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Abstract

Linkages among the dispersion of prices, monetary growth, and inflation are examined in random
matching monetary model. The model features price posting by identical sellers and noisy search
by ex ante identical buyers among the posted prices. It is shown that if the probability that a
buyer observes only one price is strictly between zero and one, then the distribution of real prices
is necessarily non-degenerate and continuous in a stationary symmetric monetary equilibrium. In
this environment, money creation results in constant inflation of nominal prices and an increase in
both the dispersion and average level of real prices or purchasing power. Moreover, inflation lowers
consumption by more in equilibria with price dispersion than in comparable cases where the price
distribution is concentrated at the competitive price.
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1. Introduction

In this paper we develop a model to study linkages among the distribution of prices, monetary

growth, and inflation in equilibrium. The model features price posting by identical sellers and noisy

search by ex ante identical buyers among the posted prices. We find that if some buyers observe

only one price but others observe strictly more than one, then in stationary symmetric equilbria

with valued fiat money the distribution of prices is necessarily non-degenerate and continuous. We

also find both price dispersion and the average real price level are increasing in the inflation rate

in equilibria of this type. Inflation lowers welfare through the inflation tax, and this effect is larger

with price dispersion than it would be in a competitive equilibrium.

Our interest in price-posting equilibria with dispersed fiat money prices stems from two sources.

First, price-posting equilibria have proved somewhat difficult to square with the existence of valued

fiat money in search environments. In a non-monetary model, Diamond (1971) showed that in an

environment with identical buyers and sellers and in which sellers post prices, the unique equilibrium

price distribution is degenerate at the buyers’ reservation price. That is, sellers set prices to extract

all gains from trade. In an environment with fiat money, however, this type of equilibrium typically

cannot exist. Sales of goods for fiat money involve a producer or seller incurring costs in the

present in exchange for money which can only be used in the future. If at that future time the

buyer will realize no surplus from exchange, then he/she has no incentive in the present to exchange

something valuable for fiat money. In a monetary economy with discounting this problem arises

from the friction that gives rise to fiat money and does not require an explicit search cost. Only if

there is a possibility that the agent will be able to purchase goods in the future at a price below

his/her reservation price may fiat money have value in equilibrium.

Soller-Curtis and Wright (2000) construct a model of price-posting and exchange among ex

ante identical agents in which fiat money can have value. In their environment, consumers receive

preference shocks and are thus heterogeneous ex post. Sellers cannot extract all gains from trade

from all buyers as doing so would entail pricing above some buyers’ reservation prices. In this model,

if a stationary monetary equilibrium exists, then there is an equilibrium with price dispersion. In

this equilibrium, however, exchange will take place only at two different prices. With heterogeneity

among buyers induced by random preference shocks, the reservation prices of ex post different

types of buyers are proportional to each other and sellers cannot be indifferent between more than

two prices. In addition, for some parameter values this model also has a single price equilibrium

coexisting with the price dispersion equilibrium.

In this paper, we construct a model in which the distribution of fiat money prices in equilibrium

1



will necessarily be non-degenerate and continuous. We do this by embedding the price posting

environment of Burdett and Judd (1983) in a random matching monetary model similar to those

studied by Shi (1999) and Head and Shi (2000). The economy is populated by identical households

comprised of measures of identical sellers who post fiat money prices at which they are willing to

produce and sell consumption goods, and ex ante identical buyers who hold fiat money, observe a

random number of price quotes posted by sellers, and may choose to buy at the lowest price they

observe. As in the model of Burdett and Judd, whether or not there is price dispersion depends

on the probability that a representative buyer observes a single price. The ex post heterogeneity of

buyers with regard to the number of price quotes they observe is the key factor generating price

dispersion in equilibrium. In the model, if this probability is strictly between zero and one, then

the distribution of prices in equilibrium is necessarily non-degenerate and continuous.

Our second source of motivation for this study is the literature on inflation and uncertainty

about the price level. If inflation contributes to price dispersion, then it is possible that uncertainty

about the return an individual agent will receive on his/her money holdings may contribute to

the overall welfare costs of inflation. Several authors (for example, Sheshinski and Weiss (1977),

Caplin and Spulber (1985, 1987), Benabou (1988) and Diamond (1993)) have modeled dispersion in

real prices as stemming from menu costs. The Burdett-Judd mechanism employed here generates

price dispersion in equilibrium without requiring assumptions such as menu costs or exogenously

imposed nominal rigidities. Also, this framework relies on search frictions which naturally give rise

to a role for fiat money without additional assumptions.

In our model inflation raises real prices and lowers welfare through the inflation tax. Money

creation which erodes the value of fiat money over time affects the incentives of sellers to acquire

fiat money and buyers to spend fiat money in the current period. We find that in equilibria with

price dispersion, both the degree of price dispersion and the average real price level are increasing

in the rate of inflation. Moreover, in response to an increase in the rate of inflation, the average

transaction price rises and household consumption falls by more than they would in an environment

in which prices are concentrated at the competitive level. Thus price dispersion of the type studied

here raises the welfare costs of inflation.

This version of the paper is preliminary. The environment is presented in Section 2. A class of

stationary symmetric monetary equilibrium is defined in Section 3. Also in this section existence

of equilibria with price dispersion is established and equilibria are partially characterized. Section

4 considers the effects of inflation in the stationary symmetric monetary equilibrium with the focus

in this version being on a numerical example. Section 5 concludes, and proofs of all propositions
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are contained in the appendix.

2. The Economy

Time is discrete and there is no aggregate uncertainty. Similar to the environments studied

in Shi (1999) and Head and Shi (2000), the economy is comprised of a large number (measure

H) of H ≥ 3 different types of household. A type h ∈ {0, . . . , H} household is distinguished

by its ability to produce a non-storable consumption good of type h and the fact that it derives

utility only from consumption of the type h + 1 good, modulo H. Each household in turn is

comprised of large numbers (i.e. unit measures) of “buyers” and “sellers”. Household members do

not have independent preferences. Rather, they share equally in the utility generated by household

consumption.

The a representative type h household receives utility u(ct) from consumption of c units of its

preferred good at time t, where u(·) is strictly concave and increasing. Members of this household

who are sellers can produce good h at a constant marginal cost of φ > 0 units of utility per unit.

The household maximizes the discounted sum of utility from consumption minus production costs

over an infinite horizon:

U =
∞∑
t=0

βt [u(ct)− xt] , β ∈ (0, 1) (2.1)

Here β is a discount factor and xt represents total utility costs of production incurred by the

household’s sellers.

Households of a given type are indistinguishable and thus cannot be relocated in the future

following an exchange. As a result, all exchanges between members of different households must

be quid pro quo. Since a type h household produces good h and consumes good h + 1, a double

coincidence of wants between members of any two households is impossible. Exchange is facilitated

by the existence at time t of MtH units of perfectly storable and intrinsically worthless fiat money

at time t. A type h household may acquire some of this fiat money by having its producers sell

output to a buyers of type h − 1 households. This money may then be exchanged for type h + 1

consumption good by the household’s buyers in a future period.

Let the per household stock of fiat money be given by, Mt. In the initial period (t = 0)

households of all types are endowed with M0 units of this money. At the beginning of each

subsequent period (i.e. for t ≥ 1), they receive a lump-sum transfer, (γ − 1)Mt−1, of new units of

fiat money from a government that has no other purpose than to increase the stock of money at

gross rate γ ≥ 1.

At the beginning of period t a representative type h household (for any h) has post-transfer

3



money holdings, mt (in period 0, m0 = M0 for all households). These money holdings are divided

equally among the household’s unit measure of buyers. At this point the household’s buyers and

sellers split up for a “trading session”. Buyers receive a random number of price quotes posted by

type h+ 1 households. Following household instructions, the buyers decide whether and how much

to buy at the lowest price quote that they receive. Meanwhile, each of the household’s sellers posts

a price at which it is willing to sell consumption good to a buyer from a type h− 1 household. It

then sells to all households that receive and accept its price offer. At the end of the period, buyers

and sellers reconvene. The consumption good purchases of the buyers, and the sales receipts (in

units of fiat money) are pooled. The household consumes the goods purchases and carries its sales

receipts into the next period, where they are augmented by transfer (γ − 1)Mt to become mt+1.

The mechanism by which sellers post prices and buyers choose among the price quotes they

receive follows the “noisy sequential search” formulation of Burdett and Judd (1983). Each buyer

receives a random number of price quotations from prospective sellers. Let qk, k = 1, . . . ,∞, denote

the probability that a randomly chosen buyer receives k price quotations, (alternatively, qk is the

fraction of the household’s B buyers who receive k quotations). Denote the distribution of prices

from which these quotations are drawn (i.e. the distribution of prices posted by sellers from type

h+1 households at time t) be denoted Ft(pt). Let the distribution of the lowest price quote received

by buyers at time t be denoted Jt(pt), where

Jt(pt) =
∞∑
k=1

qk

[
1− [1− Ft(pt)]k

]
∀pt (2.2)

If each buyer chooses to purchase at the lowest price quote it receives, and spends m̂t(pt)

conditional on the price paid, then expected purchases of consumption good for a randomly selected

buyer will be given by

cit =
∫
pt

m̂it(pt)
pt

dJt(pt) i ∈ [0, 1], (2.3)

Each buyer is constrained to spend only the money distributed to them at the beginning of the

period by the household:

m̂it(pt) ≤ mt ∀i, pt. (2.4)

As there is no aggregate uncertainty, actual household consumption equals expected:

ct =
∫
i

∫
pt

m̂it(pt)
pt

dJt(pt)di =
∫
pt

m̂t(pt)
pt

dJt(pt). (2.5)

where the second inequality in (2.5) assumes that all buyers, being identical, behave identically if

faced with the same lowest price (i.e. m̂it(pt) = m̂t(pt) for all pt).
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Each seller is directed by the household to post a particular price, p. If a buyer from a type

h − 1 household chooses to purchase at this price, then the seller incurs φ for each unit of good

produced. Thus, the expected utility cost incurred by a seller who posts p is given by

xi(pt) = φ
M̂t(pt)
pt

∞∑
k=1

qkk [1− Ft(pt)]k−1
i ∈ [0, 1], (2.6)

where M̂ is the quantity of money spent by the type h− 1 buyer and here Ft(pt) is used to denote

the distribution of prices posted by other type h households at time t. If the household instructs

all of its sellers to post the same price, then total utility cost is given by x(pt). If the household

specifies a distribution F̂t(pt) from which sellers choose prices to post, then the assumption of no

aggregate uncertainty implies

xt =
∫
pt

x(pt)dF̂t(pt). (2.7)

For a representative household of type h, the state at time t is given by its individual money

holdings, mt, and the aggregate money stock per household, Mt. The following Bellman equation

represents the household’s dynamic optimization problem.

vt(mt,Mt) = max
mt+1,m̂t(pt),F̂t(pt)

{u(ct)− xt + βvt+1(mt+1,Mt+1)} (2.8)

subject to

(2.4) (2.5) (2.6) (2.7)

mt+1 = mt −
∫
pt

m̂t(pt)dJt(pt) +
∫
pt

M̂t(pt)
∞∑
k=1

qkk [1− Ft(pt)]k−1
dF̂t(pt) + (γ − 1)Mt (2.9)

Mt+1 = γMt, (2.10)

where the household takes the actions of other households, represented here by the sequences of

functions, M̂t(pt), and distributions, Ft(pt), as given.

Prior to the trading session in period t, the household must specify rules by which its buyers

and sellers act. Considering the buyers first, the household specifies a function, m̂t(pt), which tells

the buyer how much of its currency holdings to exchange for consumption good if the lowest price

quote it receives is pt. The household gain to exchanging at m̂t units of currency for consumption

at pt is given by the marginal utility of current household consumption times the quantity of

consumption good purchased, m̂t/pt. The household cost of this exchange is the marginal value of

money next period times the number of currency units given up, m̂t. Let ωt denote the value to the
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household of a unit of currency spent by a buyer or acquired by a seller during the trading session

of the current period. From the household Bellman equation, we have

ωt = β
∂vt+1

∂mt+1
. (2.11)

For each pt then, the optimal spending rule is characterized in the following lemma:

Lemma 1: The optimal spending rule, m̂t(pt), has the following “reservation price” form:

m̂t(pt) =

mt pt ≤ u′(ct)
ωt

0 pt >
u′(ct)
ωt

.
(2.12)

Proof: For all pt, the optimal spending rule satisfies

m̂t(pt) ∈ argmax
m̂t

[
u′(ct)
pt
− ωt

]
m̂t (2.13)

subject to

m̂t ≤ mt. (2.14)

Since neither household consumption, ct, nor the household’s marginal valuation of money, ωt, is

affected by the spending of a particular buyer in a match, the household will instruct its buyers to

spend their entire money holdings as long as the bracketed term in (2.12) is positive. That is, the

household reservation price, p̄t, is given by u′(ct)/ωt. If the lowest price that a buyer observes at

time t is greater than p̄t, then the buyer returns to the household with its money holdings unspent

and the household carries the money into period t+ 1.

The household also specifies a distribution of prices from which its sellers posted prices are

drawn. The expected return from having a seller post a particular price at time t depends on the

distribution of prices posted by firms from other households of its type, Ft(pt), and the strategies

of its prospective buyers, M̂t(pt). Let p̃t denote the household’s belief regarding the reservation

price of its potential customers. The household will instruct no seller to post pt > p̃t, as any such

seller is expected to make no sales, generating an expected return to the household of zero. The

expected return to the household from having a seller post price pt ≤ p̃ is given by

r(pt) =

[
ωtM̂t(pt)− φ

M̂t(pt)
pt

] ∞∑
k=1

qkk [1− Ft(pt)]k−1
. (2.15)

Using the potential buyers’ optimal spending rules, (2.15) becomes

r(pt) =
[
ωt −

φ

pt

]
Mt

∞∑
k=1

qkk [1− Ft(pt)]k−1
. (2.16)
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The household will derive the same expected return from having its sellers post any price greater

than or equal to p∗ = φ/ωt such that pt ∈ argmax
pt

r(pt). From (2.16) it is clear that the return to

posting a price lower than p∗ is negative, and thus the household will instruct no seller to do so.

3. Equilibrium

We restrict attention to a equilibria that are stationary and symmetric. First, we require

that all households behave symmetrically, and that they all have a common marginal valuation

of money, Ωt, and equal consumption, Ct in each period. Second, we require that equilibria be

stationary in the sense that consumption remains constant over time (i.e. Ct = C for all t). Note

that throughout, capital letters (e.g, Ct, Xt, Ωt, etc.) will be used to distinguish per household

quantities from their counterparts for an individual household (ct, xt, ωt, etc.).

Noting that in a symmetric equilibrium all households have identical reservation prices (p̄t =

p̃t), the common optimal spending rule (2.12) together with the definition of household consumption

(2.5) gives rise to a version of the simple quantity equation

C = Mt

∫
p

1
pt
dJt(pt). (3.1)

Thus, in a stationary monetary equilibrium, the average nominal price must grow at the gross rate

of money creation, γ. We conjecture that such an equilibrium is characterized by a stationary

distribution of real offer prices, F , constructed from the sequence of nominal price distributions as

follows:

F (p) ≡ Ft(pt) where p ≡ pt
γt

∀t. (3.1)

Similarly, we have

J(p) =
∞∑
k=1

qk

[
1− [1− F (p)]k

]
∀p =

pt
γt
, ∀t. (3.2)

Defining F̂ (p) ≡ F̂t(pt), m̂(p) ≡ m̂t(pt)/γt, and M̂(p) ≡ M̂t(pt)/γt, writing individual and per

household money holdings in the current period as m ≡ mt/γ
t and M ≡ Mt/γ

t respectively, and

using a superscript “ ′”, we may eliminate the time subscripts from the household Bellman equation.

A symmetric stationary monetary equilibrium (SSME) is defined as a collection of functions

v(m,M), m′(m,M), m̂(m,M), M̂(M), and price distributions F̂ (m,M) and F (M), (where the

argument (p) of the functions m̂, M̂ , F̂ , and F has been suppressed) such that

1. Given the price distribution, F , and strategies of other households’ buyers, M̂ , the value

function v(m,M) satisfies the Bellman equation given by (2.4),(2.5), and (2.7)-(2.10), with

m′(m,M), m̂(m,M), and distribution F̂ (m,M) the associated policy functions.
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2. Individual choices equal their per household counterparts: m = M , m̂(m,M) = M̂(M), and

F̂ (m.M) = F (M).

3. Consumption is constant over time: Ct = C.

We now turn to establishing existence of and characterizing a SSME. The key difference be-

tween the monetary model studied here and the model of Burdett and Judd (1983) is that whereas

in the latter returns to sellers (firms) and buyers (consumers) conditional on transacting at a par-

ticular price are exogenous, here they depend on households’ marginal valuation of money, Ω, a

variable determined in equilibrium. To begin with, however, conditional on households having a

well-defined reservation price, p̄, and a probability distribution, {qk}∞k=1, over the number of price

quotes received by each buyer, the potential price distributions in any SSME may be restricted.

The following proposition corresponds to and largely follows from Theorem 4 of Burdett and Judd

(1983) and characterizes the possible distributions of posted prices in a SSME.

Proposition 1: Given {qk}∞k=1 and a common, finite, buyers’ reservation price p̄,

i. if q1 = 1, then the only possible price distribution in a SSME is concentrated at the reservation

price,

p̄ =
p̄t
γt

=
u′(C)

Ω
∀t, (3.3)

where Ω = γtΩt for all t in an SSME.

ii. If q1 = 0, then the only possible price distribution in a SSME is concentrated at the producer’s

minimum price,

p∗ =
p∗t
γt

=
φ

Ω
, ∀t. (3.4)

iii. If q1 ∈ (0, 1), then, given a reservation price p̄ there is a unique dispersed price distribution

that may be a component of a SSME.

Note that Proposition 1 does not establish existence of an SSME. Rather it establishes that

depending on q1 there are restrictions on the possible distributions of offered prices, F (p), that may

arise as a component of a SSME. If all buyers observe a single price (q1 = 1), then the proposition

establishes that since the only price that maximizes sellers expected return is the buyers’ common

reservation price, the only possible price distribution in equilibrium is concentrated at this price.

This is the well-known result due to Diamond (1971). If all buyers receive more than one price

quote, the return to offering a slightly lower price is always positive if the posted price is greater

than p∗, and so the only possible price distribution is concentrated at this price. The only remaining
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possibility is that some buyers receive one price quote, and others receive more than one. In this

case the proposition establishes that contingent on the reservation price, p̄ (and hence the marginal

valuation of money, Ω), there is a unique continuous distribution of real offered prices, F (p), that

may be a component of an SSME.

We now return to the household optimization problem given by (2.4)—(2.10). In addition to

(2.11) we have the following first-order condition,

u′(ct)
1
pt
j(pt)− λt(pt)− ωt = 0 ∀pt, t, (3.5)

where λt(pt) is a Lagrange multiplier on the buyers’ exchange constraint, (2.4). We also have the

envelope condition,
∂vt
∂mt

=
∫
λt(pt)dJt(pt) + ωt, ∀t. (3.6)

Combining (2.11), (3.5), and (3.6), in an SSME we have

Ωt = βu′(C)
∫

1
pt+1

dJt+1(pt+1) =
1

γt+1βu
′(C)

∫
1
p
dJ(p). (3.7)

with Ω = γtΩt, (3.7) becomes

Ω =
β

γ
u′(C)

∫
1
p
dJ(p). (3.8)

Normalizing M0 = 1, (3.8) becomes

Ω =
β

γ
u′(C)C. (3.9)

We now have two propositions (which are proved in the appendix) that establish existence of

and partially characterize the SSME.

Proposition 2: If γ = β, then there is no SSME with a dispersed distribution of prices.

As in Shi (1999), if γ < β there can be no stationary equilibrium in which money has value, and

with γ = β the equilibrium is indeterminate. In the former case households will never spend money

and in the latter they are indifferent between spending it and holding it for spending in the future

leading to multiple stationary monetary equilibria. From this point on, we restrict attention to

cases in which γ > β. The following proposition collects results for these cases.

Proposition 3: If γ > β, given {qk}∞k=1,

i. if q1 = 1, then there is no SSME.
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ii. if q1 = 0, then there is a unique SSME with

J(p) = F (p) =

{
1 p ≥ p∗

0 p < p∗.
(3.10)

iii. if q1 ∈ (0, 1), then there exists an SSME with a dispersed and continuous distribution of real

prices, F (p), implicitly characterized by[
Ω− φ

p

] ∞∑
k=1

qkk [1− F (p)]k−1 =
[
1− φ

u′(C)

]
Ωq1 p ∈ F , (3.11)

where F is the support of F (.), F = [p̄, p
¯

], with p̄ = u′(C)/Ω and p
¯

determined by

[
Ω− φ

p
¯

] ∞∑
k=1

qkk =
[
1− φ

u′(C)

]
Ωq1. (3.12)

In case i., we know from Proposition 1 that if all buyers observe only one price, the only possible

distribution of prices in an SSME is concentrated at the buyers’ reservation price. In this case the

return to acquiring money is insufficient to induce sellers to accept it in exchange for goods at any

finite price. In case ii. we know from Proposition 1 that if all buyers observe strictly more than

one price, then the only possible distribution of prices in an SSME is concentrated at the sellers’

minimum price, p∗. Proposition 3 establishes that there is a unique equilibrium in which buyers

extract all surplus from trade with sellers. As in Burdett and Judd (1983), complete information

is not required for this equilibrium, at which all trade takes place at the same price that arise in a

“competitive” equilibrium. Even if all buyers observe only two prices, this outcome will obtain.

These results are reminiscent of random matching monetary models such as Shi (1995) and

Trejos and Wright (1995) in which the terms at which money is exchanged for goods is determined

by bargaining. In these models fiat money will not have value in equilibrium if sellers make take-

it-or-leave-it offers to buyers. This corresponds to case i. of Proposition 3. Case ii. corresponds

to the situation in bargaining models where buyers make take-it-or-leave-it offers to sellers. In this

case, the promise of returns to the household when its buyers spend fiat money in the future induces

sellers to accept money in exchange for goods.

Case iii. covers situation in which some buyers observe exactly one price and other observe

more. In this case the unique SSME exhibits dispersion of real prices. Moreover, the distribution

of prices is necessarily continuous with connected support. These results contrast with the findings

of Soller-Curtis and Wright (2000) in two ways. Firstly, in their model, for some parameter values
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a single price equilibrium may coexist with the dispersed price equilibrium. Secondly, in the dis-

persed price equilibria that exist in their model, generically the equilibrium price distributions are

concentrated on exactly two discrete prices.

To further describe prices in the SSME of the model studied here, it is useful to derive the

densities of posted and transactions prices. Using (3.11) the former is given by

f(p) ≡ F ′(p) =
φ

p2

[ ∑∞
k=1 qkk [1− F (p)]k−1

[Ω− φ/p]
∑∞
k=1 qkk(k − 1) [1− F (p)]k−2

]
p ∈ F . (3.13)

The distribution of transactions prices in equilibrium is given by (3.2), and has density

j(p) =
∞∑
k=1

qkk [1− F (p)]k−1
f(p) p ∈ F . (3.14)

Restricting attention to the case in which buyers observe only either one or two prices (qk = 0 for

k > 2), (3.13) becomes

f(p) =
φ

p2

[
q + 2(1− q)[1− F (p)]

[Ω− φ/p]2(1− q)

]
p ∈ F , (3.15)

where q is the probability of observing one price. In this case it can be easily shown that the densities

of posted and transactions prices, f(p) and j(p), respectively, are monotonically decreasing.

Deriving the effects of changes in various parameters on the price distributions is complicated

by the fact that the marginal valuation of money, Ω, affects not only the densities at each point,

but also the upper and lower supports of the distributions. Ω, itself, owing to the effectively

“complete insurance” inherent in the household structure, depends on the average transaction

price, P ≡
∫
pdJ(p). In the next section, we consider the relationships among the gross rate of

inflation, γ, the distribution of prices, and consumption in equilibrium.

4. Inflation

We now consider the effects of money creation on the distribution of real prices in equilibrium.

In the case of q1 = 0, when the distribution of prices is concentrated at the same price that would

arise in a competitive equilibrium (p∗), the effects of the inflation rate are straightforward and can

be summarized in the following proposition:

Proposition 4: If γ > β and q1 = 0, then an increase in γ raises the price and lowers consumption

in the SSME.

Unsurprisingly, money creation effected by lump-sum transfers acts in the usual way as an inflation

tax. This lowers the households’ marginal valuation of money, Ω, in the SSME and raises p∗, which
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is given by (3.3). That is, while money is neutral it is not super-neutral. Since with q1 = 0 the

distribution of transactions prices is given by (3.10), household consumption is given by C∗ = 1/p∗,

and thus falls in the SSME as price rises. Period utility in the SSME is given by u(C∗)−φC∗. This

also falls as inflation rises since it is an increasing function of consumption as long as u′(C)−φ > 0,

which is required for fiat money to be valued in a stationary equilibrium.

For cases in which q1 ∈ (0, 1), the effects of inflation on the average price, P =
∫
pdJ(p), and

consumption, C =
∫ 1
pdJ(p), are more complicated. Changes in γ entirely change the distributions

F and J , including both their upper and lower supports. For this reason, the effects of inflation on

prices, consumption and welfare for the case of q1 ∈ (0, 1) are examined in a numerical example.

The results of this example, prompt the following conjecture, an analog to Proposition 4. for this

case.

Conjecture 1: If γ > β and q1 ∈ (0, 1), then in an SSME, an increase in the gross rate of money

creation, γ,

i. increases the coefficient of variation of the distribution of transactions prices;

ii. raises the real average price and lowers consumption;.

iii. reduces consumption by more than it would if q1 = 0, ceteris paribus.

An Example with Logarithmic Utility

Let u(c) = ln c, the discount factor β = .95 and the marginal utility cost of production φ = .1.

For this functional form and parameter values, consider economies with gross inflation rates ranging

from -4% to 50% (i.e. γ ∈ [.96, 1.5]) and fractions of buyers observing a single price ranging from

0 to 90% (i.e. q1 ∈ [0, .9]). Assume that all buyers observe either one or two prices so that qk = 0

for k > 2, and let q and 1− q denote the fractions observing one and two prices respectively.

For q = 0, Proposition 3 establishes that the unique SSME of this economy is a single price

equilibrium with that price being the producers minimum price, p∗. For the logarithmic case this

equilibrium is easily calculated and can be characterized by

Ω =
β

γ
, p∗ =

γφ

β
, C∗ =

β

γφ
. (4.1)

The implications of Proposition 4. are obvious here: an increase in the inflation rate lowers house-

hold’s marginal valuation of money, raises the price level and lowers household consumption. This

is a standard illustration of an inflation tax in which its size for a given inflation rate is determined

by how much is sacrificed in the present for future use of the medium of exchange, φ/β.
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With q > 0, it is not possible to derive the unique SSME analytically. It is nonetheless

straightforward to compute it numerically. For cases with γ ∈ {.96, .97, . . . , 1.49, .1.50} and q ∈

{.1, .2, . . . , .9} we compute the SSME of the economy using the following algorithm:

1. Set an initial level for the upper support of the equilibrium price distribution,

p̄1 =
γ

βC∗
, (4.2)

where C∗ is given by (4.1) and we have used the fact that Ω = β/γ.

2. Compute the lower support of the distribution implied by p̄1, p
¯1

, using (3.12), and the density

of the offer distribution using (3.15) for all p ∈ [p
¯1
, p̄1]. Call this density f1(p).

3. Recover the distribution of transactions prices, j1(p), implied by f1(p) from (3.14), and compute

the price level, P1 =
∫
pdJ1(p), and household consumption, C1 =

∫
(1/p)dH1(1/p) using the

density j1(p).

4. Let p̂ = γ
βC1

and check |p̂− p̄1|. If the difference is sufficiently small, stop. An approximation

to the SSME is given by j1(p), P1 and C1. Otherwise, let p̄2 = (p̂− p̄1)/2 and return to step 2.

We make no claims for the efficiency of this algorithm. It does, however, converge quickly to an

SSME in all cases that we consider.

The effects of changes in the inflation rate and the fraction of buyers observing exactly one

price quote on the distribution of real transactions prices in the SSME are illustrated in Figures 1,

2, and 3. Figure 1 summarizes the effects of these variables on the average transaction price, P , and

its coefficient of variation, a measure of real price dispersion. The two panels on the left-hand side

of the figure illustrate the effects of increasing the inflation rate from -4% to 50% (in 1% increments)

with the share of buyers observing a single price held constant at 50%. In the upper left panel it

can be seen that P rises monotonically in the inflation rate, with the relationship being very close

to linear. The bottom left panel illustrates that the dispersion of real prices is also increasing in

the inflation rate. Interestingly, the increase in price dispersion is greatest at low levels of inflation.

In thinking about the relationships depicted in the left-hand panels of Figure 1, it is useful to

consider the densities of transactions prices for some selected cases. Figure 2 depicts transactions

price densities for inflation rates of -4%, 5%, 15%, and 50% with q = .5. For each density, the

prices labelled are the upper and lower supports, and the average price. The competitive price, p∗,

that would prevail if all buyers observed two prices (i.e. if q = 0), is listed for each case as well.

In all cases the densities have a similar shape, and of course all are monotonically decreasing as
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expected. As the rate of inflation increases ceteris paribus, in the SSME the distribution of real

prices shifts to the right, with both the upper and lower supports increasing. The range of the

distribution increases in absolute terms, and the lower support rises in greater proportion than

does the competitive price, p∗. Thus, the average price rises both absolutely and relative to p∗. An

increase in the inflation rate raises real prices by more than they would increase in a competitive

market.

Intuition for the fact that prices rise by more in cases with price dispersion than in the com-

petitive case with q = 0 is aided by considering the expression for buyers’ reservation price in the

logarithmic case,

p̄ =
γu′(C)
β

. (4.3)

As the inflation rate rises, the marginal value of a unit of currency in the SSME falls, raising p̄

along with p∗ (see (4.1)). As γ rises, however, the marginal effect of additional increases inflation

rises relative to the competitive case because u′(C) rises as consumption falls, whereas the marginal

utility cost of production, φ, does not.

Figure 1 also depicts the effects of increasing the share of buyers observing a single price while

holding the inflation rate constant at 5%. The upper and lower right-hand panels depict the effects

on P and the coefficient of variation of prices, respectively. P is monotonically increasing in q and

the relationship is strongly convex. The lower right panel shows that the coefficient of variation is

also increasing in q, with the relationship appearing to be slightly concave, especially at low q’s.

Figure 3 depicts densities of prices for the three cases or 10%, 50%, and 90% of buyers observing

a single price. Here can be seen that an increase in q has a dramatic effect on the shape of the

density. With relatively few buyers observing a single price, transactions prices are concentrated

near the competitive price, p∗ = .1105. The distribution is very skewed with the mean close to the

lower support. As q increases, the range of the distribution not only becomes wider, but the mass of

the distribution shifts toward the upper support, raising the average transaction price relative both

to the lower support of the distribution and relative to the competitive price, p∗. The intuition for

this effect is straightforward. If relatively few buyers observe only a single price, then the number

of sales made decreases rapidly in the posted price. Sellers tend to post prices near the competitive

price and transactions prices are clustered in this region. As the share of buyers observing a single

price increases, the drop in expected sales associated with posting a higher price falls, more sellers

post higher prices, and more buyers find their lowest price observed in the upper part of the posted

price distribution. This raises the return to sellers of posting a relatively high price and shifts
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transactions prices toward the buyers’ reservation price.

Figures 4 and 5 depict the effects of increases in γ and q, respectively, on consumption in the

SSME. In Figure 4 the lower line (symbol ‘+’) illustrates the change in consumption in the SSME

with q = .5, relative to the unconstrained optimum consumption level (u′(C) = φ) as the inflation

rate ranges from -4% to 50%. The upper line is the additional consumption loss relative to the

competitive case. Thus the lower line is the total loss due to the combination of the pure effect of

the inflation tax in a competitive equilibrium and the elevation of real prices due to market power

exhibited by price setting households. The upper line subtracts out the former and is just the effect

associated with price setting and dispersion. Note that the reduction in consumption associated

with price setting is substantial and that it increases most rapidly at low levels of inflation. With the

inflation rate constant at 5%, the effect on consumption of increasing the share of buyers observing

one price from 10% to 90% is depicted in Figure 5. Mirroring the effect of q on the average price,

the consumption costs are relatively low at small percentages of buyers observing a single price. As

q rises, the costs rise slowly at first, and later at a rapidly rising rate.

Overall, the results from the logarithmic example are consistent with what would be expected

based on Conjecture 1. Inflation raises the average real price and lowers consumption in the SSME.

Moreover, these effects increase as we move farther from the competitive equilibrium by raising the

share of buyers who observe only one price.

5. Conclusion

This paper has presented a random matching monetary model in which price posting by ex ante

identical sellers and noisy search by ex ante identical buyers may lead to a stationary symmetric

monetary equilibrium in which the distribution of real prices is non-degenerate and continuous.

These findings contrast with those of Soller-Curtis and Wright (2000) who analyze a different

economy and find equilibria in which price dispersion takes only a very special form. Specifically,

in their model exchange takes place at exactly two distinct prices in equilibrium.

In addition to presenting a model in which continuous price dispersion arises in equilibrium,

this model analyzes the effects of money creation on the distribution of real prices and the level of

per household consumption in the stationary equilibrium. When all buyers observe more than one

price, there is no price dispersion in equilibrium and the effect of inflation is to lower the marginal

value of money, raise the “competitive” price and lower consumption. An example illustrates that

when some buyers observe only one price, the effects of inflation on real prices and consumption

are larger in the resulting stationary equilibrium with price dispersion than they would be in a
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competitive setting.

Further work will consider the generality of the findings of the logarithmic example, and explore

extensions of the basic environment. In particular, it would be interesting to examine cases in which

the probabilities of observing different numbers of price quotes are endogenous, either through a

sequential search specification similar to that studied by Burdett and Judd (1983) or by introducing

a technology through which the household could raise the probability of its buyers observing more

than one price quote at a cost. In such a setting inflation would in general affect the share of

buyers observing a single price. In general this may be expected to affect the relationships among

inflation, prices, and welfare which are the focus of this research.

Appendix

Proof of Proposition 1.

Note that in an SSME, the distribution of posted prices, F (p), satisfies F (p) = F̂ (p) where F̂ (p)

is chosen by a representative household so that p ∈ argmaxp∈F r(p), with F the support of F (·).

Thus, an SSME is associated with a pair, (F (·),Π), where Π = maxp∈F r(p). The proof of the

proposition then follows directly from Lemmas 1 and 2 of Burdett and Judd (1983, pp.959-61) with

p̄ and p∗ in our notation corresponding to p̃ and r, respectively, in theirs.

Proof of Proposition 2.

Suppose that γ = β and there is an SSME with price dispersion. From proposition 1 we know

that such an equilibrium can only occur with q1 ∈ (0, 1) and that the distribution of posted prices,

F (·) is non-degenerate and continuous with connected support. Let J(·) be the distribution of

transactions prices associated with F (·) according to (2.2). Using (3.8), we have

Ω = u′(C)
∫

1
p
dJ(p) (A.1)

With p̄ = u′/Ω, (A.1) is
1
p̄

=
∫

1
p
dJ(p). (A.2)

With p̄ the upper support of J(·), (A.2) implies

J(p) =
{

1 p ≥ p̄
0 p < p̄.

(A.3)

This contradicts the premise that there is price dispersion (i.e. that J(·) is non-degenerate).
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Proof of Proposition 3.

i. Suppose that an SSME exists with γ > β and q1 = 1. In any SSME we have

p̄ =
γ

βC
. (A.4)

From Proposition 1, with q1 = 1, the only possible distribution of posted prices (and therefore

of transactions prices as well) is concentrated at the reservation price, p̄, so that C = 1/p̄. In

this case (A.4) becomes

p̄ =
[
γ

β

]
p̄. (A.5)

With γ > β, (A.5) can be satisfied by no finite, non-zero price. This contradicts the existence

of an SSME in this case and establishes part i. of the proposition.

ii. From proposition 1, with q1 = 0 the only possible distribution of transactions prices is concen-

trated at the competitive price, p∗, where in an SSME,

p∗ =
γφ

βu′(C∗)C∗
. (A.6)

Since p∗ = 1/C∗, (A.6) becomes

u′(C∗) =
γφ

β
. (A.7)

With u(·) strictly concave, u′(·) is monotone decreasing and (A.7) has a unique solution. This

establishes part ii. of the proposition.

iii. Existence follows from Proposition 1 and Theorem 4 of Burdett and Judd (1983). Details and

uniqueness to follow...

Proof of Proposition 4.

In the SSME with q1 = 0, the distribution of real transactions prices satisfies (3.10). Therefore,

consumption satisfies C∗ = 1/p∗, and we have

1
C∗

= p∗ =
φ

Ω
=

φ

(β/γ)u′(C∗)C∗
. (A.8)

Rearranging, we have

u′(C∗) =
γφ

β
. (A.9)

with u(·) strictly concave, the proposition follows.
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Figure 1
Average Transactions Prices and Dispersion
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Figure 2
Densities of Transactions Prices
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Figure 3
Densities of Transactions Prices
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    Figure 5
Share of Buyers Observing One Price (%)
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