
Prediction and Residual Analysis 
 
Suppose the model is 
 

uxxy kk ++++= βββ ...110  
 
Suppose  is the salary and  are the individual 
characteristics (experience, tenure, etc.) After 
the estimation of the model, suppose we want to 
predict the salary of an individual with certain 
experience, tenure, etc. (

y x

kk cxcx == ,...,11 ) 
The predicted salary is: 
 

kkcc βββθ ˆ...ˆˆˆ
1100 +++=  

 
 
 
In order to derive the confidence interval, we 
need to calculate the standard error ( )0̂.. θes  
 
Easy way to do this: 
 
Rewrite the linear model as follows: 
 



( ) ( ) ucxcxy kkk +−++−+= βββ ...111
*
0  

 
The regression result is: 
 

( ) ( )kkk cxcxy −++−+= ββθ ˆ...ˆˆˆ 1110  
 
You want to predict salary at  ( kk cxcx == ,...,11 ). 
Plug in those values: 
 

0̂ˆ θ=y , which is the intercept.  
 
So, in order to look at the standard error of the 
prediction 0̂θ , just take a look at the standard 
error of the intercept. 
 
 
 
 
95% confidence interval: 
 

( ) ( )[ ]0025.000025.00
ˆˆ,ˆˆ θθθθ setset +− , which is called the 

prediction interval. 
 



But this is the confidence interval of 0̂θ , which is 
the predictor, which essentially is the prediction 
of the average salary at ( kk cxcx == ,...,11 ). This 
tells you about the accuracy of the prediction of 
the average salary. But what would be more 
useful is the accuracy of the prediction with 
respect to the realized salary of an individual, 
which we want to predict.  
 
 
 
Prediction error: 
 
The true (realized) value: 
 

0
110

0 ... uccy kk ++++= βββ  
 
The predicted value: 
 

kkcc βββθ ˆ...ˆˆˆ
1100 +++=  

 
The difference, which is the prediction error: 
 



( ) ( ) ( ) 0
111000

00 ˆ...ˆˆˆˆ uccye kkk +−++−+−=−= ββββββθ
 
Because  is the new error term, not in the data, 
it is independent to all ’s in the data, hence, 
orthogonal to ’s.  
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Hence, 

( ) ( ) 0 ,ˆ...ˆˆ ,ˆ 0
110

0
0 =+++= uccCovuCov kkβββθ  

 
So, 
 

( ) ( ) ( ) ( )00000 ,ˆ2ˆˆ yCovyVarVareVar θθ ++=  
 

( ) ( ) 0ˆ 0
0 ++= uVarVar θ  

 
 
 
 
 
 
 



 
The estimated standard error is: 
 
( ) ( ) 2

0
0 ˆˆˆ σθ += Varese  

 
95% prediction interval of the predictor is 
 

( ) ( )[ ]0
025.00

0
025.00 ˆ..ˆ,ˆ..ˆ eesteest +− θθ  

 
 
Example: housing price 
 
Data:  
Rooms: number of rooms 
Baths  : number of bathrooms. 
Age     : age of the house 
Nbh     : neighborhood rating (0 to 6)  
Dist     : distance to nearest incinerator (waste 
treatment) 
 



 
 
Summary statistics. 
 
 Obs.  Mean 
price 321 96100.66 
Annual price 321 7207.55 
rooms 321 6.58567 
baths 321 2.339564 
age 321 18.00935 
agesq 321 1381.567 
nbh 321 2.208723 
dist 321 20715.58 
  
Annualize the price:  
 
generate aprice = price*0.075 
 
price regression 
regress aprice rooms baths age agesq nbh dist 
 
 
 
 
 



 
 
 coefficient t-stat 
const 1466.687 1.13 
rooms 463.6997 2.31 
baths 1792.686 6.61 
age -44.45106 -2.83 
agesq .1892436 1.92 
nbh -178.4794 -2.70 
dist -.0276951 -1.41 
 
Now, do the procedure suggested by Wooldridge.  
Predict at the mean: 
 

1c =6.58567, 2.339564, =2c =3c 18.00935 
=4c 1381.567, =5c 2.208723, =6c 20715.58 

 
generate roomsp = rooms - 6.58567 
generate bathsp  = baths - 2.339564 
generate agep     = age   - 18.00935 
generate agesqp = agesq - 1381.567 
generate nbhp    = nbh   - 2.208723 
generate distp     = dist  - 20715.58 
 
 



 
regress aprice roomsp bathsp agep agesqp nbhp 
distp 
 
 coefficient Std. error 
const 7207.55 136.1336 
rooms 463.6997 200.5598 
baths 1792.686 271.1221 
age -44.45105 15.732 
agesq .1892436 .0985865 
nbh -178.4794 66.21634 
dist -.0276951 .0195843 
 
source SS df MS 
Model 1.4950e+09 6 249162257
Residual 1.8679e+09 314 5948884.71
Total 3.3629e+09 320 10509135.4
 
 
Now, the constant term is the predicted house 
price at the mean characteristics, which turns out 
to be exactly the mean housing price, 7207.55 
 
 
 



 
Standard error of the prediction:  

( ) 8.244259488841.136ˆ 2
0 =+=+σθVariance

 
Now, try to predict the effect of the unit 
deterioration in neighbhorhood quality.  

15
'
5 += cc  

 
replace nbhp = nbhp-1 
 
regress aprice roomsp bathsp agep agesqp nbhp 
distp 
 
 coefficient Std. error 
const 7029.07 151.38 
rooms 463.6997 200.5598 
baths 1792.686 271.1221 
age -44.45105 15.732 
agesq .1892436 .0985865 
nbh -178.4794 66.21634 
dist -.0276951 .0195843 
 
 
 



 
 
Change in predicted housing price: from 
7207.55 to 7029.07.  
 
 
source SS df MS 
Model 1.4950e+09 6 249162257
Residual 1.8679e+09 314 5948884.71
Total 3.3629e+09 320 10509135.4
 
Standard error of the prediction:  

( ) 7.244359488844.151ˆ 22
0 =+=+σθVariance

 
 
 
 
 
 
 
 
 
 
 
 



Predicting y  when ( )ylog  is the Dependent 
Variable 
 
Linear model: 
 

( ) uxxxy kk +++++= ββββ ...log 22110  
 
As we discussed before, the predictor of  
at  is 

( )ylog
x

 
( ) kk xxxy ββββ ˆ...ˆˆˆogl̂ 22110 ++++=  

 
Where ’s are the OLS estimates.  jβ̂
 
Now, but suppose you want to predict y:  
 

[ ] ( )uxxxy kk exp...exp 22110 ×++++= ββββ  
 
Suppose that ( )2,0~ uNu σ , and is independent of 

’s. Then, it is well known that x ( )uexp  is log 

normally distributed with mean ⎥
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⎤
⎢
⎣

⎡
2
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2
uσ .  

 
 



 
 
 
Therefore,  
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Hence, if you want to predict y , you should use 
 

[ ]kk
u xxxy ββββσ ˆ...ˆˆˆexp

2
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But how about if we don’t want to impose the 
assumption that the error term is normally 
distributed while still assuming that the error 
term is independent of the explanatory variables.  
 
 
 
 
 
 
 



 
 
Then, we need to get the multiplicative constant 

0α̂ , i.e.  
 

[ ]kk xxxy ββββα ˆ...ˆˆˆexpˆˆ 221100 ++++=  
 
Step 1: Regress ( )iylog  on klxil ,...,1, =  to get 

. kjj ,...,0,ˆ =β
 
Step 2: Regress  on iy

[ ]ikkii xxx ββββ ˆ...ˆˆˆexp 22110 ++++  without constant 
to get the coefficient 0α̂ .  
 
 
 
 
 
 
 
 
 
 
 



Multiple Regression Analysis with Qualitative 
Information: Binary (or Dummy) Variables.  
 
 
Single Dummy Independent Variable: 
 

1=grant  if the firm received a training grant 
            if otherwise.  0=
 
Wage equation: 
 

uemploysalesgranthrstrain ++++= )log()log( 2100 ββδβ
 
hrstrain : hours of training per employee for a 
firm. 
 
sales : annual sales 
 
employ : number of employees. 
 
 
 
 
 
 



Then, the coefficient 0δ  indicates the difference 
of hours of training between firms receiving a 
training grant and those that did not. That is, 
given sales and employment,  
 

[ ] [ ]employsalesgrantnoEemploysalesgrantE ,| ,|0 −=δ
 
Intercept shift: 
Intercept for firms without grant: 0β  
 
Intercept for firms with grant: 00 δβ +  
 
Notice that we did not put dummy for no grant. 
Suppose we put a dummy no grant as follows 
 

1=ngrant  if the firm did not receive a training  
                grant 
            if otherwise.  0=
 
 
 
 
 
 
 



Then, the linear equation becomes 
 

ngrantgranthrstrain 100 δδβ ++=  
uemploysales +++ )log()log( 21 ββ  

 
Then, you cannot estimate the linear equation by 
OLS. This is because of the perfect collinearity 
of the independent variables. Notice that 
 

1=+ ngrantgrant  
 
Which is the independent variable corresponding 
to the constant term.  
This is called the dummy variable trap.  
 
That is, if you have k  categories and want to use 
dummy variables, you should drop one category 
and have only 1−k  dummy variables.  
 
 
 
 
 
 



In this case, intercept is the coefficient estimate 
of the excluded category, which is the base 
group. 
 
 
If you absolutely want to use all the k dummy 
variables, then don’t include the intercept.  
 

iii ngrantgranthrstrain 10 δδ +=  
iii uemploysales +++ )log()log( 21 ββ  

 
Using Dummy Variables for Multiple 
Categories. 
 

( ) marrfemmarrmalewage 198.0213.0321.0ogl̂ −+=  
                   (0.110)  (0.055)                    (0.058) 

200054.0027.0079.0110.0 experexpereducsingfem −−+−
   (0.056)                 (0.007)          (0.005)             (0.00011) 

200053.0 029.0 tenuretenure −+  
   (0.007)              (0.00023) 
 

526=n ,  461.02 =R
 
 
 



Notice that we have 4 categories: female married, 
female single, male married and male single and 
we drop the male single from the dummy 
variables and make it the base group. For 
example: 
 

1=marrymale  if the individual is a married male 
                  otherwise.  0=
 
Holding education, experience and tenure 
constant, married males have higher wages than 
single ones, whereas the opposite holds for 
females.  



Incorporating Ordinal Information by Using 
Dummy Variables: 
 
Suppose the linear model is 
 

( ) ueducwage ++= 10log ββ  
 
Where education in the data is: 
 

0=educ  if the individual did not graduate from 
highschool.  
 

1=educ  if the individual graduated from 
highschool.  
 

2=educ  if the individual graduated from college.  
 

3=educ  if the individual has graduate degree.  
 
 
Then, the implicit assumption is that the 
marginal rate of return from highschool 
graduation is the same as that of college 
graduation and that of graduate school.  
 



A way to estimate returns to education allowing 
different returns for every schools is to define 
following dummies.  
 

11=D  if the individual graduated from        
          highschool 
      otherwise 0=
 

12 =D  if the individual graduated from        
          college 
      otherwise 0=
 

13 =D  if the individual graduated from grad    
school 

      otherwise 0=
 
 

( ) uDDDwage ++++= 321log 3210 δδδβ  
 

1δ : marginal returns to highschool degree.  
 

2δ : marginal returns to college degree.  
 

3δ : marginal returns to graduate degree.  
 



( ) ueducwage ++= 10log ββ   
 
is a restriction of the above dummy model 
because 
 

11 βδ = , 12 βδ = , 13 βδ =  
 
The restriction is  
 

321 δδδ ==  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 


