Midterm Exam

October 27, 2011

Answer all questions. The weight each question or part will receive in marking is indicated. Answer question 1 True, False, or Uncertain and justify your answer. For questions 2 , 3 and 4 , answer concisely, without leaving out important information.

1. (12 points) In a real business cycle model, it makes no difference whether we assume that labour is indivisible or that households have preferences that are linear in leisure.
2. (12 points) Consider the following operator T where $v_{0}(s)$ is a bounded and continuous function:

$$
\begin{equation*}
v_{1}(s)=T v_{0}(s)=\max _{u}\left\{(s, u) R\binom{s}{u}+\beta v_{0}\left(s^{\prime}\right)\right\} \tag{1}
\end{equation*}
$$

Here s and u are vectors and R is a negative semi-definite matrix. Show that the operator T is a contraction mapping.
3. Consider a version of the Mehra-Prescott model in which the representative consumer maximizes

$$
\begin{equation*}
\mathrm{E} \sum_{t=0}^{\infty} \beta^{t} \ln \left(c_{t}+\alpha\right) \quad \alpha>0 \tag{10}
\end{equation*}
$$

and owns a unit share in a "tree" which yields fruit d_{t} each period, with

$$
\begin{equation*}
d_{t+1}=\gamma_{t+1} d_{t}, \quad \forall t . \tag{11}
\end{equation*}
$$

The state of the economy is the gross growth rate of income, γ_{t+1}, a random variable which takes on a value of either γ_{1} or γ_{2}, with $\gamma_{2}<\gamma_{1}$. Each period, the probability that the state will remain the same next period is $1 / 2$.

Derive expressions for the state-contingent prices of
a. A risk-less bond (13 points)
b. An equity share in a tree. (13 points)
4. Consider the following two-sector real business cycle model. There are two goods, each produced using the other as an input. Preferences are given by:

$$
\begin{equation*}
E_{0} \sum_{t=0}^{\infty}\left[\ln c_{1 t}+\ln c_{2 t}+\gamma \ln \left(1-n_{1 t}-n_{2 t}\right)\right] . \tag{12}
\end{equation*}
$$

The technology for producing each good $i=1,2$ is:

$$
\begin{equation*}
y_{i t}=z_{i t} k_{i t}^{\alpha} n_{i t}^{1-\alpha} \tag{13}
\end{equation*}
$$

where $z_{i t}, k_{i t}$, and $n_{i t}$ are the technology shock, capital employment, and labor hours in sector i at time t respectively. The interdependence between sectors is embedded in the following resource constraints, which specify the investment technology:

$$
\begin{align*}
& k_{2 t+1}=y_{1 t}-c_{1 t} \tag{14}\\
& k_{1 t+1}=y_{2 t}-c_{2 t} . \tag{15}
\end{align*}
$$

Note that (14) and (15) imply complete depreciation of capital each period. Each sector's technology shock is $\operatorname{AR}(1)$ in logs, $i=1,2$:

$$
\begin{equation*}
\ln z_{i t+1}=\rho \ln z_{i t}+\epsilon_{i t+1} \quad \rho \in(0,1), \quad \ln \bar{z}_{i}=0 \tag{16}
\end{equation*}
$$

where ϵ_{i} is iid both over time and across sectors, with mean 0 and variance σ^{2}.
a. Set up a Bellman equation associated with the social planner's problem for this economy. Is it appropriate to calculate a recursive competitive equilibrium allocation using this problem? (8 points)
b. Derive $c_{i t}, n_{i t}$, and $k_{i t+1}, i=1,2$ as functions of the state. (18 points)
c. Derive and interpret equations relating sectoral outputs $\left(\ln y_{i t}\right.$ for $\left.i=1,2\right)$ to their lagged values and the values of the productivity levels, $z_{i t}$, for $i=1,2$, and the shocks, $\epsilon_{i t}$, $i=1,2$, in equilibrium. Are sectoral outputs correlated over time? (12 points)
d. Derive and interpret an equation relating the aggregate output measure:

$$
\begin{equation*}
Y_{t}=y_{1 t}^{\frac{1}{2}} y_{2 t}^{\frac{1}{2}}, \tag{17}
\end{equation*}
$$

to its lagged value, the $z_{i t}$'s, and the $\epsilon_{i t}$'s in equilibrium. Is aggregate output more or less volatile in equilibrium than the sectoral outputs? (12 points)

