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We examine whether the Mortensen-Pissarides matching model can account
for the business-cycle facts on employment, job creation, and job destruction. A
novel feature of our analysis is its emphasis on the reduced-form implications
of the matching model. Our main finding is that the model can account for the
business-cycle facts, but only if the average duration of a nonemployment spell
is relatively high—about 9 months or longer.

1. INTRODUCTION

Many recent models of the labor market explicitly focus on the flows of work-
ers across establishments and through labor-market states.> A major motivation for
this focus is the realization that many labor-market policies, such as dismissal costs
and unemployment insurance, are best understood through their impact on the un-
derlying labor-market flows.> One structure that has been used extensively to study
labor-market flows is that of matching models, and the Mortensen-Pissarides (1994)
matching model is arguably the prototypical model from this class. In this model,
idiosyncratic and aggregate shocks to the productivity of employment matches cre-
ate an incentive for match destruction and creation. This reallocation of employment
across matches is mediated by a matching function, requires time and resources, and
is stochastic from the individual’s perspective. Mortensen and Pissarides show analyti-
cally that their model is qualitatively consistent with some of the empirical regularities
displayed by job creation and job destruction over the business cycle.

*Manuscript received February 1998; revised January 1999.
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Ichino (1995), Greenwood et al. (1996), Merz (1996), Caballero and Hammour (1996), and Gouge
and King (1997).
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There is also a large empirical literature that documents the nature of the flows
of employment across establishments.* In this article, we attempt to strengthen the
connection between the theoretical literature on matching models and this empirical
literature by examining in detail whether the Mortensen-Pissarides matching model
can quantitatively account for the business-cycle facts on employment, job creation,
and job destruction. Although matching models have been used rather extensively,
there has been little systematic work to evaluate their quantitative properties with
regard to labor-market flows over the business cycle.> One recent counterexample
is Merz (1996), although she tries to account for the flow into and out of unem-
ployment over the business cycle rather than job creation and job destruction. One
feature that distinguishes her analysis from ours (and Mortensen and Pissarides’) is
her assumption that all (endogenous) separations are temporary rather than perma-
nent.

A novel feature of our analysis is its emphasis on the equilibrium reduced-form
implications of the Mortensen-Pissarides model. We argue that our representation of
the equilibrium process implied by the structural model provides a convenient way
both to assess the model’s ability to account for the data and to uncover the role
of various factors in generating specific results. For example, we show analytically
that the speed with which employment responds following an aggregate shock is an
important determinant of the model’s ability to match the business-cycle facts. An
additional advantage of the reduced-form approach is that it is robust to several
extensions and/or variations to the structural model.

The main finding of our analysis is that the reduced form implied by the
Mortensen-Pissarides model can account quite well for the business-cycle facts.
A key qualification, however, is that the extent to which the model matches the
business-cycle facts is very dependent on the steady state about which the model
fluctuates. In this regard, the average hazard rate for escape from unemployment
to employment is a key parameter—we find that an escape rate on the order of
one-third for a quarterly model is required. We argue that a hazard of this mag-
nitude in a representative agent model is consistent with the data if one considers
individuals who are recorded as out of the labor force but who want a job to be
(low-intensity) searchers. This view is consistent with the assumptions Blanchard and
Diamond (1989, 1990) use in their empirical analyses of labor-market flows. This
finding suggests that incorporating heterogeneity in worker search effort may be an
important theoretical extension to the framework. Our finding is consistent with that
of Caballero and Hammour (1996). They argue in a similar model that one way
to match the observed negative correlation between job creation and job destruc-
tion is to diminish the importance of the unemployment stock as an incentive for
entrepreneurs to create jobs. In our model, this is accomplished by having a high
average value of unemployment, which is achieved by a low hazard rate.

“Dunne et al. (1989), Leonard (1987), Davis and Haltiwanger (1992), and Blanchard and Diamond
(1990) are examples of articles that document these flows.

3 The reader familiar with the Mortensen-Pissarides article is aware that they report some success
in matching business-cycle facts for a simulated version of their model. As we show in Section 5, this
success does not persist if one considers a larger set of facts.
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Although we argue that the Mortensen-Pissarides matching model can account for
the behavior of job creation and destruction over the business cycle, this is only a
first step in building models to account for job and worker flows in the labor market.
The reason is that as recent work documents (see, for example, Anderson and Meyer
1994), worker flows are much larger than are job flows and display different patterns.
Hence a more complete model of labor market flows must incorporate some feature
to account for the reallocation of workers across existing jobs in addition to the
reallocation of jobs across establishments, which is the focus of this article. We leave
this for future work.

The outline of this article is as follows: In the next section we document the
business-cycle facts for employment, job creation, and job destruction. In Section 3
we describe the Mortensen-Pissarides matching model and explain our reduced-form
approach. Section 4 develops some analytic results that help articulate key trade-
offs in matching the model with the data. Section 5 presents our quantitative results.
Section 6 discusses the issue of calibrating steady-state values. Section 7 concludes.

2. BUSINESS-CYCLE FACTS FOR EMPLOYMENT, JOB CREATION,
AND JOB DESTRUCTION

In this section we document the cyclic properties of employment, job creation,
and job destruction. As is standard in business-cycle studies, we use observations at
the quarterly frequency. It is widely regarded that the highest-quality data on job
creation and job destruction are based on the LRD data first used by Davis and
Haltiwanger (1992) and recently documented in Davis et al. (1996). These data cover
only the manufacturing sector for the period 1972:2 to 1988:4, which dictates the
scope and time frame for our empirical analysis. Our employment measure is the
Citibase series for workers on manufacturing payrolls. Since job creation and job
destruction series are based on employment information gathered in February, May,
August, and November, we use employment figures for these same months.

We adopt the definitions for job creation and job destruction used in Davis et al.
(1996). Job creation in period ¢ (C,) is the sum of all net employment gains at es-
tablishments experiencing positive net employment gains between ¢ — 1 and t. Job
destruction in period ¢ (D,) is the sum of all net employment losses at establish-
ments experiencing negative net employment gains between ¢ — 1 and ¢. The employ-
ment measure on which these statistics are based is also workers on manufacturing
payrolls—literally, job creation measures net additions to payrolls at establishments
experiencing increases in the size of their payrolls between two points in time.

The three series we study are linked by the identity

(1) Et - Et—l = Ct - Dt

where E, is employment at period ¢. If, as in Davis et al. (1996), the rates of job
creation and job destruction, denoted by CR, and DR,, respectively, are obtained by
expressing the job creation and job destruction measures as fractions relative to the
mean of current and lagged employment, then dividing both sides of Equation (1) by
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the mean of current and lagged employment produces a similar identity:

Et - Et—l

2 ——— =CR, - DR
@ 05(E,_,+E) ! !

Equation (2) basically says that the growth rate in employment between periods ¢ — 1
and ¢ is equal to the difference between the job creation rate and the job destruction
rate. For reasons of symmetry, it seems preferable to work either with all series in
levels or with all series in growth rates. Following most business-cycle studies, we
report results for the case using data in levels.®

We document the cyclic properties of these series following the standard practice
in the business-cycle literature. The cyclic component of a series is defined to be
the deviations from a trend and is obtained by applying the Hodrick-Prescott filter to
data that have been seasonally adjusted and logged. [See Cooley (1995) for details on
this procedure.] In our quantitative work, we apply the same detrending procedure
to the data that are generated by the model. As a practical matter, we found that our
summary statistics are little affected by simply using the logged data in place of the
deviations from the trend. Moreover, if we use the seasonally unadjusted data, the
facts that are central to our analysis are essentially the same. While in this particular
case the choice of procedure does not seem to be significant, some choice must be
made in order to present the business-cycle facts, so we follow the common practice
of basing our facts on data that are seasonally adjusted and filtered.”

Table 1 presents several summary statistics. Note that since each series is logged
prior to detrending, deviations correspond to percentage deviations.

Rather than walking the reader through Table 1, we close this section with a sum-
mary list of the facts that are used in the subsequent analysis.®

* Volatility. Job creation is roughly four times as volatile as employment, and
job destruction is more than six times as volatile.

e Persistence. All three series display strong positive autocorrelation, but the
autocorrelation for employment, which is 0.9, is nearly twice that for the other two
series.

e Contemporaneous correlations. Job creation and job destruction have a fairly
large negative correlation. Destruction is (weakly) negatively correlated with employ-
ment, whereas creation is virtually uncorrelated with employment.

¢ We repeated our analysis based on the series in growth-rate form and found that it did not affect
our conclusions.

7 Seasonally unadjusted series for CR, and DR, were obtained from the Census. We construct
series for C, and D, using the appropriate seasonally unadjusted manufacturing employment data
from the establishment survey and then seasonally adjust the three series (C,, D,, and E,) using the
Census X11 seasonal adjustment routine for quarterly data.

8 Using data for Michigan, Foote (1996) found that the standard deviation of the job creation rate
exceeded that of the job destruction rate in some industries. He does not report the coefficient of
variation, so it is not clear that this finding is necessarily counter to the one we report here. He also
finds a negative correlation between job creation and job destruction.
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TABLE 1
SUMMARY STATISTICS 1972:2-1988:4

la. Standard Deviations and Autocorrelations

Standard Deviation Autocorrelation

Employment 0.030 0.90
Job creation 0.117 0.51
Job destruction 0.197 0.65
1b. Contemporaneous Correlations

Employment Job Creation Job Destruction
Employment 1.00 —0.01 —0.23
Job creation —0.01 1.00 —0.65
Job destruction —0.23 —0.65 1.00

Ic. Correlations with Employment at Leads and Lags

t-3 t—2 t—1 t t+1 t+2 t+3
Job creation at ¢ —0.41 —0.61 —0.63 —0.03 0.22 0.36 0.45
Job destruction at ¢ 0.13 0.43 0.58 —0.26 —0.52 —0.62 —0.63

NoOTE: Data are seasonally adjusted and HP filtered.

e Dynamics. Job creation is negatively correlated with lagged employment and
positively correlated with future employment. The opposite pattern holds for job
destruction.

3. THE MORTENSEN-PISSARIDES MATCHING MODEL

In this section we lay out the Mortensen-Pissarides (MP) matching model and
examine the reduced-form process for employment, job creation, and job destruction
implied by the model’s equilibrium. We proceed in two steps. First, we motivate our
reduced-form structure in the context of a simple version of this model. Second,
we consider an extension of this model that more closely resembles the one in the
Mortensen and Pissarides (1994) matching model.

3.1. Basic Model. There is a continuum of identical workers with total mass
equal to one. Each worker has preferences defined by

(3) i Bt(ct - ant)

where 0 < B < 1 is a discount factor, ¢, is consumption, and 7, is time spent working.
Consumption is restricted to be nonnegative, and time spent working is restricted
to be either zero or one. The parameter a measures the disutility associated with
working and is assumed to be positive.
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There is also a continuum of identical agents whom we refer to as entrepreneurs,
each with preferences defined by

) S B,

where B and ¢, are as above. We assume that each entrepreneur is endowed with
¢ units of the consumption good in every period so that they are able to expend
resources on match creation without violating nonnegative consumption.

There are two technologies in this economy, one that describes the production of
output by a matched worker-entrepreneur pair and another that describes the process
by which workers and entrepreneurs become matched. We begin with the former. A
matched pair produces output s,y if it is productive and 0 otherwise. The variable s,
is an aggregate technology shock assumed for simplicity to follow a symmetric two-
state Markov chain in which ¢ (= ¢,; = ¢,,) is the probability of remaining in the
same state for two consecutive periods. We assume that s, > s,, and we refer to s,
as the good state and s, as the bad state.’

In addition to the aggregate shock, each matched pair faces an idiosyncratic shock
that determines whether the pair remains productive. The probability of such a real-
ization is the same for all matches currently producing, but realizations are indepen-
dent across matches. The probability that a match that produced output in period
t — 1 will become unproductive in period ¢ is given by A, and is realized at the be-
ginning of period ¢. The variable A, also follows a two-state Markov chain and is
perfectly correlated with the aggregate technology shock. Hence, when s takes on
the value s;, A is assumed to take on the value A;. We assume that A; < A,, so the
probability of a match becoming unproductive is greater during bad times. Once a
match becomes unproductive, it remains in this state forever.

The distinguishing feature between an entrepreneur and a worker is that en-
trepreneurs have the ability to create job vacancies. We assume that this can be
done costlessly. To produce output, however, the job vacancy must be matched with
a worker, and the process of finding such a match does require time and resources.
In particular, it costs an entrepreneur k units of consumption to post a vacancy.'* We
assume that unmatched workers can search costlessly, whereas matched workers are
assumed to be unable to search; i.e., there is no on-the-job search.!!

We next turn to the matching function. If, in a given period, there are v vacancies
posted and u unmatched workers searching, the number of matches formed between
entrepreneurs and workers is given by the matching function m(v, u). The probability
that a given worker is matched with a vacant job is given by

m(v, u)

®)

u

° The variable s, refers to the value of s in period ¢, which may be either s, or s,. While this
notation is obviously abusive, we think the potential confusion is minimal.

10 Alternatively, one can assume that there is an initial cost k, to create a vacant position and a
cost of k, each period in which it is posted. If, in equilibrium, there are always new vacancies created,
then the two specifications have identical reduced-form implications for employment, job creation,
and job destruction.

! Pissarides (1994) extends the matching model to allow for an on-the-job search.
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whereas the probability that a given vacancy is matched with a searching worker is
given by
(0) q=

m(v, u)
v

We assume that the matching function m is nonnegative, increasing in both argu-
ments, concave, less than the minimum of its arguments, and displays constant re-
turns to scale. Constant returns to scale implies that p and g are functions only of
the ratio v/u.

Any matches that result from search in period ¢ become productive as of period
t + 1. Hence the law of motion for u, is given by

(7 Uy = A (1 — ) +u, — m(v,, u,)

Note that a worker who was part of a match that dissolves in the beginning of period
t is assumed to search in period 7.'?

The last item that needs to be described is the determination of wages. In this envi-
ronment, a matched worker-firm pair constitutes a bilateral monopoly. As is standard
in this literature, we use a generalized Nash bargaining solution in which the worker’s
threat point is equal to the value of being unemployed and the entrepreneur’s threat
point is the value of an unmatched vacancy (which is zero in equilibrium).

We next define a recursive equilibrium for this economy, but before doing so,
we must introduce some notation. The aggregate state variable in each period is
given by the pair (j, u), where j indexes the aggregate shock and u is the mass of
workers who are searching. There are three value functions of interest representing
the utilities of matched entrepreneurs, matched workers, and unmatched workers,
denoted by J;(u), W;(u), and U,(u), respectively. Agents take wages and matching
probabilities parametrically, since these values depend on the aggregate state. We let
q;(u) and p;(u) be the probabilities that searching entrepreneurs and workers find a
match, respectively, and let w;(u) be the wage payment to a matched worker when
the aggregate state is (j, u). The evolution of the aggregate state is described by the
function T;(u), where for each (j, u) this function specifies a distribution over next
period’s value of the state variable.

A recursive equilibrium is then a list of functions J;(u), W;(u), U;(u), q;(u), p;(u),
w;(u), and T;(u) such that

1. (Optimization) Taking the functions g;, p;, and w; as given, J;, W, and U;
satisfy the appropriate Bellman equations.

2. (Free entry) Bq;(u)E;J,(u') = k for all (j, u), where (j', u') is next period’s
value for the aggregate state variable.

3. (Bargaining) W;(u) — U;(u) = 6[W(u) + J;(u) — U;(u)].

12 Note also that we have assumed that a match resulting from search in period ¢ is necessarily
productive in period ¢ + 1. This assumption is not significant quantitatively, but it does simplify the
analytics. If newly created jobs were subject to becoming unproductive, then job creation and job
destruction in period ¢ + 1 would be functions both of the search efforts in period ¢ and of the shock
realization in period ¢ + 1.
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4. (Rational expectations) For each (j, u), decisions generate a distribution over
next period’s state that is equal to the distribution given by 7'(u).

It is standard in the related literature to study equilibria in which wages depend
only on the aggregate technology shock and not on the level of unemployment.'
To see why such an equilibrium may exist, assume that w; is the wage rate if the
aggregate shock takes on value j. In this case, the value to an entrepreneur of a
currently productive match when the aggregate technology shock is j satisfies

2
® Jj(u)=sjy_wj+BZ¢ji(1_Ai)',i(u;') j=12
i=1

where u) is next period’s unemployment rate conditional on shock i being realized.
Given wages, one can easily solve this set of equations for values of J; that do not
depend on the level of unemployment, since it reduces to a set of two linear equations
in two unknowns. This observation, in conjunction with the free-entry condition

2
©) k=quZ¢ji']i

implies that (in equilibrium) the g; do not depend on u, and by constant returns to
scale of m, neither do the p;.
The two value functions for workers are

2
(10) I’V;(”) =w; _a+BZ¢ji[(1 = A)Wi(w) + AU ()] Jj=12
i1
for a matched worker and
2 2
(11) Uj(u)=B|:pjz¢jiu/i(u;)+(1_pj)2¢jiUi(u;)i| j=12
i=1 i=1

for an unmatched worker, where we have again used u} to represent next period’s
unemployment rate conditional on the realization of the shock being i. Since the p;
do not depend on u, these equations have solutions for W, and U; that also do not
depend on u.

Finally, note that the preceding argument is consistent in the sense that if none
of the value functions depends on u, then condition (3) of equilibrium implies that
wages do not depend on u. While the preceding argument implies only that it is
logically consistent to look for an equilibrium of this type, it does not guarantee ex-
istence of an equilibrium. It is, however, straightforward to show that an equilibrium
will exist under relatively mild assumptions.

13 While it is straightforward to show that such an equilibrium exists, we have not been able to
rule out the possibility that equilibria that do not satisfy this property also may exist. We also note
that it is easy to show that optimal allocations have the property that ¢ and p do not depend on the
level of unemployment.
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Although the value functions and parametric functions (i.e., w, p, and ¢g) do not
depend on u, it does not follow that the level of u in a particular period does not
affect outcomes in that period. For example, since g; does not depend on u, it fol-
lows that the number of vacancies posted is a function of u. Additionally, given that
p; does not depend on u, it follows that holding the value of the aggregate shock
constant, the number of workers who find jobs is increasing in the level of unemploy-
ment.

Assuming that the aggregate shocks are persistent, i.e., that ¢ = ¢, = ¢,, > 0.5, it
is straightforward to show that J,, W;, U;, w;, and p; are all greater when j = 1 than
when j =2, and conversely for g;. Most of these results should appear intuitive; the
only ones on which we remark are the behavior of g and p. Note first that constant
returns to scale in the matching function m implies that ¢ and p must move in
opposite directions. Second, if the value of a match to an entrepreneur is greater in
good times than in bad, it follows from Equation (9) that g is necessarily decreasing
in j, since, in equilibrium, vacancies are posted up to the point that the return to
posting a vacancy is driven to zero. Because the value of a match is greater in good
times, it must be that the probability that an entrepreneur finds a match is lower.

3.2.  Reduced-Form Labor-Market Dynamics. One of the attractive features of
this model is that a relatively small set of parameters is sufficient to completely char-
acterize its implications for the time series in which we are interested. In particular,
it suffices to know the values of the A;, the p;, and ¢. Given an initial unemploy-
ment rate and any realization of aggregate shocks, repeated application of Equation
(7) in conjunction with m(v,, u,) = p,u,_, allows one to solve for the time series of
employment, job creation, and job destruction:

(12) e =1 —2Ay)e, +p(1—e)
(13) Ct = pt—l(l - et—l)
(14) Dt = /\tet

Of course, the p j’s are themselves functions of all the model’s structural parame-
ters. One way to proceed would be to solve for this mapping and determine whether
one can find a reasonable set of structural parameters of the model such that it can
account for the facts displayed in Section 2. Here, however, we pursue the alterna-
tive strategy of treating the reduced-form parameterization (i.e., A;, A,, p;, p,, and
¢) as the primitive and examine the extent to which this reduced form can account
for the cyclic facts documented earlier.

There are three reasons for pursuing this alternative. First, the reduced form is
a very parsimonious representation of the model’s implications and hence facilitates
exposition of the mechanics of the model. Second, studying the reduced form dra-
matically reduces the dimensionality of the space that one searches over to assess
the model’s ability to capture a certain set of facts. Third, there are several reason-
able extensions to the preceding model that would yield the same reduced form but
change the mapping from structural parameters to the p;’s. Here we briefly mention
three.



942 COLE AND ROGERSON

In the first case, assume that there is a choice of effort and/or hours in each
productive match. This would require additional functional form assumptions and
parameter values to describe preferences over hours and/or work effort and the im-
plications for output of changes along these two margins. However, independently
of how these features are introduced, it is relatively straightforward to see that a
reduced form identical to that considered earlier would still result. In the second
case, assume that workers who are unemployed make a decision about search inten-
sity. This also would require additional functional form assumptions and parameter
value assignments, but assuming that the matching function still displays constant re-
turns to scale, the reduced form would remain unchanged. Lastly, one could imagine
other ways of resolving the bargaining problem that would leave the reduced form
unchanged but alter the structural mapping.

The preceding discussion also serves to illustrate why we chose to focus only on
a subset of the variables for which the model makes predictions. For example, we
do not study the model’s implications for productivity movements. The reason is
that productivity movements are not robust to the kinds of changes discussed in the
preceding paragraph and hence would seem to require a more structural approach.
We leave this for future work.

Before considering a more general model, we note that it is straightforward to find
a specification of this model so as to obtain any reduced form with p, > p,. To see
this, note that with constant returns to scale, determining the p;’s is equivalent to
determining the g;’s. The two zero-profit conditions can be rearranged to yield

q, Js
15 a2
(1) 9
(16) Bqi(bnJ, + din)y) =k

If, for example, we set § = 0, then it follows that w; = w, = a, and the J; are easily
determined by the values of the y;, A;, and ¢,;. Moreover, any ratio of J,/J, greater
than one can be obtained by adjusting the values of the y;’s. Equation (16) can then
be used to determine the value of k, for example, consistent with the value of ¢,. A
related issue of interest is whether any reduced form can be obtained as an efficient
equilibrium for some specification of the economy. The parameterization given earlier
typically would result in an equilibrium that is not efficient. If, for example, the
matching function is given by av'~"u", then equilibrium is efficient if and only if
0 = n. [See Hosios (1990) for a discussion related to this point.] While we have
not established a result connecting our reduced form to structural specifications for
which the equilibrium is efficient, we note that the added restriction is not obviously
an issue, since all that is required is enough freedom to achieve any value for the
ratio of J, to J;.

3.3. Extension of the Basic Model. In the model described earlier, aggregate
shocks affect both the productivity of a match and the probability that the match
is destroyed. One innovation of Mortensen and Pissarides (1994) is to endogenize
the job destruction decision. In this subsection we extend the basic model to incor-
porate this decision. Productivity of a match is now the sum of two components: an
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aggregate (or common) component y and an idiosyncratic component denoted by e.
Each new match starts with an idiosyncratic productivity equal to €,, which subse-
quently evolves stochastically.!* The stochastic process describing this evolution is the
same for all matches, although realizations are independent across matches. For rea-
sons of analytical tractability, it is assumed to take the following special form. In each
period, with probability y, a given match receives a new value for its idiosyncratic
component. If it does receive a new draw, it is a random draw from a distribution
with cdf F(e), which has support on [€,, €,], where €, < €,. Note that conditional on
receiving a new draw, the previous value of € is irrelevant. The process does display
positive persistence, since this period’s idiosyncratic component is the same as last
period’s in the absence of a new draw.

The assumption about timing is that at the beginning of a period, each match that is
produced in the preceding period receives its current realization for the idiosyncratic
shock. (All new matches have idiosyncratic component €,.) Subsequently, everyone
observes the realization of the aggregate shock, at which point all matched pairs
decide whether to continue or separate, and search decisions are made.

Describing an equilibrium is now slightly more complicated. First, relative to
the preceding model, there is an additional decision of whether to destroy existing
matches; i.e., there is no longer an exogenous variable A that describes separations.
It is straightforward to show, however, that the optimal destruction decision is char-
acterized by a reservation productivity level, which we denote by €. This reservation
value is dependent on the aggregate technology shock, and it can be shown that
€, < €,; i.e., during bad times, a higher idiosyncratic component is required to stay
in business. Second, the aggregate state variable is now of greater dimensionality.
Whereas previously the aggregate state variable was the aggregate shock and the
mass of employed (or equivalently, unemployed) workers, it is now the aggregate
shock and the distribution of matches across idiosyncratic productivities. We denote
the latter by a measure w. Note that one can infer the unemployment rate from the
measure .

However, the stochastic process on idiosyncratic shocks does simplify the model’s
mechanics. If the aggregate shock assumes value j for two consecutive periods, the
fraction of matches that are destroyed is given by A; = yF(€,), i.e., the fraction of
matches that both receive a new draw and obtain a new value of e that lies below
the reservation value. In particular, this value does not depend on the distribution wu.
If the aggregate shock goes from the low-productivity state to the high-productivity
state, the fraction of jobs destroyed is still given by A,. If, however, the economy
moves from the high-productivity state to the low-productivity state, the fraction of
matches destroyed exceeds A,, because all matches that did not receive new draws
but have an idiosyncratic component e that satisfies €, < € < €, also will be destroyed.
The mass of these matches is given by (1 — ) f:lz w(e) de.

It should be clear that the reduced-form dynamics of this model for employment,
job creation, and job destruction are identical to those of the basic model discussed

!4 What matters for our reduced form is simply that the starting productivity is sufficiently high to
warrant forming a match for at least one period. Subject to this being true, there is no problem if
the stating values for new matches are drawn from a distribution.
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earlier, with the exception of those periods in which the economy moves from a
good state to a bad state. The extent of this difference depends on the distribution
of matches w at the time of the change and hence is not constant over time. Note,
however, that holding the aggregate shock constant, the measure u will converge
to some measure p; depending on j. From a practical perspective, if the aggregate
shocks are fairly persistent, then this additional destruction may be reasonably well
approximated by the term A, = (1 — ) [ 612 w,(€) de, which is constant over time.
With this approximation, the implications of the extended model for employment,
job creation, and job destruction are completely specified by the six numbers ¢, A,
A, Ay, Py, and p, so that the only difference between this model and the basic model
is the additional parameter A,. In what follows, we will use this approximation as our
reduced form.'

4. CYCLIC BEHAVIOR OF CREATION AND DESTRUCTION:
ANALYTIC RESULTS

In this section we explore analytically the model’s implications for the response of
job creation and job destruction to a change in the aggregate shock. For simplicity,
we focus on the reduced form of the basic model, i.e., the case in which A, = 0,
but our results do not depend on this restriction. Note first that if the aggregate
shock takes on the same value repeatedly, the economy converges to a state in which
unemployment is constant. In particular, assuming a long sequence of realizations of
aggregate shock j, the unemployment rate converges to the level

A

(17) P
TPt

from which it follows that &, < i,. We call &, and &, conditional steady states, to
indicate that they are states that reproduce themselves conditional on the realization
of the aggregate shock. Moreover, starting from any initial unemployment rate, if
the aggregate shock remains unchanged for many periods, unemployment converges
monotonically to the level #; as long as p; + A; is less than one, a condition that is
strongly supported by the data.

Our main interest here is in the cyclic behavior of job creation and job destruction,
defined by

(18) Cz = Pl
(19) Dz = At(l - ur)

If unemployment is not changing over time, then job creation must equal job de-
struction. As a theoretical matter, it is possible for either of the two conditional

15 One way to judge the merits of this approximation is to apply it to the numerical example in
Mortensen-Pissarides (1994). When we did this, we found that the summary statistics on which we
focus were very similar. Of course, if one considers specifications that are not close to the actual data
in the sense that they have very little persistence in aggregate shocks, then this approximation may
not be accurate.
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steady states to have the higher level of job creation and job destruction, since there
are offsetting effects [i.e., p and u move in opposite directions across conditional
steady states, as do A and (1 — u)]. As a practical matter, it is reasonable to assume
that the high-employment conditional steady state is associated with lower levels of
job creation and job destruction. [This corresponds to the observation in Davis and
Haltiwanger (1992) that total job reallocation is countercyclic.]

To make the discussion more concrete, assume that the economy is in the good
state and unemployment is &, when the economy experiences a shift from the good
state to the bad state, where it stays for many periods. Figure 1 shows the response
of job creation and job destruction. The increase in A causes job destruction to in-
crease initially, but this is followed by a monotonic decline as employment moves
monotonically to its new lower conditional steady state.

Job creation is initially unchanged, since the change in the technology shock does
not affect last period’s hiring. Subsequently, however, there are offsetting effects on
job creation. On the one hand, the probability that an unemployed worker finds a
job is lower, tending to make job creation decrease. On the other hand, the level
of unemployment is monotonically increasing, tending to make job creation increase.
Because job creation and job destruction eventually will be equal (we are assuming no
further changes in the aggregate shock), the latter effect must dominate eventually.
However, the former effect may dominate early on, as it does in Figure 1, since this
is when unemployment is lowest.
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0.055 -

Mean level of JD and JC

0.050

Jobs Created and Destroyed
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DYNAMICS OF JOB CREATION AND JOB DESTRUCTION
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Obviously, it is somewhat of an empirical issue as to whether this dynamic response
produces a positive or negative correlation between job creation and job destruction.
The preceding analysis predicts that there is at least one period following the shock
in which job creation is below average and job destruction is above average, but not
necessarily more than one.'® The next section is devoted to an examination of the
quantitative predictions of the model. It is of interest, however, to provide some in-
tuition for the circumstances under which it is more likely that a negative correlation
will obtain.

The preceding discussion suggests two mechanisms through which the model may
produce a negative value for this correlation. One is relatively frequent changes in
the aggregate technology shock, since the initial effect of a switch in the aggregate
technology shock is to produce a negative correlation.!” The other is slow adjustment
of employment to its conditional steady-state value, since the closer employment is to
its conditional steady state, the more likely it is that job creation and job destruction
are in the same position relative to their average values.

In the model it is clear how to bring about more frequent aggregate shocks—
this is caused exclusively by a decrease in ¢. At the same time, however, it is to
be expected that there is a strong tension associated with moving in this direction:
In the data, employment is strongly autocorrelated, and increasing the frequency of
shocks is expected to decrease the persistence in employment. What affects the rate
of convergence to a conditional steady state in the model may be less transparent.
We discuss two channels here. The first concerns the average levels about which the
economy fluctuates, and the second has to do with the relative importance of shocks
to A and p.

We begin by rewriting Equation (12) as

(20) g — U = A — A+ pu,
which can be rearranged to yield
(21) Uiy =+ (A )@ — 1)

where i is the conditional steady-state unemployment rate associated with the values
of A and p. Equation (21) says that the rate at which unemployment converges to
its conditional steady state is equal to A + p. An implication of this is that lower
average values of A and p should lower the correlation between job creation and job
destruction. As we shall see empirically, the average value of p is much greater than
the average value of A, so the speed of convergence is largely dictated by p.

To motivate the second channel, we ask the question: Holding the change in con-
ditional steady-state unemployment constant, does the extent to which the increased

16 Caballero and Hammour (1996) note that the importance of this initial period obviously di-
minishes as the time period is shortened. As our analysis indicates, however, it does not follow that
creation and destruction are necessarily positively correlated.

7 More specifically, changes in the aggregate shock from above average to below average, or vice
versa, are what matter. Hence there is no strong reason to suspect that having more values for the
aggregate shock would improve the model’s ability to account for the data.
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unemployment is caused by changes in p versus changes in A matter for the correla-
tion between C and D? To answer this, recall our earlier discussion of the dynamics
following a change in the aggregate shock. The effect that pushes creation in the op-
posite direction to the change in destruction is due to the decrease in p. After the
initial period, there are opposing effects at work on job creation. On the one hand,
the increased unemployment brought about by the increase in A causes job creation
to increase. On the other hand, the decrease in p causes job creation to decrease.
This suggests that the greater the change in p relative to A, the greater is the likeli-
hood that the second effect dominates, at least for some amount of time. (Recall that
the first effect eventually must dominate.) The extent to which this effect is useful,
however, may be limited by the fact that in the data, job destruction is more volatile
than job creation, suggesting that there may be limits on the volatility of p relative
to A.

5. RESULTS

5.1. Mortensen-Pissarides’ Numerical Example. As mentioned in the Introduc-
tion, readers familiar with the Mortensen-Pissarides (1994) article may be under
the impression that we are attacking a solved problem, since that article contains
a numerical example with reasonable parameter values that mimics fairly well some
business-cycle facts for the rates of job creation and job destruction. It turns out,
however, that while their example does well along some dimensions, its does not do
so well on others. In fact, it is these problems along other dimensions that motivate
our analysis. Therefore, it seems worthwhile to begin by reporting the larger set of
statistics for the Mortensen-Pissarides example. We emphasize that their numerical
example does not claim nor even necessarily intend to capture a larger set of cyclic
facts than they report in their article. One interpretation of our work is an attempt
to extend the success of the Mortensen-Pissarides example to a larger set of cyclic
facts.

Table 2 provides the same information for the MP model as Table 1 did for the
data.!® To obtain these statistics, we simulate the model for 500 periods, discard the
first 100 observations, and then log and filter the series consisting of 400 observations.
We repeat this procedure 100 times and compute averages for the 100 samples. We
throw away the first 100 observations in each run to minimize the potential effect of
initial conditions.

A comparison of Table 2 with Table 1 is informative. First, note that the model does
account for some qualitative features found in the data. In terms of relative volatil-
ities, both job creation and job destruction are more volatile than is employment,
and job destruction is more volatile than is job creation. In terms of correlations,

18 Note that the statistics reported in Table 2 are not reported in Mortensen and Pissarides’ Table
II. First, our statistics are shown for the levels of job creation and job destruction, whereas their
statistics are shown for the rates. Second, our statistics are shown for data that have been logged and
filtered. In the interest of space, we have limited ourselves to the statistics shown. We note, however,
that the conclusions are not sensitive to whether one focuses on rates rather than on levels or on
raw data rather than on filtered data. However, filtering the data can affect one’s perception of along
which dimensions the data and model are most at odds.
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TABLE 2
RESULTS FOR MORTENSEN AND PISSARIDES’ NUMERICAL EXAMPLE

2a. Standard Deviations and Autocorrelations

Standard Deviation Autocorrelation
Employment 0.017 0.47
Job creation 0.121 0.17
Job destruction 0.147 —0.07
2b. Contemporaneous Correlations
Employment Job Creation Job Destruction
Employment 1.00 —0.08 —0.81
Job creation —0.08 1.00 —0.43
Job destruction —0.81 —0.43 1.00

2c¢. Correlations with Employment at Leads and Lags

t—3 t—2 t—1 t t+1 t+2 t+3
Job creation —0.21 —0.46 —0.86 —0.08 0.03 0.07 0.10
Job destruction 0.08 0.09 0.11 —0.81 —0.38 —0.17 —0.07

NoTE: Filtered data.

job destruction is negatively correlated with employment and job creation, whereas
job creation displays very little correlation with employment. There are, however,
some important quantitative discrepancies. First, the autocorrelations in all three se-
ries are far too low relative to the data. Second, creation is too volatile relative to
employment and destruction. Third, the contemporaneous correlation between em-
ployment and destruction is too negative. We note additionally that creation would
appear to be not sufficiently correlated with future employment and destruction is
not sufficiently correlated with lagged employment.

Recall the discussion from the preceding section. We argue that one way to obtain
a negative correlation between job creation and job destruction is to have frequent
shocks, which intuitively should translate into a lower autocorrelation in employment.
Although the preceding simulations do deliver the negative correlation, it seems pos-
sible that it is coming at the expense of matching the autocorrelation in employment.

As we have stressed, this particular numerical example is not constructed in an at-
tempt to reproduce the facts in Section 2, nor is it meant as a calibration exercise.
Hence the preceding discrepancies do not provide much information on whether
some reasonable version of the Mortensen-Pissarides model can account for the
larger set of facts. The issue we turn to next is whether one can obtain improve-
ment along the dimensions for which the match is particularly bad without sacrificing
the success achieved along other dimensions. Rather than searching over structural
specifications of the MP model, we search over specifications of the reduced form
outlined in the preceding section. As we argue earlier, we think that this approach
offers three advantages: robustness, transparency, and parsimony.
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5.2.  Findings from Reduced-Form Analysis. In this subsection we report our find-
ings on the ability of the reduced-form model parameterized by ¢, A, A, A,, p,, and
P, to account for the cyclic facts documented in Section 2. Recall that the reduced-
form model is summarized by the following equations:

Upr = A (T —u) + (1= p)uy,
(22) C,=p_u_, D= /\t(l - ut)
Pt = Ds,> A= /\s, + X(St =2, Si-1 = 1)/\0

where s, is the aggregate shock in period ¢, and x(s, = 2,s,_, = 1) is an indicator
function that takes on the value 1 if s, =2 and s,_, = 1 and 0 otherwise.

There are six parameters that need to be specified. Looking ahead to our results,
we will find it convenient to think in terms of the average values for p and A and
the magnitude of fluctuations in each series. This leads us to consider an alternative
parameterization in which p and A are defined as the means for the p;’s and A/s,
respectively, and o, and o, are defined as the percentage deviations in p and A,
respectively, from their average values. The four parameters p; and A;, j = 1,2 are
given by

p1=(1+0-p)ﬁ5 p2=ﬁ/(1+0p)

(23) R -
M =A(140)), A=A1+0y).

The values p and A can be interpreted as describing long-run or average properties,
whereas ¢, Ay, o,, and o, can be interpreted as describing the cyclic properties."”
In particular, it is easy to see that p determines the average duration of an unem-
ployment spell (the average duration is equal to the inverse of p), whereas A is the
average job destruction rate. Recall from our earlier analysis that an economy with
p always equal to p and A always equal to A would have steady-state unemployment
given by

A
P+A

(24) i =

One of our findings is that the extent to which this model can account for the
business-cycle facts depends critically on the average values about which the economy
fluctuates. We emphasize that these average values are simply a device used to orga-
nize our findings; in our model, the economy is never in a state in which p equals p
or A equals A.

Our analysis proceeds as follows. We choose values for p and A according to some
criterion and then investigate the extent to which the specification can account for
the cyclic facts for some choice of ¢, Ay, o, and g,. There is no presumption that
this model can or should account for all the facts; our interest is in assessing the
extent to which it can capture a substantial fraction of what we find in the data.

19 The values p and A are not true means of the series for p and A. They are simply a useful
device to organize the parameterization.
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Initially, we adopt a rather weak definition of what constitutes success. We look at
four dimensions: variability of employment, autocorrelation of employment, relative
variability of job creation and job destruction, and the contemporaneous correlation
between job creation and job destruction. Our cutoff for success is that the model
simultaneously accounts for at least half of observed employment variability (but
no more than 1.2 times the actual variability), predicts an autocorrelation for em-
ployment of at least 0.8, predicts that job destruction is at least as variable as job
creation, and predicts a negative contemporaneous correlation between job creation
and job destruction. These are very weak conditions—even if they were all to be sat-
isfied, it is not clear that one would necessarily claim to quantitatively account for
the business-cycle facts. However, our first result will be negative, namely, that for
the steady-state specification used in the Mortensen-Pissarides numerical example,
there is no specification of our reduced form that can simultaneously satisfy these
criterion. This negative finding is, of course, strengthened by our use of a very weak
criterion.

5.3.  Results Using MP Steady-State Values. We begin with a specification in which
A equals 0.055 and p equals 0.6. The choice of A is motivated by the fact that in the
Davis-Haltiwanger-Schuh data, the sample average for the quarterly job destruction
rate is 5.5 percent. The choice for p implies an average duration of (completed)
unemployment spells equal to 1.67 quarters, or roughly 21 weeks. In conjunction
with the choice of A, it implies an average unemployment rate of 8.4 percent. These
last two figures seem reasonable and basically correspond to the averages used in the
simulations of the Mortensen and Pissarides model reported earlier.

We proceed by searching over combinations of ¢, Ay, o,, and o,. For each set of
values for these parameters, we simulate the employment dynamics for a run of 500
quarters and compute the sample statistics described earlier to determine whether
the given set of values generates a successful match.

In view of the very weak criterion used to gauge success, our finding is rather
striking: We find no parameter values that generate a match. To provide a sense of
where the difficulties arise, we present a subset of the relevant summary statistics for
one choice of parameters: ¢ = 0.95 and A, = 0.02. Although the statistics presented
below are not the complete set, we believe that they provide the reader with an idea
of the tensions present in this specification.

Not surprisingly, Table 3b indicates that to match sd(D)/sd(C), we basically need
to be on or below the diagonal. However, to obtain a negative correlation between C
and D, Table 3a indicates that we need to be above the diagonal. This illustrates the
tension pointed out in Section 4. Although the correlation between C and D can be
decreased by increasing the ratio of o, to o, this improvement along one dimension
does not come without negative consequences along other dimensions. There are a
few other remarks that are worthy of mention, some of which relate to information
not provided above but which are fairly intuitive. The acceptable region in Table
3b can be expanded by increasing the size of A,. This creates a problem, however,
since as A, increases, the persistence in each of the three series decreases, due to the
fact that a lot of the variance is attributed to these one-time spikes in destruction.
Similarly, as remarked earlier, the acceptable region in Table 3a can be increased by
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TABLE 3
MODEL RESULTS

3a. corr(C,, D,) 3b. sd(D)/sd(C)

a\o, 0.2 0.4 0.6 0.8 a\o, 0.2 0.4 0.6 0.8
0.2 0.11 —-0.14 -0.23 -0.25 0.2 1.33 0.91 0.66 0.49
0.4 0.34 0.12 —0.02 —0.08 0.4 1.29 1.13 0.93 0.72
0.6 0.42 0.25 0.13 0.07 0.6 1.26 1.19 1.04 0.82
0.8 0.46 0.33 0.22 0.16 0.8 1.25 1.20 1.09 0.86

3c. sd(E) 3d. corr(E,, E,_;)

o\, 0.2 0.4 0.6 0.8 a\o, 0.2 0.4 0.6 0.8
0.2 0.016 0.022 0.029 0.035 0.2 0.86 0.86 0.83 0.79
0.4 0.023 0.030 0.036 0.043 0.4 0.86 0.86 0.85 0.82
0.6 0.029 0.036 0.043 0.050 0.6 0.85 0.86 0.85 0.83
0.8 0.035 0.043 0.050 0.058 0.8 0.85 0.86 0.85 0.83

3e. Effects of ¢ and A, on Summary Statistics

0, =02, 0, =02, A, = 0.02 7, =02, 0, =02, ¢ =0.95

$=09 =08 =07 A=0 A, =004 X =008
sd(D)/sd(C) 138 1.52 1.59 1.04 1.50 1.56
corr(D, C) 0.01 —0.21 ~0.16 0.08 0.09 0.01
corr(E,_,, E,) 0.82 0.70 0.66 0.88 0.79 0.62

NoOTE: Filtered data, ¢ = 0.95, A, = 0.02, p = 0.6, A = 0.055.

making the shocks more frequent, i.e., decreasing ¢. This also has the problem of
decreasing the persistence in each of the three series.

On the basis of our analysis, we conclude that for this steady-state parameteriza-
tion, the MP model cannot account for the business-cycle facts on employment, job
creation, and job destruction. This leaves open the question as to whether there are
other steady-state parameterizations for which this result does not hold. As discussed
in Section 4, there is reason to believe that alternative steady-state specifications may
lead to more positive results. We turn to this issue next, postponing until later a
discussion of what constitute acceptable steady-state configurations.

5.4. Results for Alternative Steady-State Configurations. As discussed earlier,
higher average values of A + p imply faster convergence following shocks. Hence
lower values of this sum possibly will expand the acceptable region in Table 3. We
find that a change in the average value of p can bring about a substantial improve-
ment in the degree to which the model’s predictions match the facts documented in
Section 2. To illustrate this finding, Table 4 presents results analogous to those in
Table 3 but for the case in which ¢ = 0.85, A, = 0.02, p = 0.33, and A =0.055. A
few remarks are in order. First, the implied average unemployment rate & is equal
to 0.14. Second, a lower value of ¢ is used in Table 4 than in Table 3 because the
lower value of p allows the model to generate sufficient persistence even with a
lower value of ¢. As seen in Table 4, this specification yields as much autocorrela-
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TABLE 4
MODEL PREDICTIONS

4a. corr(C,, D,) 4b. sd(D)/sd(C)
a\o, 0.10 0.15 0.20 0.25 a\o, 0.10 0.15 0.20 0.25
0.10 —0.24 —-0.29 —0.30 —0.30 0.10 2.08 1.52 1.15 0.93
0.15 —0.19 —0.29 —-0.33 —0.36 0.15 2.08 1.70 1.36 1.12
0.20 —-0.12 —0.24 -0.32 —0.36 0.20 2.04 1.80 1.52 1.29
0.25 —0.06 —-0.19 —0.28 —0.34 0.25 1.98 1.84 1.62 1.42
4c. sd(E) 4d. corr(E,, E,_,)
o\, 0.10 0.15 0.20 0.25 a\o, 0.10 015 020 025
0.10 0.0147  0.0173 0.0200  0.0225 0.10 0.83 0.85 0.86  0.86
0.15 0.0178  0.0205 0.0231 0.0257 0.15 0.84 085 0.86  0.86
0.20 0.0208  0.0235 0.0262  0.0287 0.20 0.84 085 0.86  0.86
0.25 0.0238  0.0265 0.0291 0.0317 0.25 0.84 085 0.86  0.86

NoOTE: Filtered data, ¢ = 0.85, A, = 0.02, p = 0.33, A = 0.055.

tion in employment as does the preceding specification. Lastly, the range of values
considered for o, and o, is smaller in Table 4 than it was in Table 3 because, with
a smaller value of p, the model predicts greater volatility in employment holding all
else constant. The cases reported in Table 4 generate roughly the same volatility for
employment as do the cases reported in Table 3.

Although the basic pattern is not much different from in Table 3, a significant
difference is that the acceptable regions are now much larger, and in particular,
there are settings that satisfy all the (weak) criteria imposed earlier. To provide more
detail for a particular example, we display the facts corresponding to Table 1 for the
case with o, = 0.25 and o, = 0.25.

While a comparison of Tables 5 and 2 with Table 1 reveals substantial improvement
along several dimensions, it is still the case that this particular example misses along
some dimensions. In particular, several of the correlations of job creation and job
destruction with leads and lags of employment seem too small in absolute value, and
the autocorrelation in destruction seems a bit low. Further reduction in the average
value of p brings additional improvement, however. The next table repeats the above
exercise for a case with p = 0.25. This implies an average unemployment rate of
roughly 0.18.

Based on a comparison of Table 6 with Table 1, our conclusion is that this spec-
ification does account for many of the facts presented in Table 1. Moreover, there
seems to be an improvement along several dimensions relative to Table 5, with no
significant worsening along any other dimension.

In all the parameterizations analyzed thus far, we have set A = 0.055, which is the
average quarterly job destruction rate in the data. For reasons we discuss in the next
section, this may be viewed as an upper bound for the job destruction rate in the
model. To investigate the significance of this choice, we have analyzed our reduced-
form model using other values of A, ranging from 0.02 to 0.055. Since our findings
were very similar, we do not report the results in any detail. One statistic that is
affected by decreasing A is the magnitude of employment fluctuations. This is not
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TABLE 5
MODEL PREDICTIONS

953

5a. Standard Deviations and Autocorrelations

Standard Deviation Autocorrelation
Employment 0.032 0.86
Job creation 0.137 0.58
Job destruction 0.194 0.36

5b. Contemporaneous Correlations

Employment Job Creation Job Destruction
Employment 1.00 —0.14 —0.48
Job creation —0.14 1.00 —0.34
Job destruction —0.48 -0.34 1.00
Sc. Correlations with Employment at Leads and Lags
t—3 t—2 t—1 t t+1 t+2 t+3
Job creation —0.81 —0.83 —-0.53 —0.14 0.03 0.07 0.29
Job destruction 0.30 0.19 —0.02 —0.48 -0.71 —0.69 -0.52
NOTE: Filtered data, ¢ = 0.85, A, = 0.02, p = 0.33, A = 0.055, o, =025, g, =0.25.
TABLE 6
MODEL PREDICTIONS
6a. Standard Deviations and Autocorrelations
Standard Deviation Autocorrelation
Employment 0.030 0.85
Job creation 0.128 0.46
Job destruction 0.198 0.33

6b. Contemporaneous Correlations

Employment Job Creation Job Destruction
Employment 1.00 0.04 —0.37
Job creation 0.04 1.00 —0.44
Job destruction —0.37 —0.44 1.00
6c. Correlations with Employment at Leads and Lags
t—3 t—2 t—1 t t+1 t+2 t+3
Job creation —0.74 -0.77 —-0.38 0.04 0.24 0.28 0.25
Job destruction 0.33 0.32 0.13 —0.37 —0.66 —0.62 —0.42

NOTE: Filtered data, ¢ = 0.80, A, = 0.01, p = 0.25, & = 0.055, o, = 0.20, o, = 0.25.
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surprising, since a decrease in A holding the percentage deviations in job destruction
constant obviously will yield smaller percentage fluctuations in employment.

We close this section with one final comment related to the difference between the
first model described in Section 3 and the Mortensen-Pissarides model, in which job
destruction is determined endogenously. An important result from the Mortensen-
Pissarides analysis is that once job destruction is endogenized, theory predicts an
additional effect, namely, the asymmetry in the job destruction rate induced by neg-
ative aggregate shocks. Although our analysis does not permit us to make definitive
statements on the issue, our results do suggest that the ability of the model to match
the business-cycle facts is enhanced by having A, be positive.

6. DISCUSSION

The key finding from the preceding section is that the model can account for the
business-cycle facts reasonably well if p, the average unemployment hazard, is around
0.33 or lower. A value of p this low, however, implies unemployment durations of
roughly 39 weeks. According to data published by the Bureau of Labor Statistics,
the average duration of unemployment spells in manufacturing for the period 1972-
1988 is around 20 weeks. This might suggest that our main finding is negative: For
reasonable parameter values, our reduced-form Mortensen-Pissarides model cannot
match the business-cycle facts in Section 2.

Here we argue the opposite. There are two important issues to consider.?’ The first
is that some care must be taken when using data from the world in which there are
three labor market states (i.e., employed, unemployed, and not in the labor force) to
calibrate a model in which there are only two states (i.e., employed and unemployed).
There would be no issue if transitions between nonparticipation and the other two
states were rare, but the data reveal that this is not the case. For example, Blanchard
and Diamond (1990) report that the flow of workers from out of the labor force into
employment is roughly the same as the flow of workers from unemployment into
employment. They also report that the number of workers categorized as out of the
labor force but who want a job is roughly equal in magnitude to the number of people
in the unemployed state. Similarly, work by Jones and Riddell (1999) using Canadian
data also suggests that there is a sizable group of individuals who are classified as not
in the labor force but whose behavior suggests that they would be more accurately
classified as unemployed.

These facts suggest that it is reasonable to consider some individuals from the
out-of-the-labor-market state as individuals who are possibly searching for employ-
ment at a low level of intensity. This is significant for the calibration of the steady
state of a matching model in which searching workers are assumed to be identical,
since the representative searching worker in the model must represent both those un-
employed workers who are searching relatively intensely and those nonparticipating
workers who may be searching less intensely. The key for our calibration exercise is

2 A third issue is that whereas the model is a general equilibrium model, we are using it to match
data from a single sector. While we view this as a caveat, we do not pursue its potential significance
here.
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TABLE 7
SS u — p COMBINATIONS

A =0.055
p 0.2 0.3 0.4 0.5 0.6 0.7 0.8
u 0.22 0.15 0.12 0.10 0.08 0.07 0.06
A =0.030
p 0.2 0.3 0.4 0.5 0.6 0.7 0.8
u 0.13 0.09 0.07 0.06 0.05 0.04 0.04

that this interpretation suggests a higher ratio of individuals searching in the steady
state relative to those who are employed, and hence holding the average value of A
constant yields a lower probability of moving from nonemployment to employment.
In fact, if one follows Blanchard and Diamond (1989) and counts all nonparticipat-
ing individuals who say they want a job as searchers, then in the model’s steady state,
the fraction of people searching should be roughly twice that of the measured un-
employment rate. Taking the reported average unemployment rate in manufacturing
of 8.5 percent at face value, this suggests that the specification in Tables 5 and 6 is
preferable to that in Table 2.

To pursue this issue further, it is instructive to examine some relationships that
must hold in steady state. The steady state of the model is characterized by three
numbers: the rate at which employed workers leave employment (A), the rate at
which nonemployed workers find employment (p), and the fraction of workers that
are employed (1 — u). It is important to note, however, that only two of these values
are independent, since they are linked by the relationship u = A/(p + A). Taking A
as given, therefore, there is a one-to-one mapping between choices of u and choices
of p. Table 7 indicates several possible combinations for steady-state values of u and
p for two values of A, 0.055 and 0.030.%!

As Table 7 makes clear, one cannot simultaneously have the fraction of employed
workers equal to 0.85 and an unemployment hazard of 0.6. If one takes a stand that
the size of the searching population is 15 percent or higher, a value of p less than
0.3 is required, even with A set to 0.055.

We now turn to the second issue. The model studied here is not intended to cap-
ture all the labor-market flows in the real world—rather, it is intended to capture
those flows associated with the job creation and destruction process. In particular,
the nature of worker-firm separations in the model is such that the employment po-
sition ceases to exist; i.e., it is not filled by a new worker. Hence it seems natural
to interpret the model as abstracting from both temporary layoffs and quits. This is
important for two reasons. First, it suggests that the relevant unemployment rate is
probably smaller than suggested earlier. However, since published data on unemploy-
ment rates by reason for unemployment indicate that persons on temporary layoff

2l We consider values of A less than 0.055, since one may argue that the figure of 0.055 is upward
biased for our purposes by the inclusion of some temporary layoffs. Some evidence on this is provided
later in the article.
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or who left their previous job account for roughly 1.5 percentage points of economy-
wide unemployment, this factor is probably not very significant. Second, unemploy-
ment durations are much lower on average for these two groups than they are for
other groups in the population, hence further suggesting that the relevant duration
of unemployment for the model is higher than the one in published sources.

The preceding argument has implicitly treated p as a residual to be determined as
the value consistent with specified values of u and A. The spirit of the argument, how-
ever, is intimately related to a literature that studies unemployment durations directly
and argues that measured unemployment spells are significantly downwardly biased
because of reporting errors induced by the presence of the out-of-the-labor-force
state. [See Clark and Summers (1979) for a discussion of this phenomenon.] The
basic issue is that measured unemployment durations do not measure the expected
time between employment spells but rather the expected time before leaving the un-
employment state to either employment or out of the labor force. In our model, on
the other hand, p is probably best interpreted as reflecting the (inverse) of the dura-
tion of a nonemployment spell rather than of an unemployment spell. This reasoning
also suggests, therefore, that choosing a value for p based on matching reported un-
employment durations is not necessarily a good strategy for assessing the model’s
implications.

We close this section with a brief discussion of some related articles. There are
three recent papers, Andolfatto (1996) and Merz (1995, 1996), that imbed matching
models into otherwise standard real business-cycle models and explore the business-
cycle implications quantitatively. Andolfatto (1996) and Merz (1995) show that their
models perform about the same as a standard real business-cycle model on the di-
mensions commonly addressed and that they also match on some dimensions such as
the unemployment rate—vacancy rate correlation from which the standard model ab-
stracts. However, although they do not explore the implications of their models for
job creation and job destruction, it is clear that they do not match some of the key
empirical regularities. For example, in both models, the job destruction rate is con-
stant, implying that employment and job destruction would have the same volatility
in percentage terms.

Merz (1996), however, specifically examines the flows into and out of unemploy-
ment and finds that her model successfully accounts for the facts. Moreover, in sharp
contrast to our findings, this happens when the average unemployment duration is
set to 12 weeks. The apparent discrepancy between the two articles is resolved by
noting that they study different objects. Merz’s empirical work studies economywide
flows into and out of unemployment, whereas our empirical work studies job creation
and job destruction flows in manufacturing. In both theoretical models, job creation
is identical to the outflow from unemployment, and job destruction is identical to
the inflow to unemployment. Hence, since Merz finds a positive correlation between
the inflow and outflow, she obviously does not account for the negative correlation
between job creation and job destruction. Likewise, since our reduced-form model ac-
counts for the negative correlation between job creation and job destruction, it does
not account for the positive correlation between the flows into and out of unemploy-
ment. However, in the actual data, there is not such a close association between the
various measures, which explains why it is possible that job creation and job destruc-
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tion are negatively correlated, whereas the flows into and out of unemployment are
positively correlated.?

To understand the discrepancy in the real data, note that Merz measures the
monthly flow into unemployment as a constant times the number of individuals unem-
ployed for less than 5 weeks. There are several reasons why this may not correspond
to job destruction. First, if an individual enters unemployment from out of the la-
bor force, then there is an inflow into unemployment, but no job has been destroyed.
Similarly, if an individual is laid off and leaves the labor force, then there is no flow
into unemployment, but there has been a job destroyed. Or if one individual quits a
job and becomes unemployed and the firm hires a replacement, there is again a dis-
crepancy. The bottom line here is that Merz’s empirical work focuses on series that
are potentially quite different from the job creation and job destruction series. A rel-
evant question is for which of the two data sets is the model most appropriate? In
our view, given that both models abstract from quits and transitions between unem-
ployed and out of the labor force, it is best to focus on the model’s implications for
job creation and job destruction. At a minimum, the discussion suggests that it may
be worthwhile to incorporate these other features into the model.

Lastly, one feature of the data that we have not discussed is the presence of coun-
tercyclic loops in the dynamics of unemployment and job vacancies. Pissarides (1987)
discusses this feature and shows essentially that the model of this article does not pro-
duce this feature of the data. He also suggests one possible remedy that effectively
introduces some rigidity in the response of wages to temporary shocks. We leave the
integration of this element into the analysis for future work.

7. CONCLUSION

The objective of this article has been to determine to what extent the Mortensen-
Pissarides matching model can account for the business-cycle facts on employment,
job creation, and job destruction. A novel feature of our analysis has been its focus
on the reduced-form implications of the model rather than on the structural speci-
fication of the model, since we believe that this facilitates an understanding of the
model’s mechanics and provides a more robust assessment of the model’s empiri-
cal implications. Our main finding is that the reduced-form structure implied by the
model can account for most of the features found in the data, although this requires
that average unemployment durations in the model be substantially larger than those
reported in the data. While we have argued that these unemployment durations are
not implausible, our argument also suggests that it is important to extend the model
to better gauge its ability to account for the patterns in the data. In particular, incor-
porating heterogeneity in search intensity across workers at a point in time, as well
as allowing for quits and temporary separations, seems to be an important avenue
to pursue. It is also of interest to examine what specifications of structural models
give rise to the reduced forms that seem to account for the data, since Caballero and

22 Given the differences in time periods and coverage for the two empirical analyses, there are
other explanations for the two findings. However, work with manufacturing turnover data for a
longer time period suggests that the time horizon is not the determining factor.
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Hammour (1996) argue analytically in a similar but different model that departures
from efficiency may be key to accounting for the empirical regularities in job creation
and job destruction.
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