−m) (q))Ym

⎤⎦
≤ ε1

µ
1

2π

¶J

⎧⎨⎩4E
⎡⎣ 1eN (l)

N(l)X
m=1

Y 2
m

⎤⎦⎫⎬⎭
1/2 Z

|ψ (hz)| dz (A46)
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and

E
£
Y 2
m

¤
≤ E

⎡⎣tl1−t(l1−1)−1X
j=1

X
k

K∗(t(l)−m, t(l1)− j, tl1 − j − 1, k) sup
s0∈S

¯̄̄
A
(t(l)−m−i−1)
1

¯̄̄⎤⎦2

= E

⎡⎣⎧⎨⎩X
tl−1

X
k

K∗ (t (l)−m, t(l − 1), tl−1, k)⎧⎨⎩X
tl−2

X
k

K∗ (tl−1, t(l − 2), tl−2, k) ...
⎧⎨⎩

tl1−t(l1−1)−1X
j=1

X
k

K∗(tl1, tl1 − j, tl1 − j − 1, k) sup
s0∈S

¯̄̄
A
(tl1−j−1)
1

¯̄̄⎫⎬⎭
⎤⎦2 (A47)

Using the results in Claim 1, we can show that

RHS of A47

≤
⎡⎣ lY
j=l1

X
k

µ
2εk+11

(k − 1)!
¶2(

sup
θ0∈Θ,hl≤h≤hl1−1

Eθ [Kh (θ
0 − θ∗(eg))])2k

⎤⎦
⎡⎣C2

1h
3J
l1−1 +

A
2
C2q

N (l1 − 1)h5Jl1−1

⎤⎦
≤

⎡⎣ lY
j=l1

X
k

4ε2k+21

(k − 1)!

(
sup

θ0∈Θ,hl≤h≤hl1−1
Eθ [Kh (θ

0 − θ∗(eg))])2k
⎤⎦

⎡⎣C2
1h

3J
l1−1 +

A
2
C2q

N (l1 − 1)h5Jl1−1

⎤⎦
≤ £

4ε41e
λλ
¤∆ ⎡⎣C2

1h
3J
l1−1 +

A
2
C2q

N (l1 − 1)h5Jl1−1

⎤⎦ (A48)
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where

λ = ε21 sup
θ0∈Θ,hl≤h≤hl1−1

Eθ [Kh (θ
0 − θ∗(eg))]2

Hence, substituting A48 into A46 we obtain

RHS of A46

≤ ε1

µ
1

2π

¶J

2
£
4ε41e

λλ
¤∆/2

vuuutC2
1h

J
l1−1 +

A
2
C2q

N (l)h9Jl1−1

Z
|ψ (z)| dz → 0

as l1 → ∞.

Therefore, the numerator divided by eN (l) converges to zero. Since the denominator
divided by eN (l) is bounded away from zero uniformly inΘ with probability arbitrarily
close to zero for sufficiently large l, we have shown that B2(l, l −∆)

P→ 0 uniformly

in Θ. Together, we have proved Lemma 6.

Now, let,

∆V (m,n) ≡ ∆V (�(t(m)−n), θ∗(t(m)−n))

∆V (m) ≡
h
∆V (m, 1), ...,∆V (m, eN(m))i

W (l, k) ≡
h−→
W (l, t(l + 1− k), t(l + 1− k)−m)

iN(l+1−k)
m=1

Then, iterating on A39, A41 we obtain the following.

∆V (l)0W (l, 1) ≤ A(l, l) +∆V (l − 1)0W (l, 2)

≤ ... ≤
k−1X
i=0

A (l, l − i) +∆V (l − k)0W (l, k + 1) .
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By Lemma 6, given k, the first term on the RHS,
k−1P
i=0

A (l, l − i) converge to 0 in

probability as l→∞ uniformly in Θ, and since ∆V (l + 1− k) is uniformly bounded

and W (l, k)0 ι ≤ βk from A40, the second term can be made arbitrarily small by

chosing a large enough k. Therefore, ∆V (l)0W (l, 1) converges to zero in probability

as l→∞ uniformly in Θ. Hence, we have shown that

¯̄̄
A
(t(l))
2 (θ)

¯̄̄
P→ 0

uniformly in Θ. Therefore,

¯̄̄
EV (s, �, θ)− bE(t(l)) [V (s, �, θ)]

¯̄̄
≤

¯̄̄̄
¯̄Z V (s0, �0, θ)dF�0(�

0, θ)−
N(t)X
n=1

V (t−n)(s0, �(t−n), θ∗(t−n))WN(t),h(θ, θ
∗(t−n))

¯̄̄̄
¯̄

≤
h¯̄̄
A
(t(l))
1

¯̄̄
+
¯̄̄
A
(t(l))
2

¯̄̄i
/β

P→ 0

uniformly in Θ.

Lemma 7:

¯̄̄
EV (s, �, θ)− bE(t) [V (s, �, θ)]

¯̄̄
P→ 0¯̄

V (s, �, θ)− V (t)(s, �, θ)
¯̄ P→ 0 as t→∞ uniformly in Θ.

BecauseA(t(l))1 (θ),∆V (l)0W (l, 1) converges to zero in probability as l→∞ uniformly

112



in Θ,

¯̄
V (s, �, θ)− V (t(l)) (s, �, θ)

¯̄
≤ sup

s0∈S

¯̄̄
A
(t(l))
1 (θ)

¯̄̄
+∆V (l)0W (l, 1)

P→ 0 as l→∞ (A49)

uniformly in Θ. That is, given δ > 0, η > 0, there exists L such that for any l > L

Pr

∙
sup
θ

¯̄
V (s, �, θ)− V (t(l)) (s, �, θ)

¯̄
< δ

¸
> 1− η

Now, take such l. Construct a new sequence where for m > 0, t0 (l) = t (l) + m,eN 0 (l) = N (t (l)), t0 (l − 1) = t0 (l) − eN 0 (l) , ....Then, because N (t) is nondecreasing

in t and increases at most by one for a unit increase in t, we can immediately see that

for any j = 1, ..., l, eN 0 (j) ≥ eN (j) and t0 (j) ≥ t (j) and hence, h (t0 (j)) ≤ h (t (j))

Therefore, by repeating the steps in previous Lemma, we can see that for the same δ

and η

Pr

∙
sup
θ

¯̄̄
V (s, �, θ)− V (t0(l)) (s, �, θ)

¯̄̄
< δ

¸
> 1− η.

Similarly, we can show that

¯̄̄
EV (s, �, θ)− bE(t(l)+m) [V (s, �, θ)]

¯̄̄
P→ 0

as l→∞ uniformly in Θ for any m > 0, and we have proved the theorem.

Corollary 1: Suppose Assumptions 1 to 8 are satisfied. Then Theorem 1 implies

that λ
³
θ(t), θ∗(t)|Ω(t−1)

´
converges to λ

³
θ(t), θ∗(t)

´
in probability uniformly.

Proof : From Assumption 5, L(YNd,Td|θ, V (.θ)) is uniformly continous and strictly
positive. Hence, λ (θ, θ∗) is also uniformly continuous in θ, θ∗ ∈ Θ. Since V (t) → V

in probability uniformly in s, θ ∈ Θ, L(YNd,Td |θ, V (t) (., θ)) is stochastically equicon-
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tinuous. To see this, note that

¯̄
L(YNd,Td|θ, V (t) (., θ))− L(YNd,Td |θ0, V (t) (., θ0))

¯̄
≤ ¯̄

L(YNd,Td|θ,
£
V (t) (., θ)

¤
)− L(YNd,Td |θ0, V (., θ))

¯̄
+
¯̄
L(YNd,Td|θ, [V (., θ)])− L(YNd,Td|θ0, V (., θ0))

¯̄
+
¯̄
L(YNd,Td|θ0, [V (., θ0)])− L(YNd,Td|θ0, V (t) (., θ0))

¯̄

Hence,

Pr
¡¯̄
L(YNd,Td |θ, V (t) (., θ))− L(YNd,Td |θ0, V (t) (., θ0))

¯̄ ≥ η
¢

≤ Pr
¡¯̄
L(YNd,Td |θ,

£
V (t) (., θ)

¤
)− L(YNd,Td |θ, V (., θ))

¯̄ ≥ η/3
¢

+Pr
¡¯̄
L(YNd,Td |θ, [V (., θ)])− L(YNd,Td|θ0, V (., θ0))

¯̄ ≥ η/3
¢

+Pr
¡¯̄
L(YNd,Td |θ0, [V (., θ0)])− L(YNd,Td|θ0, V (t) (., θ0))

¯̄ ≥ η/3
¢
. (A52)

Furthermore, because of uniform continuity of the likelihood, there exists δ > 0 such

that for any θ, θ0 ∈ Θ, |θ − θ0| < δ,

¯̄
L(YNd,Td |θ, [V (., θ)])− L(YNd,Td |θ0, V (., θ0))

¯̄
< η/3 (A53)

Because V (t) → V in probability uniformly, for any κ > 0 there exists positive T such

that for any t > T ,

Pr

µ
sup
θ

¯̄
L(YNd,Td |θ,

£
V (t) (., θ)

¤
)− L(YNd,Td |θ, V (., θ))

¯̄ ≥ η/3

¶
< κ/2 (A54)

A52, A53, and A54 imply that for any κ > 0, η > 0, there exists positive δ and T
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such that for any t > T , for any θ, θ0 ∈ Θ, |θ − θ0| < δ,

Pr
¡¯̄
L(YNd,Td |θ, V (t) (., θ))− L(YNd,Td |θ0, V (t) (., θ0))

¯̄ ≥ η
¢
< κ

Therefore, L(YNd,Td|θ, V (t) (., θ)) is stochastically equicontinuous. Because the like-

lihood is strictly positive in Θ, this implies that λ
¡
θ, θ∗|Ω(t)¢ is also stochastically

equicontinuous. Hence, all the conditions for Theorem 2.1 of Newey (1991) are satis-

fied. Therefore, λ
¡
θ, θ∗|Ω(t)¢ converges to λ (θ, θ∗) uniformly in θ, θ∗ ∈ Θ.

Theorem 2: Suppose Assumptions 1 to 8 are satisfied for V (t), t = 1, ..., π,

L, � and θ. Suppose θ(t), t = 1, ... is generated by a modified Metropolis-Hastings

Algorithm described earlier, where λ
³
θ(t), θ∗(t)|Ω(t−1)

´
converges to λ

³
θ(t), θ∗(t)

´
in

probability uniformly. Then, θ(t) converges to eθ(t) in probability, where eθ(t) is a Markov
chain generated by the Metropolis-Hastings Algorithm with proposal density q(θ, θ(∗))

and acceptance probability function λ
³
θ, θ(∗)

´
.

Proof of Theorem 2

We are given a random process with transition probability f (t) (., .) which is

f (t)
³
θ(t), θ0

´
= λ

³
θ(t), θ0|Ω(t−1)

´
q
³
θ(t), θ0

´
+

∙
1−

Z
λ
³
θ(t), θ0|Ω(t−1)

´
q
³
θ(t), θ0

´¸
δθ(t) (θ

0)

where δθ(t) is the Dirac mass at θ
(t). Because λ

¡
θ, θ0|Ω(t−1)¢ converges to λ (θ, θ0)

in probability uniformly on θ, θ0 ∈ Θ, f (t) (., .) converges to f (., .) in probability

uniformly as t → ∞. Because both λ
¡
θ, .|Ω(t−1)¢ and q (θ, .) are uniformly positive

functions for any θ ∈ Θ, using the arguments similar in the proof of Lemma 1, we

can construct a density g(.) and a constant ε0 > 0 such that for any θ ∈ Θ,
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f (t)(θ, .) ≥ ε0g(.)

f(θ, .) ≥ ε0g(.)

Define ν(t) as follows.

v(t) = min

½
inf
θ0∈Θ

½
f (t) (θ, θ0)
f (θ, θ0)

¾
, 1

¾

Then,

f (t)(θ, .) ≥ v(t)f (θ, .)

f(θ, .) ≥ v(t)f (θ, .)

Then, because of uniform convergence of f (t) to f in probability, v(t) converges to 1

in probability.

Now, construct the following coupling scheme. Let X(t) be a random variable that

follows the transition probability f (t)(x, .) given X(t−1) = x, and Y (t) be a Markov

process that follows the transition probability f(y, .), given Y (t−1) = y. Suppose

X(t) 6= Y (t). With probability ε0 > 0, let

X(t+1) = Y (t+1) = Z(t+1)˜g(.)

and with probability 1− ε0,

X(t+1)˜
1

1− ε0

£
f (t)

¡
X(t), .

¢− ε0g(.)
¤
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Y (t+1)˜
1

1− ε0

£
f
¡
Y (t), .

¢− εg(.)
¤

Suppose X(t) = Y (t) = Z(t). With probability v(t),

X(t+1) = Y (t+1)˜f(Z(t), .)

and with probability
¡
1− v(t)

¢
,

X(t+1)˜
1

1− v(t)
£
f (t)

¡
X(t), .

¢− v(t)f(Z(t), .)
¤

Y (t+1)˜
1

1− v(t)
£
f
¡
Y (t), .

¢− v(t)f(Z(t), .)
¤
.

Let w(t) = 1 − v(t). Then, w(t) P→ 0 as t → ∞. Let S(t) ∈ {1, 2} be the state at
iteration t, where state 1 is assumed to be the state in which X(t) = Y (t), and state

2 the state in which X(t) 6= Y (t). Then, S(t) follows the Markov process with the

following transition matrix.

P =

⎡⎢⎢⎣ 1− w(t) w(t)

ε0 1− ε0

⎤⎥⎥⎦

Denote the unconditional probability of state 1 at time t as π(t). Then,

£
π(t+1), 1− π(t+1)

¤
=
£
π(t), 1− π(t)

¤⎡⎢⎢⎣ 1− w(t) w(t)

ε0 1− ε0

⎤⎥⎥⎦
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Hence,

π(t+1) = π(t)
£¡
1− w(t)

¢− ε0
¤
+ ε0

≥ π(t) (1− ε0) + ε0 − w(t)

≥ π(t−m) (1− ε0)
m+1 + 1− (1− ε0)

m+1

− £w(t) + (1− ε0)w
(t−1) + ...+ (1− ε0)

mw(t−m)
¤

We now prove that π(t) P→ 1. Define Wtm to be

Wtm = w(t) + (1− ε0)w
(t−1) + ...+ (1− ε0)

mw(t−m)

Because w(t) P→ 0, for any δ1 > 0, δ2 > 0, there exists N > 0 such that for any t ≥ N ,

Pr
£¯̄
w(t) − 0¯̄ < δ1

¤
> 1− δ2

Now, given any δ1 > 0, δ2 > 0, let m be such that

(1− ε0)
m <

δ1
5

Also, let δ1 satisfy δ1 < δ1
5(m+1)

, and δ2 satisfy δ2 < δ2
m+1

. Then,

Pr

½
|Wtm − 0| < δ1

5

¾
≥ Pr

(
t\

j=t−m

¯̄
w(j) − 0¯̄ < δ1

)

= 1− Pr
(

t[
j=t−m

¯̄
w(j) − 0¯̄ ≥ δ1

)

≥ 1−
tX

j=t−m
Pr
©¯̄
w(j) − 0¯̄ ≥ δ1

ª ≥ 1− δ2 (A55)
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Now, let N be defined as N = max {N,m}. Then, for each k > N ,

Pr
£¯̄
π(t+1) − 1¯̄ < δ1

¤
= Pr

£¯̄
π(t−m) (1− ε0)

m − (1− ε0)
m+1 +Wtm

¯̄
< δ1

¤
≥ Pr

∙¯̄
π(t−m) (1− ε0)

m − (1− ε0)
m+1

¯̄
<
2δ1
5
, |Wtm| < δ1

5

¸
(A56)

Because 0 ≤ π(t−m) ≤ 1,

¯̄
π(t−m) (1− ε0)

m − (1− ε0)
m+1

¯̄ ≤ |2(1− ε0)
m| ≤ 2δ1

5

Hence,

RHS of A56 = Pr
∙
|Wtm| < δ1

5

¸
≥ 1− δ2.

Therefore, π(t) converges to 1 in probability.

Therefore, for any δ > 0, there exists M such that for any t > M ,

Pr
£
X(t) = Y (t)

¤
> 1− δ

Since Y (t)follows a stationary distribution, X(t) converges to a stationary process in

probability, and we have proved the theorem.

Corollary 2: The sequence of parameter simulations generated by theMetropolis-

Hastings algorithm with proposal density q(θ, θ∗) and the acceptance probability

λ (θ, θ∗) converge to the true posterior.

Proof : Here, we use Corollary 7.7 of Robert and Casella (2004), which states

that if the Metropolis-Hastings Markov Chain has invariant probability density f

and if there exist positive � and δ such that q (x, y) > � if |x− y| < δ, then for any

h ∈ L1 (f) ,
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limT→∞ 1
T

PT
t=1 h

³
θ(t)
´
=
R
h (θ) f (θ) dθ, and

limn→∞
°°R Kn (θ, .)μ (dθ)− f

°°
TV
= 0,

for arbitrary initial distribution μ, where Kn (θ, .) is the transition kernel for n

iterations, which in this case is defined by q and λ, and the norm is the total varia-

tion norm. By construction the Metropolis-Hastings Markov Chain has an invariant

probability density, which is proportional to π (θ)L
¡
YNd,Td|θ

¢
, which is assumed to

be bounded and positive on Θ. Since the proposal density is strictly positive over the

parameter space, the condition for the proposal density is also satisfied.
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