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Abstract

Analytical or coding errors in posterior simulators can produce reason-
able but incorrect approximations of posterior moments. This article de-
velops simple tests of posterior simulators that detect both kinds of errors,
and uses them to detect and correct errors in two previously published
papers. The tests exploit the fact that a Bayesian model specifies the joint
distribution of observables (data) and unobservables (parameters). There
are two joint distribution simulators. The marginal-conditional simulator
draws unobservables from the prior and then observables conditional on
unobservables. The successive-conditional simulator alternates between
the posterior simulator and an observables simulator. Formal comparison
of moment approximations of the two simulators reveals existing analyti-
cal or coding errors in the posterior simulator.

Financial support from National Science Foundation grants SES-9996332
and SES-0214303 is gratefully acknowledged.

1 Introduction
In the past decade posterior simulators have become essential and widely used
tools for Bayesian inference. In particular Markov chain Monte Carlo has made
Bayesian inference routine in models that were previously inaccessible. As in-
vestigators developing these approaches are keenly aware, posterior simulators
require analytic work for their proper implementation that can be difficult, te-
dious, or both. Data, prior and other densities must correspond exactly to
models; conditional distributions must be derived correctly; and the computer
code incorporating all of these ideas must be free of error. These tasks are
essential, but there has been little attention given to formal verification that
posterior simulators are error-free.
This paper proposes tests of the consistency of a posterior simulator with the

specified prior and data distributions. These tests have power against errors of
analysis and derivation, on the one hand, as well as failure to implement these
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ideas correctly in computer code, on the other. The tests utilize prior and data
simulators that are natural complements of posterior simulators in statistical
software. Given all three simulators clients and other second-party users can
readily apply joint distribution tests to verify that a posterior simulator provided
by an investigator is error-free.

2 Joint distribution tests
Let a model specify the distribution of a vector of observables y ∈Y ⊆ RT condi-
tional on a vector of unobservables θ ∈Θ ⊆ Rk, by means of a density p (y | θ)
with respect to a measure µ on Y . Further let the model specify a proper
prior distribution of unobservables by means of a density p (θ) with respect to
a measure ν on Θ. The unobservables may be parameters, or a combination of
parameters and latent variables, and the density p (θ) may incorporate a hier-
archical structure. For the joint distribution tests it is essential that the prior
distribution be proper, but by casting an improper prior distribution as a lim-
iting special case of a proper prior distribution, joint distribution tests may be
applied to posterior simulators for models with improper priors, as illustrated
in Section 4.
In a model of this form

p (θ,y) = p (θ) p (y | θ) (1)

is the joint density of observables and unobservables, and (1) is a marginal-
conditional decomposition of the joint density. Let g be any function g : Θ×Y →
R1 for which Z

Θ

Z
Y

g2 (θ,y) p (θ,y) dµ (y) dν (θ) <∞, (2)

or more succinctly, σ2g = var [g (θ,y)] <∞.
A joint distribution test compares two simulation approximations of

g = E [g (θ,y)] =

Z
Θ

Z
Y

g (θ,y) p (θ,y) dµ (y) dν (θ)

for a set of test functions g satisfying (2). The first approximation employs the
marginal-conditional simulator of the joint distribution of θ and y,

θ(m) ∼ p (θ) , (3)

y(m) ∼ p
³
y | θ(m)

´
, (4)

g(m) = g
³
θ(m),y(m)

´
.

This simulator is typically simple to construct, often much simpler than the pos-

terior simulator. The sequence
n
θ(m),y(m)

o
is i.i.d., g(M) =M−1

PM
m=1 g

(m) a.s.→

g,M1/2
¡
g(M) − g

¢ d→ N
¡
0, σ2g

¢
, and bσ2(M)

g =M−1
PM

m=1

¡
g(m)

¢2−¡g(M)
¢2 a.s.→

σ2g.
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In the posterior distribution of θ the observable y is fixed at its observed
(i.e., data) value yo. A posterior simulator produces a sequence of simulations½eθ(m)yo

¾
, according to a transition kernel

eθ(m)yo ∼ q

µ
θ | eθ(m−1)yo ,yo

¶
. (5)

Essentially all Markov chain Monte Carlo simulators can be expressed in this
form. Careful application of these methods requires a demonstration that

the sequence
½eθ(m)yo

¾
is ergodic with unique invariant kernel p (θ) p (yo | θ);

[Tierney 1994] provides formal definitions and convergence conditions.
The successive-conditional simulator of the joint distribution of θ and y

consists of an initial draw eθ(0) ∼ p (θ), followed by the successive iterations

ey(m) ∼ p

µ
y | eθ(m−1)¶ , eθ(m) ∼ q

µ
θ | eθ(m−1), ey(m)¶ , eg(m) = g

µeθ(m), ey(m)¶ .
If one has at hand a demonstration of the egodicity of

½eθ(m)yo

¾
for almost all

yo, then showing that
½eθ(m), ey(m)¾ is ergodic with unique invariant kernel

p (θ,y) typically involves little, if any, additional work. In this case eg(M)
=

M−1
PM

m=1 g

µeθ(m), ey(m)¶ a.s.−→ g. For a uniformly ergodic chain
n
θ(m),y(m)

o
,

M1/2
³eg(M) − g

´
d→ N

¡
0, τ2g

¢
.

If all simulators are error-free, then as M1 →∞ and M2 →∞,³
g(M1) − eg(M2)

´
/
³
M−11 bσ2(M1)

g +M−12 bτ2(M2)
g

´1/2 d→ N (0, 1) . (6)

The Bayesian Analysis, Computation and Communication software, freely avail-
able at http://www2.cirano.qc.ca/~bacc, computes both bτ2(M)

g and the test
statistic (6).
Each test function g defines a joint distribution test (6). The power of the

test depends on the error in the posterior simulator and the nature of the test
function, and so a given error will become apparent with fewer iterations for
some test functions than for other test functions. Using a wider variety of
test functions provides a greater opportunity to detect existing errors in fewer
iterations. Concerns about multiple tests can be addressed formally using a
Bonferroni test of the joint hypothesis involving all test functions, as illustrated
below in Section 4. In the examples in the following sections, errors, if they are
present, emerge rather quickly in a subset of the test functions.
The marginal-conditional and successive-conditional simulators incorporate

three simulators: the prior simulator (3), the observables simulator (4), and the
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posterior simulator (5). Thought processes and coding for these simulators are
distinct. The observables simulator (4) appears in both the marginal-conditional
and successive-conditional simulators, but an error in (4) will have different
consequences for the marginal-conditional and successive-conditional simulators
and lead to rejections in the joint distribution tests. While failure in the joint
distribution tests can be due to errors in any of (3), (4) and (5), (5) is usually
the most likely candidate since it is typically much more complicated than either
(3) or (4).

3 A constructed example: t-mixture model
To demonstrate the kinds of errors joint distribution tests can detect, consider
the univariate mixture of Student-t distributions

yt ∼ t
¡
µ1, σ

2
1; ν
¢
with probability p, (7)

yt ∼ t
¡
µ2, σ

2
2; ν
¢
with probability 1− p. (8)

In this example ν is fixed at ν = 5, but the model could be extended to make ν
an unknown parameter.
Standard MCMC algorithms [Geweke 1993] exploit the fact that the se-

quence νωt ∼ χ2 (ν) followed by yt ∼ N
¡
µj , σ

2
j/ωt

¢
is equivalent to yt ∼

t
¡
µj , σ

2
j ; ν
¢
(j = 1, 2). The model is augmented with ω =(ω1, ..., ωT )

0 and the
latent state vector s =(s1, ..., sT )

0, with st = 1 indicating (7) and st = 2 indi-
cating (8). Then Gaussian priors for µ1 and µ2, inverse gamma priors for σ

2
1

and σ22, and a beta prior for p are all conditionally conjugate, and the result-
ing conditional distributions in a Gibbs sampling algorithm are also Gaussian,
inverse gamma, and beta, respectively. There are two variants of the Gibbs
sampler. The first (MCMC1) draws s and ω jointly and the second (MCMC2)
draws them separately.
The marginal-conditional simulator draws the parameter vector θ =(µ1, µ2,

σ21, σ
2
2, p
¢0
from the prior and then simulates six observations y =(y1, . . . , y6)

0

conditional on θ. The successive-conditional simulator alternates between the
simulation of y conditional on the unobservables θ, s and ω, and an iteration
of MCMC1 or MCMC2. In this illustration the test functions are the five first
and fifteen second moments of the parameter vector θ. (Since y is not involved
in the comparison, it really is not necessary to generate y(m) in the marginal-
conditional simulator.)
Five instances of an intentionally introduced error provide evidence on the

power of the posterior simulation check.

1. The prior distribution of p is Beta(1,1), whereas the posterior simulator
assumes a Beta(2,2) prior distribution.

2. In the successive-conditional simulator the observables simulator ignores
ω from the posterior simulator. Instead it uses fresh values of νωt ∼ χ2 (ν)
to construct yt.
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3. The variance of the Gaussian conditional posterior distribution of (µ1, µ2)
0

is erroneously set to zero.

4. The degrees of freedom in the conditional posterior distribution of each
ωt is taken to be 5, rather than its correct value of 6.

5. The final error is in the generation of (st, ωt) in MCMC1. The correct
algorithm generates st (conditional on all unknowns except ωt) and then
generates ωt conditional on all unknowns including st just drawn. In the
error, ωt is drawn several steps later in the Gibbs sampling algorithm
rather than immediately after st.

Table 1: Summary of p-values of test statistics in the t-mixture model
Tests (of 20) failing at p =

Algorithm Error .05 .01 .005 .001
MCMC1 0. None 0 0 0 0
MCMC2 0. None 0 0 0 0
MCMC1 1. Prior simulation of p 4 3 3 2
MCMC1 2. Simulation of observables 10 9 9 9
MCMC1 3. ω degrees of freedom 5 3 3 3
MCMC1 4. µ variance 11 10 10 9
MCMC1 5. (s, ω) draw 7 6 6 6
Note: Tests compare approximations of 20 test functions: the five first
and fifteen second moments of five parameters in the model. Errors are
detailed in the text. The numbers of functions failing the test at alternative
p-values are reported. Tests utilized 2.5× 105 iterations of each simulator.

Table 1 reports the number of rejections in the twenty joint distribution
tests, using some alternative conventional critical values. The joint distribution
tests employed the twenty first and second moments of the 5 × 1 parameter
vector θ as test functions. Both simulators employed 2.5 × 105 iterations, and
total computing time was less than one minute. The correct algorithm clearly
passes the joint distribution tests, whereas errors–in the prior, observables, or
posterior simulators–are all detected.

4 An example: Unit roots model
Errors in posterior simulators can lead to incorrect but reasonable results. If
the errors are undetected then incorrect results are likely to be published. An
example of such a published study is [Geweke 1994]. That article develops a
variant of the univariate time series models that have been applied by economists
in the past two decades to discriminate between trend and difference stationarity
in macroeconomic time series.
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The distribution of the observable time series {yt} in [Geweke 1994] is spec-
ified by

yt = γ + δt+ ut; (9)

ut = ρut−1 +
mX
j=1

aj (ut−j − ut−j−1) + εt; (10)

εt
i.i.d.∼ t

¡
0, σ2; ν

¢
. (11)

This and similar models have been applied widely, usually to natural logarithms
of time series measuring output, employment, prices or money supply. The main
parameter of interest is ρ. If ρ ∈ (0, 1) then {ut} is stationary and, from (9),
{yt} is said to be trend stationary. If ρ = 1 then {ut} is nonstationary, it
follows that ∆yt = δ

³
1−

Pm
j=1 aj

´
+
Pm

j=1 aj∆yt−j + εt and {yt} is said to be
difference stationary. An advantage of the particular formulation (9)-(10) is that
E (∆yt) = δ in either case, which facilitates articulation of a prior distribution
for the unconditional growth rate without conditioning on trend or difference
stationarity, and also facilitates interpretation of the posterior distribution.
Conditional on difference stationarity, the prior distribution fixes ρ = 1.

Conditional on trend stationarity, the prior density of ρ is

p (ρ) = (s+ 1)−1 ρsI(0,1) (ρ) . (12)

This prior distribution is motivated by two properties of the simple first-order
autoregressive process yt = ρyt−1 + vt. First, for observations at (s+ 1)-period

intervals, yt = ρ(s)yt−s+v
(s)
t , with ρ(s) = ρs. Second, if p

³
ρ(s)

´
= I(0,1)

³
ρ(s)

´
,

then the prior density of ρ is (12). In this context a larger value of s in (12)
corresponds to a “flat” prior for the autoregressive parameter ρ(s), and places
relatively more weight on values of ρ near ρ = 1. The leading objective of the
posterior analysis in [Geweke 1994] is to determine Bayes factors among trend
stationary models with different specifications of s in (12), and between each of
these models and a difference-stationary model (ρ = 1).
The prior distribution in [Geweke 1994] is completed by setting m = 4 on

the basis of previous research by several investigators, and then specifying aj ∼
N
¡
0, .731 · .342j

¢
so that a1 ∼ N

¡
0, .52

¢
while a4 ∼ N

¡
0, .12

¢
. Other prior

distributions are δ ∼ N
¡
0, .052

¢
, γ ∼ N

¡
0, 102

¢
, ν ∼ exp (4) and

p (σ) ∝ σ−1I(0,∞) (σ) . (13)

The latter improper reference prior can be interpreted as the limit of inverse
gamma distributions

a/σ2 ∼ χ2 (a) as a→ 0. (14)

The study [Geweke 1994] shows that the Bayes factor in favor of the specification
s = t in (12), versus s = r , is the expectation of the function

g (ρ) = [(t+ 1) / (r + 1)] ρ(t−r)
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under the posterior distribution corresponding to the prior distribution with
s = r in (12). In the context of the improper prior distribution (13), the
interpretation of the Bayes factor is that of the limiting Bayes factor of models
compared with a common value of a in (14). The Bayes factor in favor of the
difference stationarity specification ρ = 1 is the expectation of the function

g (ρ) =
(s+ 1)

−1
exp

h
− (1− bρ)2 /2λ2iR 1

0
ρs exp

h
− (ρ− bρ)2 /2λ2i dρ , (15)

the parameter s being that of the prior density (12). The parameters bρ and λ in
(15) are the mean and standard deviation parameters in the conditional poste-
rior distribution of ρ, which is normal truncated to the unit interval. The one-
dimensional integral in the denominator is evaluated by conventional quadra-
ture.
The posterior simulator developed in [Geweke 1994] is a Gibbs sampling al-

gorithm utilizing the six blocks (γ, δ), (a1, . . . , a4), ρ, ν, σ, and a block for
latent variables introduced to manage the Student-t distributions of the inno-
vations (11) as described in the previous section. All six conditional distri-
butions are derived (correctly, as it turns out) in [Geweke 1994], except for
two typographical errors not incorporated in the computer code: the expres-

sion N
³
0, π0π

j−1
1

´
in the conditional distribution of (a1, . . . , a4) should read

N
³
0, π0π

j
1

´
, and the leading term ρ in the conditional kernel density of ρ,

equation (18) in [Geweke 1994], should read ρs.
To conduct joint distribution tests, archived computer code was retrieved,

and the results published in [Geweke 1994] were replicated exactly, using random
number generator seeds that had been archived along with the code. (The only
change at all was that execution time decreased by a factor of 100, consistent
with Moore’s law and the decade vintage difference in the workstations used for
[Geweke 1994] and the joint distribution test.) A final step was added to each
iteration of the Gibbs sampler to simulate the observables from (9)-(11). The
prior distributions just described were used in the joint distribution tests, except
that the improper prior (13) was replaced with the proper inverse gamma prior
.01/σ2 ∼ χ2 (4).
Test functions involved only parameters, not observables, and therefore the

marginal-conditional simulator involved only simulation from the prior distrib-
ution; 106 replications, requiring about 30 seconds, were used. The successive-
conditional simulator employed T = 10 observations andM = 4×106 iterations
of which every 400’th iteration was recorded and used in the joint distribu-
tion tests, which required about 25 minutes. There was no evidence of serial
correlation in the successive-conditional simulator at intervals of 400 iterations.
Ninety test functions were used in the joint distribution comparison tests:

(a) all nine parameters of the model (ρ, γ, δ, a1, . . . , a4, σ, and ν) (b) the
three functions f1 = ρ9, f2 = γ (1− ρ) + δ

P4
j=1 aj and f3 = δ (1− ρ); and (c)

all squares and cross-products of the twelve functions in (a) and (b). Table 2
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provides the outcome of the tests. It indicates parameters and functions in its
first row and column. The remaining entries correspond to products of the first
row and column, entries being made only on and below the diagonal. Note that
the test statistics in the last row correspond to the respective column headings
and involve no interaction between parameters or functions. The entries are
the absolute values of test statistics that all have standard normal distributions
if all relevant algorithms have been derived and coded correctly. Only entries
that exceed 1.96 in absolute value are shown. A Bonferroni test rejects the
null hypothesis that the two simulators are the same at the 0.1% level if any
test statistic exceeds Φ−1 [.001/ (2 · 90)] = 4.394. These 37 entries indicate
categorically the existence of one or more errors in the algorithm or coding.

Table 2: Joint distribution test statistics in the unit roots model
ρ γ δ a1 a2 a3 a4 σ ν f1 f2 f3

ρ 2.4
γ 2.5
δ 3.4
a1 19.5
a2 7.5 7.8 11.8
a3 2.0 11.7
a4 2.7 11.7
σ 9.8 10.4 7.3 4.3
ν 4.4 4.4 6.0 2.2 2.6
f1 5.9 3.6
f2 2.1 2.6 7.4 7.4 2.1 3.3
f3 3.3 2.3 2.1 3.3
1.0 2.6 7.9 10.4 4.3 2.6
Note: The test function for any entry is the product of the row parameter or
function and column parameter or function; functions are described in the text.
Test statistics are based on every 400’th of 4× 106 iterations. Test statistics are
shown only if they exceed 1.96 in absolute value.

In general joint distribution tests indicate the existence of errors, but not
their source. Nevertheless not much is lost by looking first at conditional distri-
butions of parameters that generate the most egregious test failures. The main
diagonal in Table 2 singles out a1, . . . , a4, and if one adds to this group σ, then
all test statistics exceeding 5.0 in Table 2 involve only these parameters. With
this clue, inspection of the code quickly isolated one error: the routine employed
to draw from the posterior conditional Gaussian distribution of (a1, . . . , a4)

0 in
fact drew from the marginal distribution of (a1, . . . , a4)

0 in the joint conditional
posterior distribution of (a1, . . . , a4, σ)

0. The same routine was used in the draw
from the conditional posterior distribution of (γ, δ)0 and the same error was
made. The error was easily corrected. Repetition of the joint distribution com-
parison tests yielded only two rejections in tests of size .05 and none in tests of
size .01.
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Table 3: Comparison of Bayes factors and moments in error-ridden and corrected
posterior MCMC simulators, time series model for real per capita GNP
Bayes factor or With error With error Corrected Corrected
parameter (M = 104) (M = 106) (M = 106) (M = 104)

BF favoring ρ = 1 .526 [.026] .445 [.004] .0462 [.0004] .0482 [.0026]
BF favoring s = 17 .722 [.018] .639 [.002] .274 [.001] .290 [.011]

ρ .896 (.068) .886 (.071) .849 (.063) .852 (.062)
δ .017 (.004) .018 (.004) .018 (.001) .018 (.001)
ν 6.1 (3.8) 6.0 (3.8) 5.3 (3.6) 5.3 (3.5)

Note: The prior distribution of ρ takes s = 9 in (12). Numbers in brackets for
Bayes factors are numerical standard errors. In the last three rows the simulation
approximation of the posterior expectation of the indicated parameter is shown,
together with the posterior standard deviation in parentheses.

In this context it is interesting to examine whether the detected error had
significant consequences for the questions taken up in [Geweke 1994]. Table 3
provides some results of this examination for one of the six time series used
in that study, per capital real GNP. The table pertains to a trend stationary
model with specification of the prior distribution (12) for ρ in which s = 9. The
first row of entries indicates the computed Bayes factor in favor of difference
stationarity against this specification. The second row indicates the Bayes factor
in favor of an alternative trend stationary model with greater persistence, s = 17
in the prior distribution for ρ in (12). In these rows the numbers in brackets
indicate the numerical standard error (i.e., the standard error of the Monte
Carlo approximation, correcting for serial correlation in the simulator output)
corresponding to the numerical approximation of the Bayes factor. The last
three rows indicate posterior means and (in parentheses) posterior standard
deviations of three of the parameters.
Thanks to the increase in computing speed since the original study, it was

practical to increase the number of Monte Carlo replications by a factor of 100,
as indicated in the first row of Table 3. (Computing time was about 15 minutes
on a 2000-vintage Hewlett-Packard workstation using compiled Fortran.) In the
process of this replication, it was discovered that increasing the number of burn-
in iterations from 200 to 2000 and the number of retained iterations from 104 to
106 in the original error-ridden code, itself significantly changed some posterior
moments of interest. This is evident in the comparison of columns two and three
in Table 3. However the impact of the incorrect coding on the Bayes factors,
evident in the comparison of columns three and four in this table, is an order of
magnitude greater. The Bayes factor in favor of difference stationarity was too
high by a factor of ten, and the Bayes factor in favor of difference stationarity
with s = 17 in (12) was also much too high. Consistent with these errors, the
effect of the coding error was to render the posterior mean of ρ about 0.90 when
it should have been about 0.85. (The impact of the coding error on Bayes factors
and the posterior mean of ρ was in the same direction and of the same order of
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magnitude for the other time series studied in [Geweke 1994], as well.) There
was little impact on inference about trend (γ), but the coding error lowered the
degrees of freedom in the Student-t distribution of the innovations somewhat.
The last column of Table 3 repeats the exercise with the corrected code, utilizing
the same number of burn-in and retained iterations applied originally. The small
differences in the last two columns of the table, compared with columns two
and three, suggest that convergence to the invariant distribution is faster in the
correct code than in the error-ridden code.

5 An Example: Reduced rank regression model
The study [Geweke 1996] is a second instance of a published study based on
an incorrect posterior simulator. That article proposes posterior simulators for
a Bayesian treatment of the reduced rank regression model, first introduced in
[Anderson 1951] and used subsequently in such diverse applications as simulta-
neous equation estimation [Dreze 1976], inference for cointegrated time series
[Johansen 1988] and asset pricing models [Costa et al. 1997].
To establish notation let

Y
T×L

= X
T×p

· Θ
p×L

+ Z
T×k

· A
k×L

+ E
T×L

(16)

denote the multivariate regression model for T observations of L dependent
variables and p+ k covariates. Conditional on covariates,

vec (E) ∼ N (0,Σ⊗ IT ) . (17)

The reduced rank regression model is the special case in which

Θ
p×L

= Ψ
p×q

· Φ
q×L

, q < min (p, L) .

Further restrictions are required to identify Ψ and Φ, and [Geweke 1996] con-
siders two. In normalization 1, Φ =

£
Iq Φ∗

¤
and Ψ is unrestricted. In

normalization 2, Ψ0 =
£
Iq Ψ∗0

¤
and Φ is unrestricted.

For the independent prior distributions

Σ−1 ∼W
¡
S−1, ν

¢
, (18)

and either
[vec (Ψ) , vec (Φ∗)]0 ∼ N

¡
0,τ−2IL(p+q)

¢
, (19)

in the case of normalization 1, or

[vec (Ψ∗) , vec (Φ)]0 ∼ N
¡
0,τ−2IL(p+q)

¢
, (20)

in the case of normalization 2, [Geweke 1996] develops a Gibbs sampling algo-
rithm for the model. The body of [Geweke 1996] presents conditional posterior
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distributions for (18)-(19) and (18)-(20), and the appendix of the article derives
these distributions in detail for the limiting case S−1 → 0, ν → 0, τ → 0.
Before conducting joint distribution tests, archived computer code was re-

trieved and posterior moments from the original work were duplicated. Code
for the first simulator of the tests was written and checked, and the conditional
data distributions (16)-(17) were added to the posterior simulator. In all tests
L = 4, p = 3, k = 0, q = 2, τ = 1, S = 2.5I4, ν = 8, and T = 6. The first
column of X was set to units and the remaining elements of X to independent
standard normal random variables. The test functions were Ψ and Φ∗ (nor-
malization 1) or Ψ∗ and Φ (normalization 2), Θ, Θ0Θ, Σ−1, and the ordered
eigenvalues λ1 ≥ . . . ≥ λ4 of Y0Y. The marginal-conditional simulation em-
ployedM = 106 i.i.d. iterations, requiring about 6.5 minutes of computing. The
successive-conditional simulation used every 40’th iteration of a total of 4× 106
iterations, and required about one hour of computing. Using correct code, there
is little evidence of serial correlation in every 40’th iteration.

Table 4: Some selected moment approximations in the reduced rank model,
normalization 2 (error-ridden code)

Full distribution Numerical accuracy
Test function Mean Standard. Numerical. Relative numerical

deviation standard error efficiency
ψ∗11 -12.0 23.6 22.9 .001
ψ∗12 -2.25 18.7 7.85 .006
φ22 -.208 .028 .063 .196
φ23 .195 .951 .030 .076
θ22 -.208 .885 .028 .063
θ34 -2.52 14.2 4.92 .008P3
j=1 θ

2
j1 362. 654. 338. .004P3

j=1 θj2θj1 89.3 342. 106. .010
σ11 3.27 .053 .061 .738
σ21 -.034 1.14 .033 1.17
λ1 13,112. 10,836. 9,352. .001
λ2 37.9 32.0 1.76 .333

Note: Moments are based on the first 1,000 iterations of the successive-
conditional simulator, employing normalization 2 of the reduced-rank regression
model described in the text. For each test function in the first column, the second
and third columns show corresponding approximation of the mean and standard
deviation; the fourth and fifth columns show the numerical standard error and
relative numerical efficiency of the mean approximation.

The tests produced strikingly different outcomes for the two normalizations.
The initial test for normalization 1 found that two of the 46 test functions re-
jected at size .05 and none at .01. For normalization 2 the successive-conditional
simulator failed due to exponent overflow after several thousand iterations. The
algorithm was restarted, halted at M = 103 iterations, and the approxima-
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tions eg(M)
and some related moments were computed. Table 4 provides these

moments for each of a dozen of the 46 test functions. The first column indi-
cates the test function and the second reports the corresponding approxima-

tion eg(M)
of its expected value g, using the successive-conditional simulator.

The third column is the corresponding approximation of its standard deviation,∙
M−1

PM
m=1

³eg(m) − eg(M)
´2¸1/2

. The fourth column is the numerical standard

error of the approximation,
³bτ2(M)

g /M
´1/2

in the notation of Section 2. The last

column is the relative numerical efficiency of the approximation — the number of
iterations that would be required in an i.i.d. simulator to the number required
in the actual successive-conditional simulation, to achieve the same numerical
standard error. The results contrast markedly with the successive-conditional
simulation for normalization 1, for which relative numerical efficiencies were all
above 0.1 and most were near 1.0. Results for Ψ∗, and hence for the last row
of Θ, Θ0Θ, and the eigenvalues of Y0Y, are especially poor; those for Φ are
somewhat better; and those for Σ−1 taken in isolation would be no cause for
concern.

Table 5: Joint distribution test statistics in the reduced rank model (original
error-ridden code)

Function Test Function Test
φ22 3.27 θ23 2.54
φ13 2.28

P3
j=1 θ

2
j4 2.99

φ23 2.54 σ43 2.90
θ22 3.27 λ2 7.76
θ13 2.28 λ3 3.33

Note: Test statistics taken from the same 1,000 iterations
of the successive conditional simulator as in Table 4, and
106 iterations of the marginal-conditional simulator.

Joint distribution tests were conducted using these 103 iterations from the
successive-conditional simulation, together with the 106 iterations of the marginal-
conditional simulator. The tests turned up rejections for ten of the 46 functions
in tests of size .05, six of size .005 and two of size .001, as indicated in Table
5. The power of the tests is weakened by the substantial numerical standard
errors (shown in Table 4) from the successive-conditional simulator, yet the joint
distribution tests detect the problems.
Careful inspection of the algorithm and code first focused on Ψ∗, because

of its poor behavior documented in Table 4. This inspection turned up the fact
that in the conditional distribution of Ψ∗ the precision parameter τ was taken
to be τ = 0 due to a programming error that had occurred when the coding
was originally extended from the case of an uninformative prior to the shrink-
age prior (20). This error corresponds to a correct coding of a prior Gaussian
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“distribution” for Ψ∗ with precision zero, that is, a situation in which the prior
distribution and therefore the full distribution of parameters and observables
does not exist. The difficulties in the successive-conditional simulator conveyed
in Table 4 reflect the fact that no invariant full distribution exists. Consistent
with this interpretation, when the error was corrected the second simulator ex-
hibited no signs of divergence, and in 4×106 iterations, with functions recorded
every 40’th iterations, displayed the same ideal relative numerical efficiencies as
the successive-conditional simulator with normalization 1.

Table 6: Some joint distribution test results in the reduced rank model (original
code, partially corrected)

Function Test Function Test Function Test
φ14 2.11

P3
j=1 θ

2
j1 15.03 λ1 16.50

φ34 2.25 γ3j=1θ
2
j2 13.79 λ2 20.32

θ14 2.11
P3

j=1 θ
2
j3 12.61 λ3 16.30

θ24 2.25
P3

j=1 θ
2
j4 11.40 λ4 6.58

Note: Test statistics are based on on every 40’th of 4× 106
iterations of the successive conditional simulator, and the same
106 iterations of the marginal-conditional simulator utilized in
Tables 4 and 5

Nevertheless problems remained after correction of this error. As indicated
in Table 6 there were twelve rejections of size .05 and eight of size .001. Fur-
ther inspection of the algorithm and code traced the error to the conditional
distributions of Φ and Σ in normalization 2. If τ = 0 then the joint conditional
distribution of Φ and Σ has a convenient and well-known form (see Appendix
A.1 of [Geweke 1996]). This joint conditional distribution was retained when
the code was originally modified to accommodate τ > 0. The error was cor-
rected by incorporating the respective, correct conditional distributions of Φ
and Σ. Repetition of the joint distribution test was then successful, with two
rejections in tests of size .05 and none in tests of size .01.

6 Summary and conclusions
This article provides tests of the correctness of posterior simulators, based on
formal comparison of marginal-conditional and successive-conditional simula-
tors of the joint distribution of observables and unobservables in a fully spec-
ified Bayesian model. Examples illustrate that these tests detect analytical
and coding errors that produce incorrect but reasonable results and may well
otherwise pass unnoticed. These joint distribution tests require only that the
relevant prior and data simulators be made available along with a posterior sim-
ulator. These are natural complements in Bayesian statistical software. Joint
distribution tests may readily be used by investigators (including students and
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authors) to demonstrate the reliability of posterior simulators to clients (includ-
ing professors and editors), and clients may independently use them to verify
the correctness of a posterior simulator. Their routine use should increase the
productivity of Bayesian investigators generally.
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