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Abstract

This paper considers tests of the parameter on endogenous variables in an instru-
mental variables regression model. The focus is on determining tests that have some
optimal power properties. We start by considering a model with normally distrib-
uted errors and known error covariance matrix. We consider tests that are similar
and satisfy a natural rotational invariance condition. We determine tests that maxi-
mize weighted average power (WAP) for arbitrary weight functions among invariant
similar tests. Such tests include point optimal (PO) invariant similar tests.

The results yield the power envelope for invariant similar tests. This allows one
to assess and compare the power properties of existing tests, such as the Anderson-
Rubin, LM, and conditional LR tests, and the new optimal WAP and PO invariant
similar tests.

Keywords: Instrumental variables regression, invariant tests, optimal tests, similar
tests, weak instruments, weighted average power.
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1 Introduction

TO BE ADDED.
The remainder of this paper is organized as follows. Section 2 introduces the

model which has one endogenous regressor variable, multiple exogenous regressor
variables, multiple instrumental variables, normally distributed errors, and known
covariance matrix. This section determines sufficient statistics for this model. Sec-
tion 3 provides necessary and sufficient conditions for tests to be similar. Section
4 introduces a natural invariance condition concerning orthogonal rotations of the
IV matrix. Section 5 speciÞes a weighted average power (WAP) criterion and deter-
mines invariant similar tests that maximize WAP. Section 6 speciÞes optimal WAP
tests for two-sided alternatives. Section 7 determines optimal invariant non-similar
WAP tests. Section 8 presents simulation results for the tests introduced in previous
sections. Section 9 adjusts the tests introduced in Sections 5 and 6 to allow for an
estimated error covariance matrix and analyzes the asymptotic properties of these
tests under weak IV�s and possibly non-normal errors. This Section also introduces
versions of these tests, as well as versions of the Anderson-Rubin, LM, and condi-
tional LR tests, that are robust to heteroskedasticity and other versions that are
robust to both heteroskedasticity and autocorrelation. Section 10 provides a weak IV
asymptotic optimal WAP result for the tests introduced in Section 9 under the as-
sumption of iid normal errors and unknown covariance matrix Ω. Section 11 provides
the asymptotic properties of WAP tests under strong IV�s when the error covariance
matrix is unknown and the errors may be non-normal. Section 12 presents simula-
tion results for the tests introduced in Section 9 for models with a variety of different
error distributions and unknown covariance matrix. Section 13 determines tests that
maximize WAP in an IV regression model that is the same as in Section 2, but with
multiple endogenous regressor variables. An Appendix contains proofs of the results.

2 Model and Sufficient Statistics

In this section, we consider a model with one endogenous variable, multiple ex-
ogenous variables, multiple IV�s, and errors that are normal with known covariance
matrix. In latter sections, we allow for non-normal errors with unknown covariance
matrix and multiple endogenous variables.

The model consists of a structural equation and a reduced-form equation:

y1 = y2β +Xγ1 + u,

y2 = !Zπ +Xξ1 + v2, (2.1)

where y1, y2 ∈ Rn, X ∈ Rn×p, and !Z ∈ Rn×k are observed variables; u, v2 ∈ Rn
are unobserved errors; and β ∈ R, π ∈ Rk, γ1 ∈ Rp, and ξ1 ∈ Rp are unknown
parameters. The matrices X and !Z are taken to be Þxed (i.e., non-stochastic) and
[X : !Z] has full column rank p+ k. The n× 2 matrix of errors [u:v2] is assumed to
be iid across rows with each row having a mean zero bivariate normal distribution.
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Our interest is in testing the null hypothesis

H0 : β = β0. (2.2)

The alternative hypothesis of interest may be one-sided, H1 : β > β0 or H1 : β < β0,
or two-sided H1 : β "= β0.

First, we re-write the reduced-form equation in such a way that inference on β
can be rendered free of the nuisance parameters (γ1, ξ1). The idea is to transform
the IV matrix !Z so that the transformed IV matrix Z and the exogenous regressor
matrix X are orthogonal. We write

y2 = Zπ +Xξ + v2, where

Z = MX
!Z, MX = In − PX , PX = X(X !X)−1X !, and

ξ = ξ1 + PX !Zπ. (2.3)

Note that Z !X = 0.
Next, we consider the two reduced-form equations that correspond to the struc-

tural equation in (2.1) and the reduced-form equation in (2.3). In particular, substi-
tution of the latter into the former gives

y1 = Zπβ +Xγ + v1

y2 = Zπ +Xξ + v2, where

γ = γ1 + ξβ and v1 = u+ v2β. (2.4)

The reduced-form errors [v1:v2] are iid across rows with each row having a mean zero
bivariate normal distribution with 2 × 2 nonsingular covariance matrix Ω. In order
to obtain exact optimal tests, we assume in this section that Ω is known. As shown
below, asymptotically valid tests can be obtained by replacing Ω by an estimator
when Ω is unknown.

The two equation reduced-form model can be written in matrix notation as

Y = Zπa! +Xη + V, where
Y = [y1 :y2], V = [v1 :v2],

a = (β, 1)!, and η = [γ : ξ]. (2.5)

The distribution of Y ∈ Rn×2 is multivariate normal with mean matrix Zπa! +Xη,
independence across rows, and covariance matrix Ω for each row. The parameter
space for θ = (β,π!, γ!, ξ!)! is taken to be R×Rk ×Rp ×Rp.

Because the multivariate normal is a member of the exponential family of distrib-
utions, low dimensional sufficient statistics are available for the parameter θ and the
sub-vector (β,π!)!:

Lemma 1 For the model in (2.5),
(a) Z !Y and X !Y are sufficient statistics for θ,
(b) Z !Y and X !Y are independent,
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(c) X !Y has a multivariate normal distribution that does not depend on (β,π!)!,
(c) Z !Y has a multivariate normal distribution that does not depend on η = [γ :ξ],
and
(d) Z !Y is a sufficient statistic for (β,π!)!.

Our interest is in tests of the null hypothesis H0 : β = β0. In consequence, there is
no loss (in terms of attainable power functions) in considering tests that are based on
the sufficient statistic Z !Y for (β,π!)!. Note that the nuisance parameters η = [γ:ξ] are
eliminated from the problem when one considers tests based on Z !Y . The nuisance
parameter π remains.

The k× 2 sufficient statistic Z !Y can be simpliÞed without loss of information by
applying a one-to-one transformation that yields (i) the Þrst transformed column to
be independent of the nuisance parameter π under the null, (ii) independence of the
two transformed columns (under the null and the alternative), and (iii) independence
across rows in each column (under the null and the alternative). Condition (i) is
achieved by using a linear combination of the columns of Y that has zero mean when
β = β0. Condition (ii) is achieved by taking the second transformed column of Z

!Y
to be a linear combination of the columns of Z !Y that is uncorrelated with the Þrst
transformed column. Condition (iii) is achieved by rotating each of the transformed
columns so that their covariance matrices equal Ik. In particular, we consider2

S = (Z !Z)−1/2Z !Y b0 · (b!0Ωb0)−1/2 and
T = (Z !Z)−1/2Z !Y Ω−1a0 · (a!0Ω−1a0)−1/2, where
b0 = (1,−β0)! and a0 = (β0, 1)!. (2.6)

The means of S and T depend on the following quantities:

µπ = (Z !Z)1/2π ∈ Rk,
cβ = (β − β0) · (b!0Ωb0)−1/2 ∈ R, and
dβ = a!Ω−1a0 · (a!0Ω−1a0)−1/2 ∈ R, where
a = (β, 1)!. (2.7)

The distributions of the sufficient statistics S and T for the parameters (β,π) are
given in the following lemma.

Lemma 2 For the model in (2.5),
(a) S ∼ N(cβµπ, Ik),
(b) T ∼ N(dβµπ, Ik), and
(c) S and T are independent.

Comments: 1. The results of the lemma hold under H0 and H1. Under H0, S has
mean zero.

2. The statistic T can be written as dβ(Z !Z)1/2"π0, where "π0 denotes the maximum
likelihood estimator of π under H0. This follows from Lemma 2(b) because under H0
minus two times the log-likelihood function for π based on the normal density of T is a
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constant plus (T−dβ0
(Z !Z)1/2π)!(T−dβ0

(Z !Z)1/2π), which has Þrst-order conditions
given by −(T − dβ0

(Z !Z)1/2"π0)dβ0
(Z !Z)1/2 = 0. Note that "π0 = (Z !Z)−1Z !Y Ω−1a0 ·

(a!0Ω−1a0)−1 and E"π0 = π under H0.
3. Independence of S and T can be established by showing that S and T are

jointly multivariate normal with zero covariance. An alternative proof is by applying
Basu�s Theorem, e.g., see Lehmann (1986, Thm. 5.2, p. 191). Basu�s Theorem says
that S and T are independent because the distribution of S does not depend on π
and T is a boundedly complete sufficient statistic for π.

4. The constant dβ that appears in the mean of T can be rewritten as

dβ = b!Ωb0 · (b!0Ωb0)−1/2(det(Ω))−1/2, where
b = (1,−β)!. (2.8)

This holds because some algebra shows that

a!0Ω
−1a0 = b!0Ωb0/det(Ω) and

a!Ω−1a0 = b!Ωb0/det(Ω). (2.9)

3 Similar Tests

A test based on the sufficient statistics (S, T ) is similar if its null rejection rate
does not depend on π. The parameter π determines the strength of the instrumental
variables Z. The Þnite sample performance of some tests, such as a t test based
on the two-stage least squares estimator, varies greatly with π. In consequence,
such tests often exhibit substantial size distortion when asymptotic critical values
are employed. By deÞnition, similar tests do not suffer from this problem. For this
reason, it is important to characterize the class of similar tests.

Let the [0, 1]-valued statistic φ(S, T ) denote a (possibly randomized) test that
depends on the sufficient statistics S and T.

The following result is given in Moreira (2001).

Proposition 1 A test φ(S, T ) is similar with signiÞcance level α if and only if
Eβ0

(φ(S, T )|T = t) = α for almost all t, where Eβ0
(·|T = t) denotes conditional

expectation when β = β0 (which does not depend on π).

Comments: 1. The proof of this result uses the fact that S is ancillary underH0 and
the family of distributions of T under H0 is a k-parameter exponential family indexed
by π with parameter space that contains a k-dimensional rectangle. In consequence,
T is a complete sufficient statistic for π under H0. This implies that any function of
T whose expectation does not depend on π is equal to a constant with T probability
one. In particular, for a similar test φ(S, T ), Eβ0

(φ(S, T )|T ) is a function of T whose
expectation equals α for all π. Hence, by completeness, Eβ0

(φ(S, T )|T = t) must
equal α for almost all t. Note that Eβ0

(φ(S, T )|T ) does not depend on π because S
is ancillary under H0.
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2. Moreira (2003a) used Proposition 1 to specify conditional likelihood ratio
(CLR) and conditional Wald (CW) tests that are similar. In this paper, we seek
similar tests that have some optimal power properties.

3. Examples of similar tests (in the model with multivariate normal errors and
known error covariance matrix Ω) include the Anderson and Rubin (1949) (AR) test,
the LM test of Kleibergen (2002) and Moreira (2001), and the CLR and CW tests
of Moreira (2003a) (where for each test an estimator of the unknown Ω matrix that
appears in the test statistic is replaced by the known matrix Ω).

4. We use Proposition 1 below to characterize the class of invariant similar tests.

4 Invariant Tests

The sufficient statistics S and T are independent multivariate normal k-vectors
with spherical covariance matrices. The coordinate system used to specify the vectors
should not affect inference based on them. In consequence, it is reasonable to restrict
attention to coordinate-free functions of S and T. That is, we consider statistics that
are invariant to rotations of the coordinate system.

We consider the following groups of transformations on the data matrix [S :T ]
and correspondingly on the parameters (β,π):

G = {gF : gF (x) = Fx for x ∈ Rk×2 for some k × k orthogonal matrix F} and
G = {gF : gF (β,π) = (β, (Z !Z)−1/2F !(Z !Z)1/2π) for some k × k orthogonal

matrix F}. (4.1)

The transformations are one-to-one and are such that if [S:T ] has a distribution with
parameters (β,π), then gF ([S :T ]) has distribution with parameters gF (β,π), as in
Lehmann (1986, p. 283). Furthermore, the problem of testing H0 : β = β0 versus
the alternative hypothesis H1 (for any of the alternative hypotheses H1 considered
above) remains invariant under each transformation gF ∈ G because H0 and H1 are
preserved under gF (i.e., gF (β,π) is in Hj if and only if (β,π) is in Hj for j = 0, 1).

An invariant test, φ(S, T ), under the group G is one for which φ(FS, FT ) =
φ(S, T ) for all k × k orthogonal matrices F. By deÞnition, a maximal invariant is a
function of [S:T ] that is invariant and takes different values on different orbits of G.3

Every invariant test can be written as a function of a maximal invariant, see Thm.
6.1 of Lehmann (1986, p. 285). Hence, it suffices to restrict attention to the class of
tests that depend only on a maximal invariant.

Let

Q = [S:T ]![S:T ] =
#
S!S S!T
T !S T !T

$
=

#
QS QST
QST QT

$
and

Q1 =
%
S!S, S!T

&!
= (QS, QST )

!. (4.2)

The subscript 1 on Q1 reßects the fact that Q1 is the Þrst column of Q.
For convenience, we useQ and (Q1, QT ) interchangeably. For example, if we deÞne

a function h(Q), then h(Q1, QT ) is presumed to be deÞned such that h(Q1, QT ) =
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h(Q). Although this involves some abuse of notation, it is justiÞed by the one-to-one
transformation from Q to (Q1,QT ).

Theorem 1 The 2× 2 matrix Q is a maximal invariant for the transformations G.

Comments: 1. Equivalently, (Q1,QT ) is a maximal invariant.
2. By deÞnition, the statistic Q has a non-central Wishart distribution because

[S :T ] is a multivariate normal matrix that has independent rows and common co-
variance matrix across rows. The distribution of Q depends on π only through the
scalar λ ≥ 0 deÞned by

λ = π!Z !Zπ. (4.3)

This occurs for the same reason that a noncentral chi-squared distribution only de-
pends on the mean vector through its length. In consequence, the utilization of
invariance has reduced the k-vector nuisance parameter π to a scalar nuisance para-
meter λ. This is true both under the null and under the alternative.

3. Examples of invariant tests in the literature include the AR test, the LM
test of Kleibergen (2002) and Moreira (2001), and the CLR and CW tests of Moreira
(2003a). The AR, LM, and CLR test statistics depend on Q or (S, T ) in the following
ways:

ψAR(Q) = QS = S!S,
ψLM(Q) = Q2ST /QT = (S!T )2/T !T, and (4.4)

ψCLR(Q) =
1

2

'
QS −QT +

(
(QS +QT )2 − 4(QSQT −Q2ST )

)
.

The CW test statistic is a more complicated function of Q. For brevity, we do not
give it.

Invariant similar tests are characterized as follows:

Theorem 2 An invariant test φ(Q) is similar with signiÞcance level α if and only if
Eβ0

(φ(Q)|QT = qT ) = α for almost all qT , where Eβ0
(·|QT = qT ) denotes conditional

expectation given QT = qT when β = β0 (which does not depend on π).

Comments. 1. The theorem suggests that a method of determining an invariant
test with optimal power properties is to Þnd an optimal invariant test conditional on
QT = qT for each qT > 0.

2. The AR and LM statistics are invariant statistics whose distributions under
the null are independent of QT (by Lemma 3(f) below). Hence, the AR and LM tests
that reject the null when the corresponding test statistics exceed given constants are
invariant similar tests by Theorem 2. (This is not a new result.)

3. The CLR and CW statistics are invariant statistics whose distributions under
the null depend on QT . Hence, for these tests to be similar, their critical values must
depend on QT . The CLR test rejects the null hypothesis when

φCLR(Q) > κCLR(QT ), (4.5)

6



where κCLR(QT ) is deÞned to satisfy Pβ0
(φ(Q) > κMLR(QT )|QT = qT ) = α and the

conditional distribution of Q1 given QT is speciÞed in Lemma 3(c) below. See Table
I of Moreira (2003a) for critical values for the CLR test (where his τ corresponds to
our qT ). Similarly, the critical value function for the conditional Wald test, κCW (QT ),
depends on QT .

4. An equivalent condition to the one stated in the theorem is �Eβ0
φ(Q1, qT ) = α

for almost all qT .� This holds because Q1 and QT are independent under H0 by
Lemma 3(f) below and, hence, Eβ0

(φ(Q1, QT )|QT = qT ) = Eβ0
(φ(Q1, qT )|QT =

qT ) = Eβ0
φ(Q1, qT ) for almost all qT .

5. Theorem 2 states that invariant tests are similar if and only if they have
Neyman structure with respect to QT (e.g., as deÞned in Lehmann (1986, pp. 141-
2)).

6. The statistic QT is complete under H0 because T ∼ N(dβ0
µπ, Ik) is complete

by Thm. 4.1 of Lehmann (1986, p. 142) and a function of a complete statistic is
complete by the deÞnition of completeness.

5 Optimal Tests for Weighted Average Power

5.1 Weighted Average Power

The invariant similar tests in (4.4) are ad hoc in the sense that they do not
have any known optimal power properties. (The exception is the AR and LM tests
when k = 1, which are equivalent tests when k = 1. Moreira (2001) shows that this
test is uniformly most powerful unbiased.) We now address the question of optimal
invariant similar tests. We determine the invariant similar test that has maximum
weighted average power (WAP) with respect to (wrt) a given weight function W
over the parameter values in the alternative. The use of sufficiency and invariance
reduces the dimension of the alternative parameters that need to be considered from
1 + k + 2p for θ = (β,π!, ξ!, γ!)! to just 2 for (β,λ)!. In consequence, it is relatively
easy to specify weight functions W of interest.

Let W (β,λ) be a probability distribution on R×R+. Weighted average power of
a test φ(Q) with respect to W is given by the Lebesgue integral

K(φ,W ) =

*
Eβ,λφ(Q)dW (β,λ), (5.1)

where Eβ,λ denotes expectation when the true parameters are (β,λ)!.
Let

gW (q1, qT ) =

*
R×R+

fQ1,QT
(q1, qT ;β,λ)dW (β,λ), (5.2)

where fQ1,QT
(q1, qT ;β,λ) denotes the joint density of (Q1, QT ) at (q1, qT ). Let q1 =

7



(qS, qST )
!. WAP can be written as power against the single density gW (q1, qT ):

K(φ,W )

=

*
R×R+

#*
R+×R×R+

φ(qS , qST , qT )fQ1,QT
(qS, qST , qT ;β,λ)dqSdqSTdqT

$
dW (β,λ)

=

*
R+×R×R+

φ(q1, qT )gW (q1, qT )dq1dqT (5.3)

using the Tonelli-Fubini Theorem, e.g., see Dudley (1989, Thm. 4.4.5, p. 104).
For example, suppose one takes the weight function W to be point mass at

(β∗,λ∗). That is,

Wβ∗,λ∗(β,λ) =

+
1 if (β,λ) = (β∗,λ∗)
0 otherwise.

(5.4)

Then, the test that maximizes WAP among invariant similar tests with signiÞcance
level α is the point-optimal invariant (POI) similar test of level α against (β∗,λ∗).

Most existing tests in the literature are two-sided tests. Examples include the
tests in (4.4). To obtain optimal two-sided tests one can specify W to give weight to
β values both less than and greater than β0. Examples are given in Section 6 below.

5.2 Optimal Invariant Similar Tests for Weighted Average Power

We want to Þnd a test that maximizes WAP for weight function W among all
level α invariant similar tests. By Theorem 2, invariant similar tests must be similar
conditional on QT = qT for almost all qT . In addition, by (5.3), WAP for weight
functionW equals unconditional power against the single density gW (q1, qT ). In turn,
the latter equals expected conditional power given QT . Hence, it suffices to determine
the test that maximizes conditional power given QT = qT among tests that are
invariant and are similar conditional on QT = qT , for each qT .

Conditional power given QT = qT is

K(φ,W |QT = qT ) =
*
R+×R

φ(q1, qT )gW (q1|qT )dq1, (5.5)

where gW (q1|qT ) denotes the conditional density at q1 of Q1 given QT = qT .We have

gW (q1|qT ) = gW (q1, qT )

gW (qT )
, (5.6)

where gW (q1, qT ) is deÞned in (5.2),

gW (qT ) =

*
R+×R

gW (q1, qT )dq1

=

*
R×R+

*
R+×R

fQ1,QT
(q1, qT ;β,λ)dq1dW (β,λ)

=

*
R×R+

fQT
(qT ;β,λ)dW (β,λ), (5.7)
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and fQT
(qT ;β,λ) denotes the density of QT at qT .

Next, we consider the conditional density of Q1 given QT = qT under the null
hypothesis. Because QT is a sufficient statistic for π under H0, this conditional
density does not depend on π or λ. Hence, we denote the conditional density of Q1
given QT = qT under the null hypothesis by fQ1|QT

(q1|qT ;β0).
For any invariant test φ(Q1, QT ), conditional on QT = qT , the null hypothesis

is simple because fQ1|QT
(q1|qT ;β0) does not depend on π or λ. Given the WAP

criterion function K(φ,W ), the alternative hypothesis of concern also is simple. In
particular, conditional on QT = qT , the alternative density of interest is gW (q1|qT ).
In consequence, by the Neyman-Pearson Lemma, the test of signiÞcance level α that
maximizes conditional power given QT = qT is of the likelihood ratio (LR) form and
rejects H0 when the LR is sufficiently large. In particular, the conditional WAP-LR
test statistic is

LRW (Q1, qT ) =
gW (Q1|qT )

fQ1|QT
(Q1|qT ;β0)

=
gW (Q1, qT )

gW (qT )fQ1|QT
(Q1|qT ;β0)

. (5.8)

The unconditional WAP-LR test statistic is LRW (Q1, QT ).
In order to provide an explicit expression for LRW (Q1, QT ), we now determine

the densities fQ1,QT
(q1, qT ;β,λ), fQT

(qT ;β,λ), and fQ1|QT
(q1|qT ;β0) that arise in

(5.2), (5.7), and (5.8). These densities and the tests considered below depend on the
following quantity:

ξβ(q) = h!βqhβ
= c2βqS + 2cβdβqST + d

2
βqT , where

hβ = (cβ, dβ)
!. (5.9)

Note that ξβ(q) ≥ 0 because q is positive semi-deÞnite a.s.

Lemma 3 (a) The density of (Q1, QT ) is

fQ1,QT
(q1, qT ;β,λ) = K1 exp(−λ(c2β + d2β)/2) det(q)(k−3)/2

× exp(−(qS + qT )/2)(λξβ(q))−(k−2)/4I(k−2)/2(
(
λξβ(q)),

where q1 = (qS, qST )! ∈ R+ ×R, qT ∈ R+, q =
#
qS qST
qST qT

$
,

K−1
1 = 2(k+2)/2π1/2Γ((k − 1)/2),

Iν(·) denotes the modiÞed Bessel function of the Þrst kind of order ν, π = pi =
3.1415..., and Γ(·) is the gamma function.

(b) The density of QT is a non-central chi-squared density with k degrees of free-
dom and noncentrality parameter d2βλ:

fQT
(qT ;β,λ) = K2 exp

%−λd2β/2& q(k−2)/2T exp (−qT/2)

9



× %λd2βqT &−(k−2)/4 I(k−2)/2 ,(λd2βqT-
for qT > 0, where K

−1
2 = 2.

(c) Under the null hypothesis, the conditional density of Q1 given QT = qT is

fQ1|QT
(q1, qT ;β0) = K1K

−1
2 exp(−qS/2) det(q)(k−3)/2q−(k−2)/2T .

(d) Under the null hypothesis, the density of QS is a (central) chi-squared density
with k degrees of freedom:

fQS
(qS) = K3q

(k−2)/2
S exp (−qS/2)

for qS > 0, where K−1
3 = 2k/2Γ(k/2).

(e) Under the null hypothesis, the density of S2 = QST/(||S|| · ||T ||) at s2 is
fS2(s2) = K4(1− s22)(k−3)/2

for s2 ∈ [−1, 1], where K−1
4 = π1/2Γ((k − 1)/2)/Γ(k/2).

(f) Under the null hypothesis, QS, S2, and T are mutually independent and, hence,
QS, S2, and QT also are mutually independent.

Comments: 1. The joint density fQ1,QT
(qS, qT ;β,λ) given in part (a) of the lemma

is a noncentral Wishart density.4 The null density of S2 given in part (e) of the
lemma is the same as that of the sample correlation coefficient from an iid sample of
k observations from a bivariate normal distribution with means zero and covariance
matrix I2 when the means of the random variables are not estimated.

2. Parts (d)-(f) of the lemma are used below to simplify the calculation of critical
values for optimal WAP tests.

3. The modiÞed Bessel function of the Þrst kind that appears in the densities in
parts (a) and (b) of the lemma is deÞned by

Iν(x) = (x/2)
ν
∞.
j=0

(x2/4)j

j!Γ(ν + j + 1)
, (5.10)

for x ≥ 0, e.g., see Lebedev (1965, p. 108). Sometimes the function Iν(x) is referred
to as a Bessel function of the Þrst kind with imaginary argument. For |x| small,
Iν(x) ∼ (x/2)ν/Γ(ν + 1); for |x| large, Iν(x) ∼ ex/

√
2πx; and for ν ≥ 0 (which holds

in the expression for fQ1,QT
(q1, qT ;β,λ) whenever k ≥ 2), Iν(·) is monotonically

increasing on R+, see Lebedev (1965, p. 136). Expressions for Iν(x) in terms of
elementary functions are available whenever ν is a half-integer (which corresponds
to k being an odd integer). For example, I−1/2(x) = (2/π)1/2(exp(x) + exp(−x))/2
(which arises when k = 1) and I1/2(x) = (2/π)1/2(exp(x)− exp(−x))/2 (which arises
when k = 3).

4. Both GAUSS and Matlab have built-in functions for computing the modiÞed
Bessel function of the Þrst kind. These functions are extremely fast. Hence, the
density fQ1,QT

(q1, qT ;β,λ) can be computed very quickly.

10



5. Independence of S2 and QT under H0 can be established directly using the
spherical symmetry of the distribution of S2. Or, it can be established using (i) the
bounded completeness of QT for λ pointed out in Comment 4 to Theorem 2, (ii) the
fact that the distribution of S2 does not depend on λ by part (e) of the lemma, and
(iii) Basu�s Theorem (e.g., see Lehmann (1986, p. 191)).

Equations (5.2), (5.7), and (5.8) and Lemma 3 combine to give the following
result.

Corollary 1 The optimal WAP test statistic for weight function W is

LRW (q1, qT ) =

/
fQ1,QT

(q1, qT ;β,λ)dW (β,λ)/
fQT

(qT ;β,λ)dW (β,λ)fQ1|QT
(q1|qT ;β0,λ)

=
ψW (q1, qT )

ψ2,W (qT )
,

where

ψW (q1, qT ) =

*
exp(−λ(c2β + d2β)/2)(λξβ(q))−(k−2)/4Ik−2

2

,(
λξβ(q)

-
dW (β,λ),

ψ2,W (qT ) =

*
exp

%−λd2β/2& %λd2βqT &−(k−2)/4 Ik−2
2

,(
λd2βqT

-
dW (β,λ),

the integrals are over (β,λ) ∈ R×R+, and cβ, dβ, and ξβ(q) are deÞned in (2.7) and
Lemma 3(a).

Comment: Note that ψW (q1, qT ) does not equal
/
fQ1,QT

(q1, qT ;β,λ)dW (β,λ) and
likewise with ψ2,W (qT ). This is because numerous cancellations occur in the second
expression in the Þrst line of the Corollary 1, including the constants K1-K4 (because
K1 = K2K3K4) and the terms that depend on q1 in the denominator.

Because ψ2,W (qT ) does not depend on q1, it can be absorbed into the conditional
critical value given QT = qT . Thus, the test based on LRW (q1, qT ) is equivalent to a
test based on ψW (q1, qT ). Because ψW (q1, qT ) is simpler than LRW (q1, qT ), we focus
on the test statistic ψW (q1, qT ).

Computation of the integrand of ψW (q1, qT ) in Corollary 1 is easy and extremely
fast using GAUSS or Matlab functions for computing the modiÞed Bessel function of
the Þrst kind. Hence, calculation of the test statistic ψW (Q1, QT ) is very fast unless
the weight function W is ill-behaved. Of course, ill-behaved weight functions can be
avoided because the user selects the weight function.

The test that maximizes WAP among invariant similar tests with signiÞcance
level α rejects H0 if

ψW (Q1,QT ) > κα(QT ), (5.11)

where κα(QT ) is deÞned such that the test is similar. That is, κα(qT ) is deÞned by

Pβ0
(ψW (Q1, qT ) > κα(qT )|QT = qT ) = α, (5.12)

11



where Pβ0
(·|QT = qT ) denotes conditional probability given QT = qT under the null,

which can be calculated using the density in Lemma 3(c). Note that κα(·) does not
depend on Ω, Z, X, or the sample size n.

By Lemma 3(d)-(f), under H0, (i) QS , S2 = QST/(||S|| · ||T ||), and QT are inde-
pendent, (ii) QS ∼ χ2k, and (iii) S2 has density fS2 . The null distribution of (QS , S2)
can be simulated by simulating S ∼ N(0, Ik) and taking (QS , S2) = (S!S, S!α/||S||)
for α = (1, 0, ..., 0)! ∈ Rk. Hence, the null distribution of Q1 = (S!S, S!T ) conditional
on QT = qT can be simulated easily and quickly by simulating S ∼ N(0, Ik) and
taking Q1 = (S!S, S!α · qT ) for α = (1, 0, ..., 0)! ∈ Rk.

The critical value κα(QT ) can be approximated by simulating R iid random vec-
tors Sr ∼ N(0, Ik) for r = 1, ..., R, where R is large (at least 1,000), computing
Q1(r) = (S!rSr, S!rα · QT ) for r = 1, ..., R, and taking κα(QT ) to be the 1 − α sam-
ple quantile of {ψW (Q1(r), QT ) : r = 1, ..., R}. The p-value for the test based on
ψW (Q1, QT ) can be approximated by the fraction of values in {ψW (Q1(r),QT ) : r =
1, ..., R} that exceed ψW (Q1, QT ), where (Q1, QT ) are the values based on the original
sample Y .

The following theorem summarizes the results of this section:

Theorem 3 The test that rejects H0 when ψW (Q1, QT ) > κα(QT ) maximizes WAP
for the weight function W over all level α invariant similar tests.

Comment: The optimal WAP test statistic ψW (Q1, QT ) depends on S!S, S!T, and
T !T in general. In contrast, the AR statistic depends only on S!S and the LM statistic
depends on S!T and T !T, but not on S!S. Hence, power improvements from optimal
WAP tests compared to these two tests can be attributed to optimal exploitation of
information about β that is contained in all three statistics S!S, S!T, and T !T.

Using the deÞnition of Iν(x) in (5.10), ψW (q1, qT ) can be written as

ψW (q1, qT ) = 2−(k−2)/2
*
exp(−λ(c2β + d2β)/2)

∞.
j=0

(λξβ(q1, qT )/4)
j

j!Γ((k − 2)/2 + j + 1)dW (β,λ)

= 2−(k−2)/2
∞.
j=0

/
exp(−λ(c2β + d2β)/2)(λξβ(q1, qT )/4)jdW (β,λ)

j!Γ((k − 2)/2 + j + 1) . (5.13)

The integrand in the Þrst line of (5.13) is increasing in ξβ(q1, qT ) because
ξβ(q1, qT ) ≥ 0. In consequence, for a Þxed value of β, say β∗ ("= β0), the test that
rejects H0 when ξβ∗(Q1, QT ) is large maximizes weighted average power for all weight
functions over λ values. That is, the optimal test for Þxed alternative β∗ rejects H0
when

ξβ∗(Q1, QT ) > κβ∗,α(QT ), where

Pβ0
(ξβ∗(Q1, qT ) > κβ∗,α(qT )|QT = qT ) = α (5.14)

for all qT . This test is a one-sided test because it directs power at a single point β∗

that is either greater than or less than the null value β0.
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Corollary 2 The level α test based on ξβ∗(Q1, QT ) is the uniformly most powerful
test among invariant similar tests against the alternative distributions indexed by
{(β∗,λ) : λ > 0}.

Comments: 1. The test based on ξβ∗(Q1, QT ) is equivalent to a test based on

QS + 2(dβ∗/cβ∗)QST = QS + 2
b∗!Ωb0
β∗ − β0

QST

= QS + 2(det(Ω))
−1/2ω11 − (β∗ + β0)ω12 + β∗β0ω22

β∗ − β0
QST , (5.15)

where b∗ = (1,−β∗)! and ωjk denotes the (j, k) element of Ω. Hence, the test statistic
is a linear combination of QS and QST . When the null hypothesis speciÞes that
β0 = 0, the statistic in (5.15) reduces to

QS + 2(det(Ω))
−1/2ω11 − β∗ω12

β∗ − β0
QST . (5.16)

2. A test based on ξβ∗(Q1, QT ) is equivalent to a test that rejects when

ζδ =
QS + δS2

√
QS − k0

2k + δ2
> κδ,α(QT ), where

δ = (2dβ∗/cβ∗)
0
QT and

Pβ0
(ζδ > κδ,α(QT )|QT = qT ) = α. (5.17)

This formulation of the test is convenient because QS, S2, and QT are independent
under H0 by Lemma 3(f), which simpliÞes calculation of critical values.

3. The result of Corollary 2 is related to a result of Moreira (2001, Thm. 2(c) and
its proof) regarding the point optimal similar test against (β∗,π∗). The latter test is
the same as the point optimal similar test for any (!β, !π) for which sign(!β) =sign(β∗)
and !π/(!π!Z !Z!π)1/2 = π∗/(π∗!Z !Zπ∗)1/2. Thus, if one speciÞes a given �direction�
of the π vector, then a one-sided (wrt β) similar test is available that is UMP wrt
the �magnitudes� of β and π. This test rejects when π∗!S is large if β∗ > β0. On
the other hand, Corollary 2 shows that the one-sided (wrt β) invariant similar test
depends on β∗, but not on π (or λ).

4. The optimal one-sided test for β∗ local to β0 with β
∗ > β0 and arbitrary

weight functions over λ values (i.e., the LMPI test) is the one-sided LM test that
rejects H0 if

QST/Q
1/2
T > κφ,α, (5.18)

where κφ,α is the 1− α quantile of the standard normal distribution. Analogously, if
β∗ is local to β0 with β

∗ < β0, then the LMPI test rejects H0 if −QST/Q1/2T > κφ,α.
(See the Appendix for the proof.)
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5. The optimal one-sided test for β∗ arbitrarily large and any weight function
over λ values is of the form reject H0 if

QS + 2(det(Ω))
−1/2(β0ω22 − ω12)QST > κα(QT ) (5.19)

for some κα(·), where ωij denotes the (i, j) element of Ω. The same test is the optimal
one-sided test for β∗ negative and arbitrarily large in absolute value for any weight
functions over λ. In consequence, the optimal two-sided test for |β∗ − β0| arbitrarily
large and any weight function over λ values is the test in (5.19).

For the common case where the null hypothesis speciÞes that β0 = 0, the optimal
test for |β∗ − β0| large rejects H0 if

QS − 2 ρ

(1− ρ2)1/2QST > κα(QT ), (5.20)

where ρ is the correlation between the errors v1 and v2 in (2.4), i.e., ρ = ω12/(ω11ω22)1/2.
(See the Appendix for the proof.)

6 Two-Sided Tests

In this section, we discuss tests designed for the two-sided alternative hypothesis
H1 : β "= β0. As described in the following three subsections, there are several
methods of doing so. The Þrst method we consider is simple, but is found to have
signiÞcant drawbacks and, hence, is not recommended. The second and third methods
are recommended and are found to yield closely related results.

6.1 Symmetric-Alternative WAP Tests

The Þrst method we consider is to use an invariant similar test that maximizes
WAP for a weight functionW that places weight on β values that are both larger and
smaller than the null value β0 and for which the magnitude of the weight depends
on β only through |β − β0|. We call such tests optimal WAP tests for symmetric
alternatives.

Although simple, weight functions for symmetric alternatives have some serious
drawbacks. These drawbacks stem from the fact that the underlying testing problem
is not symmetric for the parameter vectors (β0−δ,λ) and (β0+δ,λ). The distribution
of QT is noncentral χ2k with non-centrality parameter d

2
βλ, see Lemma 3(b). This

noncentrality parameter takes on different values for the parameter vectors (β0−δ,λ)
and (β0+δ,λ).

5 In consequence, the problems of testing against these two alternative
parameter vectors are not equally difficult testing problems. This has undesirable
consequences for the power of WAP tests for symmetric alternatives under strong
IV asymptotics. In particular, calculations in Section 11 below show that such tests
are not asymptotically efficient under strong IV asymptotics according to the usual
criterion for asymptotic efficiency of two-sided tests in regular models.6 Given this,
we do not recommend WAP tests for symmetric alternatives.
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6.2 Asymptotically Efficient WAP Tests

We are most interested in weight functions W that generate tests that have good
all-around two-sided power properties. This includes high power when the IV�s are
strong. Results in Section 11 below show that to obtain tests that are asymptotically
efficient under strong IV asymptotics, the weight function must be of the following
form:

WAE(β,λ) =
1

2
W∗(β,λ) +

1

2
W∗(β2,λ2) (6.1)

for some weight function W∗(·, ·), where β2 and λ2 are such that the distribution of
[−S : T ] under (β2,λ2) equals the distribution of [S : T ] under (β,λ). Such weight
functions place equal weight on (β,λ) and (β2,λ2). The parameter vector (β2,λ2) is
the appropriate �other-sided� parameter vector to (β,λ) in the sense that (i) β2 is on
the other side of the null value β0 from β, (ii) the marginal distributions of QS , QST,
and QT under (β2,λ2) are the same as under (β,λ), and (iii) the joint distribution
of (QS , QST,QT ) under (β2,λ2) equals that of (QS,−QST,QT ) under (β,λ), which
corresponds to β2 being on the other side of the null as β. Furthermore, WAP tests
with weight functions as in (6.1) have the property that they have the same power
against (β2,λ2) as against (β,λ) and, hence, are truly symmetric two-sided tests
against these two parameter vectors. We call tests asymptotically efficient (AE)
WAP tests.

For a weight function W (β,λ) that is not of the form in (6.1), the WAP test is
not truly two-sided in large samples. In particular, under strong IV asymptotics,
the test behaves like a one-sided LM statistic, see Section 11. This provides strong
motivation for considering weight functions of the form in (6.1) when one desires a
two-sided test.

Given the distributions of S and T speciÞed in Lemma 2 and λ = µ!πµπ, (β2,λ2)
solves

λ
1/2
2 cβ2

= −λ1/2cβ and λ1/22 dβ2
= λ1/2dβ. (6.2)

Note that cβ is proportional to β − β0 and dβ is linear in β. Some calculations show
that the solution to these two equations in (6.2) are

β2 = β0 −
dβ0
(β − β0)

dβ0
+ 2g(β − β0)

and

λ2 = λ
(dβ0

+ 2g(β − β0))2
d2β0

, where

g = e!1Ω
−1a0 · (a!0Ω−1a0)−1/2 and e1 = (1, 0)!. (6.3)

We refer to ψWAE
(q1, qT ) as an AE-WAP test statistic. It can be written conve-

niently without explicit dependence on (β2,λ2) as follows:

ψWAE
(q1, qT ) =

1

2

*
exp(−λ(c2β + d2β)/2)(λξβ(q))−(k−2)/4Ik−2

2

,(
λξβ(q)

-
dW∗(β,λ)

+
1

2

*
exp(−λ(c2β + d2β)/2)(λξ∗β(q))−(k−2)/4Ik−2

2

,(
λξ∗β(q)

-
dW∗(β,λ),
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where

ξ∗β(q) = c
2
βqS − 2cβdβqST + d2βqT . (6.4)

This holds because the equations in (6.2) imply that λ2(c2β2
+ d2β2

) = λ(c2β + d
2
β) and

λ2ξβ2
(q) = λξ∗β(q).

Note that ψWAE
(q1, qT ) is not the same as what one gets from a �symmetric

alternatives� weight function because dβ takes the same value in each summand of
ψWAE

(q1, qT ), but does not if a �symmetric alternatives� weight function is employed.
A two-sided power envelope is obtained from the AE-WAP tests that have weight

functionsW∗(β,λ) that give point mass to different points (β∗,λ∗). This yields weight
functionsW (β,λ) that are two-point weight functions against the alternatives (β∗,λ∗)
and (β∗2,λ

∗
2):

WAE−POI(β,λ) =
1

2
1(β = β∗,λ = λ∗) +

1

2
1(β = β∗2,λ = λ

∗
2), (6.5)

where (β∗2,λ
∗
2) is deÞned as (β2,λ2) is deÞned in (6.3) but with (β

∗,λ∗) in place of
(β,λ).We refer to this power envelope as the asymptotically efficient two-sided power
envelope.

The class of tests based on weight functions WAE of the form in (6.1) also can be
motivated by considering an additional invariance condition to that in (4.1):

[S : T ]→ [−S : T ]. (6.6)

The corresponding transformation in the parameter space is (β,λ) → (β2,λ2). This
sign invariance condition is a natural condition to impose to obtain two-sided tests
because the parameter vector (β2,λ2) is the appropriate �other-sided� parameter
vector to (β,λ) for the reasons stated in the Þrst paragraph of this section. The
maximal invariant under this sign invariance condition (plus the invariance conditions
in (4.1) is

(S!S, |S!T |, T !T ) = (QS , |QST |,QT ). (6.7)

The AR, LM, and CLR test statistics all depend on the data only through this
maximal invariant and, hence, satisfy the sign invariance condition (6.6).

The density of the maximal invariant (QS, |QST |, QT ) at (qS,qST , qT ) for qST ≥ 0
is given by

1

2
fQ1,QT

(qS,qST , qT ) +
1

2
fQ1,QT

(qS, − qST , qT ), (6.8)

where Lemma 3 provides an expression for fQ1,QT
(qS,qST , qT ). Hence, following the

same argument as in Section 5.2, given a weight functionW∗(β,λ), the optimal WAP
test statistic, call it ψ∗W∗(q1, qT ), can be shown to satisfy

ψ∗W∗(q1, qT ) = ψWAE
(q1, qT ).

7 (6.9)

Thus, the class of WAP tests for weight functions W∗ and the invariance conditions
of (4.1) and (6.6) equals the class of WAP tests for weight functions WAE and the
invariance condition of (4.1).
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6.3 Locally-Unbiased WAP Tests

A third approach to constructing tests designed for two-sided alternatives is to
impose an unbiasedness or a local (to the null) unbiasedness condition. This approach
has a long tradition in the statistics literature and is a standard way to derive optimal
tests for two-sided alternatives. In exponential families, UMP two-sided tests exist
among the class of unbiased tests, see Lehmann (1986, Thm. 4.3, p. 147). This
is not the case in the curved exponential family testing problem considered here.
Nevertheless, one can develop optimal WAP tests among the class of locally unbiased
invariant tests.

We start by determining two necessary conditions for an invariant test (under the
invariance condition of (4.1)) to be unbiased. The Þrst condition is similarity and the
second condition is local unbiasedness. Local unbiasedness requires that the power
function has zero derivative at the null hypothesis. Otherwise, the power function
would dip below the size of the test for some alternatives close to the null. We show
that the AR, LM, and CLR tests are locally unbiased.

Next, we determine the test that maximizes WAP, as deÞned in (5.1), among the
class of similar locally-unbiased invariant tests. We do so using the same argument
as in Section 5.2, but using the generalized Neyman-Pearson Lemma (see Lehmann
(1986, Thm. 3.5, pp. 96-7)) in place of the Neyman-Pearson Lemma. The form of
the optimal WAP test statistic is the same as in Section 5.2, only the critical value
function differs.

Theorem 4 An invariant test φ(Q) is unbiased with signiÞcance level α only if
Eβ0

(φ(Q)|QT = qT ) = α and Eβ0
(φ(Q)QST |QT = qT ) = 0 for almost all qT .

Comments. 1. The Þrst condition establishes that all invariant unbiased tests must
be similar. The second establishes that the power function must have zero derivative
under H0. The second condition is the local unbiasedness condition.

2. The two conditions in Theorem 4 are closely related to the conditions used
for two-sided alternatives in the classical hypothesis testing theory for exponential
families, see Lehmann (1986, Ch. 4).

3. The second condition of Theorem 4 is equivalent to

Eβ0,λ(φ(Q)QST/Q
1/2
T ) = 0 for all λ ≥ 0.8 (6.10)

That is, any unbiased invariant test statistic φ(Q) must be uncorrelated with the
pivotal statistic QST/Q

1/2
T under H0. This condition is a special case of a result of

Moreira (2003b, Lemma 1) that establishes that any unbiased test φ(S, T ) must be
uncorrelated with the pivotal statistic S under H0.

The AR, LM, and CLR test statistics depend on the data through (QS , Q2ST , QT ).
The following result shows that these tests satisfy the second condition of Theorem
4.

Corollary 3 Any similar level α test that depends on the observations through
(QS , Q

2
ST , QT ) satisÞes the local unbiasedness condition of Theorem 4.
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Comment. Corollary 3 shows that the class of asymptotically-efficient two-sided
invariant similar tests considered in Section 6.2 is contained in the class of locally-
unbiased invariant similar tests considered in this section.

The next result uses local unbiasedness to specify an optimal WAP test for two-
sided alternatives.

Theorem 5 The test that maximizes WAP among locally-unbiased invariant similar
tests with signiÞcance level α rejects H0 if

ψW (Q1, QT ) > κ1α(QT ) +QSTκ2α(QT ),

where κ1α(QT ) and κ2α(QT ) are chosen such that the two conditions in Theorem 4
hold.

Comment. Point optimal locally-unbiased invariant similar tests are obtained by
taking the weight function W to give point mass at a given alternative parameter
(β,λ) of interest.

7 Point Optimal Invariant Non-similar Tests

7.1 One-sided Alternatives

Non-similar tests have null rejection probability below the signiÞcance level for
some values of the nuisance parameter, in this case, λ. Due to the continuity of
the power function, for such values of λ, the power of a non-similar test will be less
than the power of a similar test for alternatives close enough to the null hypothesis.
However, for other values of λ, or for more distant alternatives, non-similar tests
can have greater power than similar tests. For this reason, we also consider optimal
invariant non-similar tests of β = β0 against a point alternative.

Our construction of POI non-similar tests follows Lehmann (1997, Sec. 3.8).
Consider the composite null hypothesis

H0 : (β,λ) ∈ {(β0,λ) : 0 ≤ λ <∞}, (7.1)

and the point alternative

H1 : (β,λ) = (β
∗,λ∗). (7.2)

Let Λ be a probability distribution over {λ : 0 ≤ λ <∞} and let hΛ be the weighted
pdf,

hΛ(q) =

*
ω
fQ1,QT

(q1, qT ;β,λ) dΛ (λ) , (7.3)

where fQ1,QT
(q1, qT ;β,λ) is given in Lemma 3(a). The effect of weighting by Λ under

the null is to turn the composite null into a point null, so that the most powerful test
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can be obtained using the Neyman-Pearson Lemma. SpeciÞcally, let φΛ be the most
powerful test of hΛ against fQ1,QT

(q1, qT ;β,λ), so that φΛ rejects the null when

NPΛ (q) =
fQ1,QT

(q1, qT ;β,λ)

hΛ (q)
> dΛ,α, (7.4)

where dΛ,α is the critical value of the test, chosen so that NPΛ (q) rejects the null
with probability α under the distribution hΛ.

If the test φΛ has size α for the null hypothesis H0 in (7.1), i.e.,

sup
(β,λ)∈ω

Pβ,λ (NPΛ (Q) > dΛ,α) = α, (7.5)

then the test φΛ is most powerful for testing H0 against H1, and the distribution Λ
is least favorable; cf. Lehmann (1986, Sec. 3.8, Thm. 7, and Cor. 5).

Given a distribution Λ, condition (7.5) is easily checked numerically. What proves
more computationally difficult, however, is Þnding the distribution that satisÞes (7.5).
In the numerical work we consider distributions Λ that put point mass on λ0. In this
case, we have

NPΛ =
fQ1,QT

(q1, qT ;β
∗,λ∗)

fQ1,QT
(q1, qT ;β0,λ0)

=
exp(−λ∗(c2β∗ + d2β∗)/2)

,(
λ∗ξβ∗(q)

-v
Iv

,(
λ∗ξβ∗(q)

-
exp(−λ0d2β0

/2)
,(

λ0ξβ0
(q)
-v
Iv

,(
λ0ξβ0

(q)
- , (7.6)

where v = (k − 2)/2; the second expression follows from Lemma 3(a).
Let R(β0,λ0,β

∗,λ∗|β,λ) be the rejection rate of the test based on the statistic
given by (7.6) when the true values are β and λ. The numerical problem is to Þnd
the value of λ0 such that the test has size α. Denote this value of λ0 by λLF0 ; then
λLF0 solves

R(β0,λ
LF
0 ,β∗,λ∗|β0,λLF0 ) = α and

sup
0≤λ<∞

R(β0,λ
LF
0 ,β∗,λ∗|β0,λ) ≤ α. (7.7)

If there is a λLF0 (β0,β
∗,λ∗) that satisÞes (7.7), then the test based on NPλLF

0
is

the POI non-similar test. The power envelope for invariant non-similar tests is
R(β0,λ

LF
0 (β0,β

∗,λ∗) ,β∗,λ∗|β∗,λ∗).

7.2 Two-sided Tests

8 Simulation Results I: Normal Model with Known
Covariance Matrix

This section reports numerical results for the one-sided tests developed in Sec-
tions 5 and 7. We Þrst compare the power envelope for invariant similar tests with
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the power envelope for invariant tests that are not necessarily similar. As will be
discussed in more detail, these power envelopes are essentially numerically identical.
We therefore focus on similar tests, which are more computationally tractable than
non-similar tests, and on the performance of point-optimal invariant (POI) similar
tests. None of the POI tests have good overall power properties. In particular, their
power can decrease as the difference between the true value of β and the hypothesized
value β0 increases. We therefore turn to WAP tests and report preliminary results
for speciÞc WAP tests which have power functions that come quite close to the power
envelope.

Because the distributions of Q do not depend on the sample size, which is ac-
counted for in λ, the Þnite-sample power functions are reported as a function of λ,
but not of the sample size. In addition, the covariance matrix Ω is consistently es-
timated even under weak instrument asymptotics. Taken together, these two facts
imply that the Þnite-sample power functions are also the power functions under weak-
instrument asymptotics.

The power envelope for the invariant similar tests was computed using Gauss-
Legendre quadrature integration of the conditional distribution of ζδ in (5.17); all
other power functions and power envelopes were computed by Monte Carlo simulation
using 10,000 draws. Conditional critical value functions also are computed using
10,000 draws. The solution of the condition in (7.7) for the point optimal non-similar
test was simpliÞed because, for nearly all values of (β∗,λ∗), the rejection rate turns out
to be monotone in λ0; once a candidate value of λLF0 was ascertained, the condition
in (7.7) is veriÞed for a grid of values for λ.

Throughout, we focus on tests with signiÞcance level 5% and on the case β0 =
0. The remaining parameters characterizing the distribution of the tests are λ, k,
ρ = corr(v1, v2), and the alternative, β. To facilitate comparison of the results across
cases, we adopt two transformations of these parameters. SpeciÞcally, we consider λ/k
rather than λ, as it is a more natural measure of the strength of the instruments, and
in addition the power functions are plotted as a function of the rescaled alternative
(λ/k)1/2 (β − β0) ≡ B. The full set of numerical results have been computed for λ/k
= 0.5, 1, 2, 4, 8, 16, which span the range from very weak instruments to quite strong
instruments, and for ρ = 0.95, 0.50, 0.20,−0.50. To conserve space, we report only a
subset of these results here and consider the case k = 5.

Figure 1 presents the power envelopes for the invariant similar tests (solid line)
and for the invariant non-similar tests (dashed line). The power envelopes are re-
ported both for negative and positive alternative values of β. Note, however, that
the tests (and envelopes) themselves are for one-sided tests. There are three note-
worthy features of these results:

1. The power envelopes for the similar and non-similar tests are essentially the
same up to numerical accuracy, for all values of λ and ρ. The reason for this is twofold.
On the one hand, the conditional critical values for the POI similar test depend on
qT only weakly in the range of qT that is most likely to occur under the alternative;
thus these conditional tests are nearly unconditional. On the other hand, the optimal
non-similar tests have rejection rates that are nearly equal to 5%. Thus, these non-
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similar tests are nearly similar. Because the optimal non-similar test is nearly similar
and the optimal similar test is nearly unconditional, the two tests are virtually the
same. The similar tests are more numerically tractable than the non-similar tests, so
we focus our attention on the former below.

2. The power functions are neither symmetric nor strongly asymmetric, which
suggests that two-sided tests based on equally-weighted symmetric alternatives could
perform well.

3. There is a curious blip in some power envelopes. This blip occurs at the value
of the alternative for which β = 1/ρ. The special role of this value is most easily seen
by considering the POI similar test based on ζδ in (5.17). Straightforward algebra
reveals that β = 1/ρ is the value of the alternative at which δ in (5.17) changes sign.
For values of β < 1/ρ, large positive values of S2 lead to rejection; however, for values
of β > 1/ρ, large negative values of S2 lead to rejection. When β = 1/ρ, the point
optimal test does not depend on S2 and only depends on QS . The blip is therefore
associated with this qualitative change in the nature of the conditional POI test.

One approach to testing in the absence of a UMP test is to consider POI tests that
have power functions tangent to the power envelope at a certain value, for example
at 50% or 70% power. If those power functions remain sufficiently close to the power
envelope against alternatives other than that for which the test is point optimal, then
that particular POI test provides a good practical choice; cf. King (1988). Here, two
issues arise: the choice of λ∗ and the choice of the alternative β. To see whether
this approach has potential, in Figure 2 we plot the power functions of various POI
tests along with the invariant similar power envelope. The individual power functions
plotted in Figure 2 are for the locally optimal test given by (5.18), the most distant
optimal test given by (5.19), and for several tests with intermediate points of tangency,
chosen to be optimal against the rescaled alternatives B = 0.5, 1.0, 1.5 (which have
power curves tangent to the envelope at powers of approximately 0.3, 0.5, and 0.7).
The results in Figure 2 show that the power functions for the POI tests are generally
not monotonic. For example, for ρ = 0.5 and λ/k = 1, the power of the locally
optimal test and the POI test against B = 0.5 initially increase and then decline
for β > 1/ρ, while the opposite is true for the most-distant POI test. Thus, our
simulations suggest that no single POI test provides uniformly good performance.

The previous results encourage looking for a conditional WAP test that has a
power function uniformly close to the invariant similar power envelope. Figure 3
presents preliminary results for two trial WAP tests. Both weight functions place
unit weight on λ∗/k = 1. For the Þrst WAP test (labeled LRW-P in Figure 3),
the weight function is approximately proportional to 2−β. For the second (labeled
LRW −Q in Figure 3), the weight function is the chi-squared density (as a function
of β), evaluated on a log scale for β, where the degrees of freedom are chosen by
numerical optimization as a function of ρ. For ρ > 0, both WAP tests have power
functions that are uniformly close to the power envelopes, and when λ/k is large
and/or ρ is small, the power functions are essentially on the power envelope. For
ρ = −0.5, the LRW −Q test has a power function close to the power envelope, but
the LRW − P test has a non-monotonic power function for distant alternatives.
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While preliminary, the results in Figure 3 suggest that WAP tests may provide a
feasible way to achieve near-UMP performance in the one-sided testing problem.

9 Weak IV Asymptotics for Case of Unknown
Covariance Matrix and Non-normal Errors

In this section, we consider the same model and hypotheses as in Section 2,
but with unknown error covariance matrix, (possibly) non-normal, heteroskedastic,
and/or autorcorrelated errors, and (possibly) random IV�s and/or exogenous vari-
ables. The latter allows for lagged dependent and endogenous variables as regressors
or IV�s..

We use weak IV asymptotics, as in Staiger and Stock (1997), to analyze the prop-
erties of the procedures considered. We consider three versions of the Þnite sample
tests introduced in Sections 5 and 6. The Þrst version is suitable for the case of
uncorrelated errors that exhibit contemporaneous homoskedasticity. By this we mean
that E(ViV !i |Zi,Xi) is a constant matrix that does not depend on i, where Vi denotes
the reduced-form error vector for the i-th observation (i.e., Vi is the i-th row of V
written as a column 2-vector). In a time series setting this still allows for the errors to
exhibit temporal conditional heteroskedasticity with respect to lagged values of the er-
rors, IV�s, and exogenous variables (i.e., E(ViV !i |Zi−1,Xi−1, Vi−1, Zi−2,Xi−2, Vi−2, ...)
may be random).

The second version of the tests that are introduced here is designed for uncorre-
lated errors that may exhibit contemporaneous heteroskedasticity (i.e., E(ViV !i |Zi,Xi)
may be random or depend on i). This version adjusts the statistics (S, T ) to obtain
robustness to heteroskedasticity. Note that most procedures in the literature, includ-
ing the AR, LM, CLR, and Staiger and Stock (1997) procedures, are not robust to
heteroskedasticity.

The third version of the tests is designed to be robust to both contemporaneous
heteroskedasticity and autocorrelation in the reduced-form errors.

For clarity of the asymptotics results, throughout this section we write S, T,
Q1, QT , QS, S2, and λ of Sections 2-8, as Sn, Tn, Q1,n, QT,n, QS,n, S2,n, and λn,
respectively, where n is the sample size. All limits are taken as n→∞.

Let Z = [Z : X] . Let Yi, Zi, Xi, Zi, and Vi denote the i-th rows of Y, Z, X, Z,
and V, respectively, written as column vectors of dimensions 2, k, p, k + p, and 2.

9.1 Assumptions

We use the following high-level assumptions concerning the IV�s, exogenous vari-
ables, and errors. The assumptions are quite similar to those of Staiger and Stock
(1997), but they allow for the possibility of heteroskedastic and autocorrelated er-
rors because the form of the asymptotic variance matrix Φ in Assumption 4 is not
restricted.

Assumption 1. π = C/n1/2 for some non-stochastic k-vector C.

Assumption 2. n−1Z !Z →p D for some pd (k + p)× (k + p) matrix D.

22



Assumption 3. n−1V !V →p Ω for some pd 2× 2 matrix Ω.
Assumption 4. n−1/2vec(Z !V )→dN(0,Φ) for some pd 2(k+p)×2(k+p) matrix Φ.

In Assumption 4, vec(·) denotes the column by column vec operator.
The quantities C, D, Ω, and Φ are assumed to be unknown.
Assumption 1 is the weak IV assumption. Assumptions 2 and 3 hold under

suitable conditions by a weak law of large numbers (WLLN), see below. Assumption
4 holds under suitable conditions by a central limit theorem (CLT). Assumptions 1-4
are consistent with non-normal, heteroskedastic, autocorrelated errors and IV�s and
regressors that may be random or non-random.

For example, Assumptions 2-4 are implied by any one of the following assumptions:

Assumption IID. {(Vi, Zi) : i ≥ 1} are iid, E(Vi ⊗ Zi) = 0, E||Vi||2 + E||Zi||2 +
E||Vi ⊗ Zi||2 <∞, Ω = EViV !i is pd, and Φ = E(Vi ⊗ Zi)(Vi ⊗ Zi)! is pd.
Assumption INID. {(Vi, Zi) : i ≥ 1} are independent, E(Vi⊗Zi) = 0 for all i ≥ 1,
supi≥1(E||Vi||2+δ+E||Zi||2+δ+E||Vi⊗Zi||2+δ) <∞ for some δ > 0, n−1

1n
i=1EViV

!
i

→ Ω for some pd 2× 2 matrix Ω, and n−11n
i=1E(Vi ⊗ Zi)(Vi ⊗ Zi)! → Φ for some

pd 2(k + p)× 2(k + p) matrix Φ.
Assumption MDS. {(Vi⊗Zi,Fi) : i ≥ 1} is a martingale difference sequence, where
Fi = σ(Vi, Zi, Vi−1, Zi−1, ...), {(Vi, Zi) : i ≥ 1} is a stationary and ergodic sequence,
E||Vi||2+E||Zi||2+E||Vi⊗Zi||2 <∞, Ω = EViV !i is pd, and Φ = E(Vi⊗Zi)(Vi⊗Zi)!
is pd.

Assumption CORR. {(Vi, Zi) : i = ..., 0, 1, ...} is a doubly inÞnite stationary
and ergodic sequence with E(Vi ⊗ Zi) = 0, E||Vi||2 + E||Zi||2 + E||Vi ⊗ Zi||2 < ∞,1∞
j=1(E||E(Vi⊗Zi|Fi−j)||2)1/2 <∞, where Fi = σ(Vi, Zi, Vi−1, Zi−1, ...), Ω = EViV !i

is pd, and Φ =
1∞
j=−∞E(Vi ⊗ Zi)(V !i−j ⊗ Z

!
i−j) is pd.

The random vectors {Vi ⊗ Zi : i ≥ 1} are uncorrelated under Assumption IID,
INID, or MDS, but are (possibly) correlated under Assumption CORR.

If the errors are contemporaneously homoskedastic and {Vi ⊗ Zi : i ≥ 1} are
uncorrelated, the following key assumption holds. Under this assumption (and As-
sumptions 1-4), the tests described in Sections 5 and 6 but with Ω replaced by a
consistent estimator "Ωn have asymptotic signiÞcance level α, as desired.
Assumption 5. Φ = Ω⊗D, where Φ is deÞned in Assumption 4.
In Section 9.2 below, we impose Assumption 5, but in Sections 9.3 and 9.4, we do
not. Assumption 5 is implied by any one of Assumptions IID, INID, and MDS plus
the following.

Assumption HOM. E((ViV !i )⊗ (ZiZ
!
i)) = Ω⊗D for all i ≥ 1.

By iterated expectations, a sufficient condition for Assumption HOM is E(ViV !i |Zi) =
EViV

!
i = Ω a.s. for all i ≥ 1.
Note that Assumptions MDS and CORR allow for intertemporal conditional het-

eroskedasticity even when Assumption HOM holds.

Lemma 4 (a) Any one of Assumptions IID, INID, MDS, and CORR implies As-
sumptions 2-4.

23



(b) Any one of Assumptions IID, INID, and MDS plus Assumption HOM imply
Assumption 5.

The asymptotic results stated below hold for any true parameter values β, C,
γ, ξ, and Ω, provided Ω is positive deÞnite. Hence, we do not need to be speciÞc
regarding the parameter space. Of course, for the testing problem to be well deÞned,
the parameter space should include the null value β0 and at least one other value of
β. In addition, for tests to exist that have non-trivial power, it is necessary for the
parameter space to include at least one non-zero vector C.

We estimate Ω (∈ R2×2) (deÞned in Assumption 3) via
"Ωn = n−1 "V ! "V , where "V = Y − PZY − PXY.9 (9.1)

Let "Vi denote the i-th row of "V written as a column 2-vector.
Under Assumptions 2-4, the variance estimator is consistent.

Lemma 5 Under Assumptions 2-4, "Ωn →p Ω.

Comment. The convergence in the Lemma occurs uniformly over all true parameters
β, C, γ, and ξ no matter what the parameter space is. This can be seen by inspection
of the proof of the Lemma.

9.2 Homoskedastic Uncorrelated Errors

We now introduce tests that are suitable for (possibly) non-normal, homoskedas-
tic, uncorrelated errors and unknown covariance matrix. That is, the tests are suitable
when Assumptions 1-5 hold.

We deÞne analogues of Sn, Tn, Q1,n, and QT,n that replace the unknown matrix
Ω with "Ωn: "Sn = (Z !Z)−1/2Z !Y b0 · (b!0"Ωnb0)−1/2,"Tn = (Z !Z)−1/2Z !Y "Ω−1n a0 · (a!0"Ω−1n a0)−1/2,"Q1,n = ,"S!n "Sn, "S!n "Tn-! , and "QT,n = "T !n "Tn. (9.2)

The AR, LM, and CLR test statistics for the case of unknown Ω are deÞned as in
(4.4), but with S and T replaced by "Sn and "Tn.

A homoskedastic optimal WAP test, referred to as an HOM-WAP test, rejects
the null hypothesis H0 : β = β0 when

ψW ( "Q1,n, "QT,n) > κα( "QT,n), (9.3)

where ψW (·, ·) is deÞned in Corollary 1 and κα(·) is deÞned in (5.12) (and can be
calculated by simulation using the method described there).
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Next, we establish the asymptotic distributions of "Sn and "Tn. Let S∞ and T∞ be
independent random k-vectors with

S∞ ∼ N(cβL
1/2C, Ik) and T∞ ∼ N(dβL1/2C, Ik), where

L = D11 −D12D−122 D21,
D =

#
D11 D12
D21 D22

$
, and Dj) ∈ Rk×k for j, 4 = 1, 2. (9.4)

The matrix L is the probability limit of n−1Z !Z. Under H0, S∞ has mean zero, but
T∞ does not.

The following result holds under the null hypothesis and Þxed (i.e., non-local)
alternative hypotheses.

Lemma 6 Under Assumptions 1-5,
(a) (Sn, Tn)→d (S∞, T∞),
(b) ("Sn, "Tn)− (Sn, Tn)→p 0, and
(c) ("Sn, "Tn)→d (S∞, T∞).

Comments. 1. Inspection of the proof of the Lemma shows that the results of the
Lemma hold uniformly over compact sets of true β and C values and over arbitrary
sets of true γ and ξ values. In particular, the results hold uniformly over vectors C
that include the zero vector. Hence, the asymptotic results hold uniformly over cases
in which the IV�s are arbitrarily weak. In consequence, we expect the asymptotic
test procedures developed here to perform well in terms of size even for very weak
IV�s.. Note that it is precisely these cases in which the t, Wald, and LR tests based
on standard asymptotics perform poorly in terms of size.

2. Lemma 6 and the continuous mapping theorem imply that the asymptotic
distributions of the AR, LM, and CLR test statistics are given by the distributions of
the test statistics in (4.4) with (S, T ) replaced by (S∞, T∞). In particular, under the
null hypothesis, the AR and LM statistics have asymptotic χ2k and χ

2
1 distributions,

respectively.

Using Lemma 6, we establish the asymptotic distributions of the {ψW ( "Q1,n, "QT,n) :
n ≥ 1} test statistics and {κα( "QT,n) : n ≥ 1} critical values. Let

Q1,∞ =
%
S!∞S∞, S

!
∞T∞

&!
, QT,∞ = T !∞T∞,

QS,∞ = S!∞S∞, S2,∞ = S!∞T∞/(||S∞|| · ||T∞||), and
λ∞ = C !LC. (9.5)

Lemma 7 The density, conditional density, and independence results of Lemma 3
for (Q1,n, QT,n), QT,n, QS,n, and S2,n also hold for (Q1,∞, QT,∞), QT,∞, QS,∞, and
S2,∞ with λn replaced by λ∞.

Comment. Lemma 7 holds by (9.4) and the proof of Lemma 3.
As above, the following results hold under the null and Þxed alternatives.
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Theorem 6 Under Assumptions 1-5,
(a) (ψW (Q1,n,QT,n), κα(QT,n))→d (ψW (Q1,∞, QT,∞), κα(QT,∞)),
(b) (ψW ( "Q1,n, "QT,n), κα( "QT,n))− (ψW (Q1,n, QT,n), κα(QT,n))→p 0, and
(c) (ψW ( "Q1,n, "QT,n), κα( "QT,n))→d (ψW (Q1,∞, QT,∞), κα(QT,∞)).

Theorem 6 leads to the following results.

Corollary 4 Under Assumptions 1-5,
(a) 1(ψW ( "Q1,n, "QT,n) > κα( "QT,n))− 1(ψW (Q1,n, QT,n) > κα(QT,n))→p 0,
(b) P (ψW (Q1,n, QT,n) > κα(QT,n))→ P (ψW (Q1,∞, QT,∞) > κα(QT,∞)),
(c) P (ψW ( "Q1,n, "QT,n) > κα( "QT,n))→ P (ψW (Q1,∞, QT,∞) > κα(QT,∞)), and
(d) under the null hypothesis, P (ψW (Q1,∞, QT,∞) > κα(QT,∞)) = α.

Comments. 1. Corollary 4(a) shows that the critical regions of the tests with
known and unknown error covariance matrix differ with probability that converges
to zero as n → ∞. Hence, estimation of the error covariance matrix has no effect
asymptotically.

2. Corollary 4(b) and (c) provide the asymptotic power functions of the tests
based on known and unknown error covariance matrix. Consistent with the result of
Corollary 4(a) , the asymptotic power functions are the same. The asymptotic power
function depends only on β, C, and L. It can be written as:

PowW (β, C,L) = P (ψW (Q1,∞,QT,∞) > κα(QT,∞)) (9.6)

=

*
1(ψW (q1, qT ) > κα(qT ))fQ1,QT

(q1, qT ;β, C, L)dq1dqT ,

where fQ1,QT
(q1, qT ;β, C, L) is the density given in Lemma 3(a) with λ = C !LC.

3. Combining Corollary 4(b) and (c) with Corollary 4(d) implies that the tests
based on ψW (Q1,n, QT,n) and ψW ( "Q1,n, "QT,n) both have asymptotic null rejection
rates of α, as desired.

The Þnite sample optimality properties of the test based on (ψW (Q1,n,QT,n),
κα(QT,n)), see Theorem 3, lead to the following asymptotic WAP optimality results.

Corollary 5 Suppose Assumptions 1 and 2 hold and the reduced-form errors {Vi :
i ≥ 1} are iid normal, independent of {Zi : i ≥ 1}, with mean zero and pd variance
matrix Ω. Let {φn : n ≥ 1} be a sequence of level α invariant similar tests for known
Ω. Then, the level α invariant similar tests based on {(ψW (Q1,n, QT,n),κα(QT,n)) :
n ≥ 1} have asymptotic power that satisÞes

limn→∞
*
Pβ,λ(φn rejects H0)dW (β,λ)

≤ lim
n→∞

*
Pβ,λ(ψW (Q1,n,QT,n) > κα(QT,n))dW (β,λ)

=

*
Pβ,λ(ψW (Q1,∞, QT,∞) > κα(QT,∞))dW (β,λ),

where Pβ,λ(·) denotes probability when the true parameters are β and π for arbitrary
π such that π!Z !Zπ = λ.
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Comment. The Corollary shows that the asymptotic power of the sequence of
optimal WAP tests for known Ω exceeds that of any sequence of level α invariant
similar tests. Furthermore, the same inequality holds for the asymptotic power of
the sequence of HOM-WAP tests (by Corollary 4(c)), which provides an asymptotic
optimality result for these tests. This asymptotic optimality result has the disadvan-
tage that these tests are not similar for each n, but are only asymptotically similar.
But, it has the advantage that it applies to tests that do not require knowledge of
Ω, which is rarely known in practice. For a stronger asymptotic optimality result for
HOM-WAP tests, see Section 10.

9.3 Heteroskedasticity-Robust Tests

We now introduce alternatives to the statistics ("Sn, "Tn) that are adjusted to
achieve robustness to heteroskedasticity. DeÞne

!Sn = !Σ−1/2S,n n−1/2Z !Y b0 and (9.7)!Tn = !Σ−1/2T,n

,
n−1/2Z !Y "Ω−1n a0 − !ΣTS,n!Σ−1/2S,n

!Sn- , where
!ΣS,n = n−1

n.
i=1

,"V !i b0Zi-,"V !i b0Zi-!, !ΣTS,n = n−1 n.
i=1

,"V !i "Ω−1n a0Zi-,"V !i b0Zi-!,
!ΣT,n = !Σ∗T,n − !ΣTS,n!Σ−1S,n!Σ!TS,n, !Σ∗T,n = n−1 n.

i=1

,"V !i "Ω−1n a0Zi-,"V !i "Ω−1n a0Zi-!,
and "Ωn and "Vi are deÞned in (9.1).10

The statistic !Sn is based on n−1/2Z !Y b0, just as "Sn is, but is normalized by !Σ−1/2S,n ,
which is a consistent estimator of the square root of the asymptotic variance matrix
of n−1/2Z !Y b0 even in the presence of heteroskedasticity. The statistic !Tn is based on
n−1/2Z !Y "Ω−1n a0, as "Tn is, but is adjusted by subtracting off !ΣTS,n!Σ−1/2S,n

!Sn to achieve
zero asymptotic covariance with !Sn even in the presence of heteroskedasticity and
is normalized by !Σ−1/2T,n to achieve identity asymptotic covariance matrix even in the

presence of heteroskedasticity. In the case of homoskedasticity, !ΣTS,n →p 0 and the!ΣTS,n!Σ−1/2S,n
!Sn adjustment has no effect asymptotically.

Heteroskedasticity-robust AR, LM, and CLR test statistics, denoted HR-AR, HR-
LM, and HR-CLR, are deÞned as in (4.4), but with (S, T ) replaced by (!Sn, !Tn). The
appropriate critical values for these test statistics are the same as in the homoskedas-
tic case. Thus, the critical values for the AR and LM tests are from χ2k and χ

2
1

distributions, respectively. The critical value function for the HR-CLR test is the
same as in the homoskedastic error case and is given in Table I of Moreira (2003a).

A heteroskedasticity-robust optimal WAP test, referred to as an HR-WAP test,
rejects H0 : β = β0 when

ψW ( !Q1,n, !QT,n) > κα( !QT,n), where!Q1,n = (!S!n !Sn, !S!n !Tn)!, !QT,n = !T !n !Tn, (9.8)
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and κα(·) is deÞned in (5.12) (and can be calculated by the method following (5.12)).
Note that the critical value function κα(·) for the HR-WAP test is the same as for
the HOM-WAP test.

We now analyze the asymptotic properties of HR-AR, HR-LM, HR-CLR, and
HR-WAP tests. DeÞne

!ΣS = MBΦB!M !, !ΣTS =MAΦB!M !, !Σ∗T =MAΦA!M !, and!ΣT = !Σ∗T − !ΣTS!Σ−1S !Σ!TS , where (9.9)

M =
2
Ik : −D12D−122

3
, B = (b!0 ⊗ Ik+p), and A = (Ω−1a0)! ⊗ Ik+p.

The estimators !ΣS,n, !ΣTS,n, and !ΣT,n converge in probability to !ΣS , !ΣTS, and!ΣT , respectively, when Assumptions 1-4 and the following assumptions hold.
Assumption 6. n−1

1n
i=1(Vi ⊗ Zi)(Vi ⊗ Zi)! →p Φ.

Assumption 7. n−1
1n
i=1(||Zi||4 + ||Zi||3||Vi||) = Op(1).

Any one of Assumptions IID, INID, or MDS is sufficient for Assumption 6.
Assumption 7 holds under Assumption IID or MDS plus the following assumption.

Assumption MOM. E||Zi||4 +E||Zi||3||Vi|| <∞.
Assumption 7 holds under Assumption INID plus the following assumption.

Assumption MOM2. E||Zi||4+δ +E||Zi||3+δ||Vi||1+δ <∞ for some δ > 0.

Let !S∞ and !T∞ be independent random k-vectors with

!S∞ ∼ N(!Σ−1/2S LCa!b0, Ik) and!T∞ ∼ N
,!Σ−1/2T

,
LCa!Ω−1a0 − !ΣTS!Σ−1S LCa!b0- , Ik- . (9.10)

Let !Q1,∞ =
,!S!∞ !S∞, !S!∞ !T∞-! and !QT,∞ = !T !∞ !T∞.

The asymptotic properties of tests based on (!Sn, !Tn) are as follows.
Theorem 7 Under Assumptions 1-4, 6, and 7,
(a) !ΣS,n →p

!ΣS , !ΣTS,n →p
!ΣTS , and !ΣT,n →p

!ΣT and
(b) Lemma 6(c), Theorem 6(c), and Corollary 4(c) and (d) hold with "Sn, "Tn, S∞,
T∞, Q1,∞, and QT,∞ replaced by !Sn, !Tn, !S∞, !T∞, !Q1,∞, and !QT,∞, respectively.
Comments. 1. Part (b) of the Theorem shows that HR-WAP tests have the correct
signiÞcance level asymptotically whether or not the errors satisfy Assumption HOM.
It shows that estimation of Ω, !ΣS, !ΣTS , and !ΣT does not affect the asymptotic
distribution of {(ψW ( !Q1,n, !QT,n), κα( !QT,n)) : n ≥ 1}. It also shows that if the errors
satisfy Assumption HOM, then the HR-WAP tests have the same asymptotic power
as HOM-WAP tests because (!S∞, !T∞) and (S∞, T∞) have the same distribution in
this case.

2. Theorem 7(b) and the continuous mapping theorem imply that the asymptotic
distributions of the HR-AR, HR-LM, and HR-CLR test statistics under Assumptions
1-4, 6, and 7 are given by the distributions of the test statistics in (4.4) with (S, T )
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replaced by (!S∞, !T∞). Hence, the HR-AR and HR-LM statistics have asymptotic
null χ2k and χ

2
1 distributions, respectively. In addition, the critical value function of

the HR-CLR test is the same as that in the homoskedastic case and is determined
by the density in Lemma 3(c). If Assumption HOM holds, then the asymptotic
power functions of the HR-AR, HR-LM, and HR-CLR tests are the same as the
non-heteroskedasticity-robust versions of these tests.

3. Under the assumptions of Corollary 5, Assumption HOM holds and HR-WAP
tests have the same asymptotic power function as HOM-WAP tests. Hence, Corollary
5 provides a weak asymptotic optimality result for HR-WAP tests. See Section 10
below for a asymptotic optimality stronger result.

9.4 Heteroskedasticity and Autocorrelation Robust Tests

Tests that are robust to heteroskedasticity and autocorrelation in the reduced-
form errors {Vi : i ≥ 1} are obtained by using the tests introduced in the previous
subsection but with different estimators in place of !ΣS,n, !ΣTS,n, !ΣT,n, and !Σ∗T,n.
These are the only changes that are needed. In place of these estimators, one uses
estimators of ΣS,∞, ΣTS,∞, ΣT,∞, and Σ∗T,∞, respectively, that are consistent (at least
under the null hypothesis), where

Σ∞ =

#
ΣS,∞ Σ!TS,∞
ΣTS,∞ Σ∗T,∞

$
= lim
n→∞ var

4
n−1/2

n.
i=1

'
V !i b0Zi

V !iΩ
−1a0Zi

)5
and

ΣT,∞ = Σ∗T,∞ −ΣTS,∞Σ−1S,∞Σ!TS,∞. (9.11)

Let

Σn =

6
ΣS,n Σ

!
TS,n

ΣTS,n Σ
∗
T,n

7
(9.12)

be a consistent estimator of Σ∞ based on {("V !i b0Z !i, "V !i "Ω−1n a0Z !i)! : i ≤ n}. There are
many HAC estimators in the literature that can be used for this purpose, e.g., see
Newey and West (1987), Andrews (1991), and Andrews and Monahan (1992). For
brevity, we do not provide an explicit set of conditions under which one or more of
these HAC estimators is consistent.

Given the estimator Σn, the estimators !ΣS,n, !ΣTS,n, !ΣT,n, and !Σ∗T,n are replaced
in (9.7) by ΣS,n, ΣTS,n, ΣT,n, and Σ

∗
T,n, respectively, where

ΣT,n = Σ
∗
T,n −ΣTS,nΣ−1S,nΣ!TS,n. (9.13)

Let Sn, Tn, Q1,n, and QT,n denote !Sn, !Tn, !Q1,n, and !QT,n, respectively, with these
changes. Heteroskedasticity and autocorrelation-robust AR, LM, and CLR test sta-
tistics, denoted HR-AR, HR-LM, and HR-CLR, respectively, are deÞned as in (4.4),
but with (S, T ) replaced by (Sn, Tn). The appropriate critical values for these test
statistics are the same as in the homoskedastic case.
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A heteroskedasticity and autocorrelation-robust optimal WAP test, referred to as
an HAR-WAP test, rejects H0 : β = β0 when

ψW (Q1,n, QT,n) > κα(QT,n), (9.14)

where κα(·) is deÞned in (5.12).
The HAR-AR, HAR-LM, HAR-CLR, and HAR-WAP tests have correct asymp-

totic signiÞcance level under Assumptions 1-4 plus the additional conditions that are
needed to obtain consistency of Σn for Σ∞. Furthermore, these tests have the same
asymptotic power functions as the corresponding AR, LM, CLR, and HOM-WAP
tests when Assumptions 1-5 hold and the same asymptotic power functions as the
HR-AR, HR-LM, HR-CLR, and HR-WAP tests when Assumptions 1-4, 6, and 7 hold.

10 Asymptotic Optimality with Weak IV�s, IID Normal
Errors, and Unknown Covariance Matrix

In this section, we show that the tests HOM-WAP, HR-WAP, and HAR-WAP
exhibit certain asymptotic WAP optimality properties when the IV�s are weak and
the errors are iid normal with unknown covariance matrix.

For the asymptotic optimality results, we set up a sequence of models (or experi-
ments) with the parameters renormalized such that no parameter can be estimated
asymptotically without error, as is standard in the asymptotic efficiency literature,
e.g., see van der Vaart (1998, Ch. 9). For the parameters β and C, no renormaliza-
tion is required given Assumption 1 because neither can be consistently estimated
in the weak IV asymptotic setup. For the parameters Ω and η, renormalizations are
required. We take the true parameters Ω and η to satisfy

Ω = Ω0 +Ω1/n
1/2 and η = η0 + η1/n

1/2, (10.1)

where Ω0 and η0 are taken to be known and the unknown parameters to be estimated
are the perturbation parameters η1 and Ω1. The matrices Ω0 and Ω1 are assumed to
be symmetric and pd.

The least squares estimator of η in the model of (2.5) is denoted "ηn = (X !X)−1X !Y.
For any symmetric 4×4 matrix A, let vech(A) denote the 4(4+1)/2-column vector

containing the column by column vectorization of the non-redundant elements of A.
The following basic Þnite sample and asymptotic results hold.

Lemma 8 Suppose Assumption 1 holds, the reduced-form errors {Vi : i ≥ 1} are iid
normal, independent of {Zi : i ≥ 1}, with mean zero and pd variance matrix Ω, and
Ω and η are as in (10.1). Then,
(a) (n−1/2Z !Y, n1/2("ηn−η0), n1/2("Ωn−Ω0)) are sufficient statistics for (β, C,Ω1, η1)
and
(b) (n−1/2Z !Y, n1/2("ηn−η0), n1/2("Ωn−Ω0))→d (NZ , NX , NΩ), where NZ , NX , and
NΩ are independent k × 2, p × 2, and 2 × 2 normal random matrices, respectively,
with vec(NZ) ∼ N(vec(LCa!),Ω0 ⊗ L), vec(NX) ∼ N(vec(η1),Ω0 ⊗ D−122 ), NΩ is
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symmetric, and vech(NΩ) ∼ N(Ω1, E(ζ − Eζ)(ζ − Eζ)!), where ζ = vech(v0v
!
0),

v0 ∈ R2, and v0 ∼ N(0,Ω0), provided Assumption 2 also holds.

Comment. The results of the Lemma hold under the null hypothesis β = β0 and
Þxed alternatives β "= β0.

Given the result of part (a) of the Lemma, there is no loss in attainable power
by considering only tests that depend on the data through (n−1/2Z !Y, n1/2("ηn− η0),
n1/2("Ωn −Ω0)). Let φn(n−1/2Z !Y, n1/2("ηn − η0), n1/2("Ωn −Ω0)) be such a test. The
test φn is {0, 1}-valued and rejects the null hypothesis when φn = 1. We consider a
sequence of tests {φn : n ≥ 1} and say that {φn : n ≥ 1} is a convergent sequence of
tests if

φn(n
−1/2Z !Y, n1/2("ηn − η0), n1/2("Ωn −Ω0))→d φ(NZ , NX , NΩ) (10.2)

for some function φ(·, ·, ·). Given Lemma 8(b), there are an abundance of convergent
sequences of tests.

A convergent sequence of tests {φn : n ≥ 1} is said to be asymptotically similar if
Pβ,C,Ω0,η0

(φ(NZ , NX , NΩ) = 1) = α (10.3)

for β = β0 and all (C,Ω0, η0) in the parameter space, where Pβ,C,Ω0,η0
(·) denotes

probability when the true parameters are (β, C,Ω0, η0). Examples of convergent
sequences of asymptotically similar tests include sequences of AR, LM, CLR, CW,
HOM-WAP, HR-WAP, and HAR-WAP tests. Standard Wald and LR tests are not
asymptotically similar due to the effect of weak IV�s..

DeÞne

S∞ = L−1/2NZb0 · (b0Ωb0)−1/2 ∼ N(cβL1/2C, Ik),
T∞ = L−1/2NZΩ−1a0 · (a0Ω−1a0)−1/2 ∼ N(dβL1/2C, Ik), and
Q∞ = [S∞ : T∞]![S∞ : T∞]. (10.4)

Note that S∞ and T∞ are independent and the current deÞnition of S∞ and T∞ is
consistent with that in (9.4).

The transformation hΩ(·) from NZ to [S∞ : T∞] is one-to-one. Hence, we have

φ(NZ , NX ,NΩ) = φ(h
−1
Ω (S∞, T∞), NZ , NΩ) = φ(S∞, T∞, NX ,NΩ) (10.5)

for some function φ.
As in Section 4, we consider the group of transformations given in (4.1) but with

gF (β,π) replaced by gF (β, C) = (β, L
−1/2F !L1/2C) acting on the parameters (β, C).

The maximal invariant is Q∞.
We say that a convergent sequence of tests {φn : n ≥ 1} is asymptotically invariant

if the distribution of φ(S∞, T∞, NX , NΩ) depends on (S∞, T∞) only through Q∞, i.e.,
if

φ(S∞, T∞, NX , NΩ) ∼ φ∗(Q∞, NX , NΩ) (10.6)
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for some function φ∗, where ∼ denotes �has the same distribution as.� Examples
of convergent sequences of asymptotically invariant and asymptotically similar tests
include sequences of AR, LM, CLR, HOM-WAP, HR-WAP, and HAR-WAP tests.

We now establish an upper bound on asymptotic WAP.

Theorem 8 Suppose Assumptions 1 and 2 hold, the reduced-form errors {Vi : i ≥ 1}
are iid normal, independent of {Zi : i ≥ 1}, with mean zero and pd variance matrix
Ω, and Ω and η are as in (10.1). For any convergent sequence of asymptotically
invariant and asymptotically similar tests {φn : n ≥ 1}, we have

lim
n→∞

*
Pβ,λ,Ω,η0

(φn(n
−1/2Z !Y, n1/2("ηn − η0), n1/2("Ωn −Ω0)) = 1)dW (β,λ)

=

*
Pβ,λ,Ω0,η0

(φ∗(Q∞, NX , NΩ) = 1)dW (β,λ)

≤
*
Pβ,λ,Ω0,η0

(ψW (Q1, Q∞) > κα(Q∞))dW (β,λ),

where Pβ,λ,Ω,η0
(·) denotes probability when the true parameters are (β, C,Ω, η0) for

some C such that CLC ! = λ.

Comments. 1. Under H0 : β = β0, the left- and right-hand sides of the inequality
in the Theorem equal α.

Combining Theorem 8 with Corollary 4(c), Theorem 7(b), and the results of
Section 9.4 gives the following asymptotic optimality property for HOM-WAP, HR-
WAP, and HAR-WAP tests.

Corollary 6 Under the conditions of Theorem 8, the HOM-WAP, HR-WAP, and
HAR-WAP tests of Section 9 are convergent sequences of asymptotically invariant
and asymptotically similar tests that attain the upper bound on asymptotic WAP
given in Theorem 8.

11 Strong IV Asymptotics for Case of Unknown
Covariance Matrix and Non-normal Errors

TO BE ADDED.

12 Simulation Results II: Non-normal Model with
Unknown Covariance Matrix

TO BE ADDED.
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13 Normal Model with Multiple Endogenous Variables
and Known Covariance Matrix

In this section, we consider a generalization of the model considered in Sections
2-8 to the case where m endogenous variables appear. We assume that m ≤ k (where
k is the number of instrumental variables, i.e., the number of columns of Z). In
particular, we consider the model as speciÞed in (2.1)-(2.5), but with

y2, v2 ∈ Rn×m;β ∈ Rm;π ∈ Rk×m; ξ1, ξ ∈ Rp×m; η ∈ Rp×(2m);
Ω ∈ Rm×m;Y, V ∈ Rn×(m+1);
θ = (β!, vec(π)!, vec(γ)!, vec(ξ)!)! ∈ Rm+km+2pm; and
a = [β : Im] ∈ Rm×(m+1). (13.1)

The known (m+1)× (m+1) covariance matrix Ω is assumed to be nonsingular. The
parameter space for θ = (β,π!, γ!, ξ!)! is taken to be Rm+km+2pm.

The null hypothesis is

H0 : β = β0 for some β0 ∈ Rm. (13.2)

The alternative hypothesis can be two-sided H1 : β "= β, multivariate one-sided
H1 : β < β0 or H1 : β > β0, , or H1 : β ∈ B for any subset B of Rm that does not
include β0.

As in the case where m = 1, low dimensional sufficient statistics are available for
θ and the sub-vector (β,π!)!:

Lemma 9 For the model in (2.5) generalized as in (13.1),
(a) Z !Y and X !Y are sufficient statistics for θ,
(b) Z !Y and X !Y are independent,
(c) X !Y has a multivariate normal distribution that does not depend on (β!, vec(π)!)!,
(c) Z !Y has a multivariate normal distribution that does not depend on η = [γ :ξ],
and
(d) Z !Y is a sufficient statistic for (β!, vec(π)!)!.

As when m = 1, given our interest in tests concerning β, we base tests on the
sufficient statistic Z !Y ∈ Rk×m for (β!, vec(π)!)!. (This is done without loss of attain-
able power.) We consider a one-to-one transformation of Z !Y that yields (i) the Þrst
column to be independent of the nuisance parameter π under H0; (ii) independence of
the m transformed columns under the null and alternative; (iii) independence across
rows of each transformed column; and (iv) unit variance for all transformed elements.
DeÞne

S = (Z !Z)−1/2Z !Y b0 · (b!0Ωb0)−1/2 ∈ Rk and
Tj = (Z !Z)−1/2Z !YΩ−1α0,j ∈ Rk, for j = 1, ...,m,
T = [T1 : · · · : Tm] = (Z !Z)−1/2Z !Y Ω−1α0 ∈ Rk×m, where
b0 = (1,−β!0)!, α0 = [α0,1 : · · · : α0,m], (13.3)
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and α0,1, ...,α0,m are deÞned as follows. For conditions (ii)-(iv) to hold, it turns
out that α0,j must satisfy b!0α0,j = 0 and α!0,jΩ−1α0,j = 1 for all j = 1, ...,m and
α!0,jΩ

−1α0,) = 0 for all j, 4 = 1, ...,m with j "= 4. These conditions are satisÞed
by constructing {α0,j : j = 1, ...,m} using a Gram-Schmidt-like orthogonalization
scheme applied to the linearly independent (m + 1)-vectors {b0, e2, ..., em+1}, where
ej is the j-th elementary (m+ 1)-vector for j = 2, ...,m+ 1. Let

α0,1 = Mb0e2/||Ω−1/2Mb0e2||,
α0,2 = M[b0:Ω−1α0,1]e3/||Ω−1/2M[b0:Ω−1α0,1]e3||,

... (13.4)

α0,m = M[b0:Ω−1α0,1:···:Ω−1α0,m−1]em+1/||Ω−1/2M[b0:Ω−1α0,1:···:Ω−1α0,m−1]em+1||,

where as above MA = I −A(A!A)−1A! for any matrix A.
Some algebra shows that when m = 1 we obtain α0,1 = a0 · (a!0Ω−1a0)−1/2, where

a0 is deÞned in (2.6). Thus, T of Section 2 is the same as T deÞned in (13.4) when
m = 1.

The means of S and Tj for j = 1, ...,m depend on

µπ = (Z
!Z)1/2π ∈ Rk×m. (13.5)

The distributions of the sufficient statistics {S, T1, ..., Tm} for the parameters
(β!, vec(π)!)! are given in the following lemma.

Lemma 10 For the model in (2.5) generalized as in (13.1),
(a) S ∼ N(µπ(β − β0) · (b!0Ωb0)−1/2, Ik),
(b) Tj ∼ N(µπa!Ω−1α0,j , Ik) for j = 1, ...,m, and
(c) S, T1, ..., Tm are mutually independent.

Comments: 1. Under H0, S has mean zero.
2. Minus two times the log-likelihood function for π based on the normal density

of T is a constant plus

m.
j=1

(Tj − (Z !Z)1/2πa!0Ω−1α0,j)!(Tj − (Z !Z)1/2πa!0Ω−1α0,j)

= tr

 m.
j=1

(Tj − (Z !Z)1/2πa!0Ω−1α0,j)(Tj − (Z !Z)1/2πa!0Ω−1α0,j)!
 .

Consequently, the T statistic can be written as (Z !Z)1/2"π0a!0Ω−1α0, where "π0 denotes
the maximum likelihood estimator of π under H0 and a0 = [β0 : Im] ∈ Rm×(m+1),!π = (Z !Z)1/2πa!0Ω−1α0, where a0 = [β0 : Im].

Next, we present a similarity result analogous to that of Proposition 1. Let the
[0, 1]-valued statistic φ(S, T ) denote a (possibly randomized) test that depends on
the sufficient statistics S and T.
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Theorem 9 A test φ(S, T ) is similar with signiÞcance level α if and only if
Eβ0,π(φ(S, T )|T = t) = α for almost all t, where Eβ0

(·|T = t) denotes conditional
expectation given T = t when β = β0 (which does not depend on π).

Comment: Examples of similar tests in the model with multiple endogenous vari-
ables, multivariate normal errors, and known error covariance matrix Ω include the
AR test and the LM test of Kleibergen (2002).

We consider the same groups of transformations G and G deÞned in (4.1) when
m ≥ 2 as whenm = 1 (except that x ∈ Rk×(m+1) in the deÞnition ofG rather than x ∈
Rk×2). An invariant test, φ(S, T ), under the group G is one for which φ(FS, FT ) =
φ(S, T ) for all k×k orthogonal matrices F. It suffices to restrict attention to the class
of tests that depend only on a maximal invariant.

DeÞne Q, QS, QST , QT , and Q1 as in (4.2), but with T = [T1 : · · · :Tm]. Hence,
Q = [S :T ]![S :T ] ∈ R(m+1)(m+1), QS = S!S ∈ R, QST = S!T ∈ Rm, QT = T !T ∈
Rm×m, and Q1 = (S!S, S!T )! ∈ Rm+1.

Theorem 10 The (m+1)× (m+1) matrix Q is a maximal invariant for the trans-
formations G.

Comments: 1. As in the model with one endogenous variable, when m ≥ 2 the
statistic Q has a non-central Wishart distribution because [S :T ] is a multivariate
normal matrix that has independent rows and common covariance matrix across
rows. The distribution of Q depends on π only through the positive deÞnite (pd)
matrix λ deÞned by

λ = π!Z !Zπ ∈ Rm×m. (13.6)

In consequence, the utilization of invariance has reduced the km dimensional nuisance
parameter vec(π) to the m×m symmetric matrix nuisance parameter λ, which has
m(m+1)/2 non-redundant elements. This is true both under the null and under the
alternative. For example, if k = 5 and m = 2, then the reduction is from 10 nuisance
parameters to 3 nuisance parameters.

2. Examples of invariant tests in the literature include the AR test, the LM test
of Kleibergen (2002), and the conditional LR test of Moreira (2003a). The AR and
LM tests depend on Q or (S, T ) in the following ways:

ψAR(Q) = QS = S!S,
ψLM(Q) = QSTQ

−1
T Q

!
ST = S

!T (T !T )−1T !S. (13.7)

Invariant similar tests are characterized as follows:

Theorem 11 An invariant test φ(Q) is similar with signiÞcance level α if and only if
Eβ0

(φ(Q)|QT = qT ) = α for almost all qT , where Eβ0
(·|QT = qT ) denotes conditional

expectation given QT = qT when β = β0 (which does not depend on π).
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Comment: The two tests in (13.7) are invariant similar tests. Hence, they satisfy
the property speciÞed in the theorem.

Let W be a weight function over (β,λ) values. That is, W is a probability
distribution on the product of Rm and the space of pd m×m matrices, call it Rm×mpd .
Weighted average power of a test φ(Q) with respect to W is given by (5.1). The
expressions in (5.2)-(5.8) hold when m ≥ 2 just as when m = 1, provided one adjusts
the range of integration suitably. In particular, the integral over (β,λ) values is
over Rm × Rm×mpd , rather than R × R+, and the integral over (q1, qT ) values is over
(R+ × Rm) × Rm×mpd , rather than (R+ × R) × R+. In particular, the optimal WAP
LR statistic LRW (Q1, QT ) is as given in (5.8).

As in Section 5.2, in order to provide an explicit expression for the optimal WAP
LR statistic LRW (Q1, QT ), we determine the densities fQ(q;β,λ), fQT

(qT ;β,λ), and
fQ1|QT

(q1, qT ;β0) that arise in (5.2), (5.7), and (5.8). Let

∆β = [β − β0 : a!Ω−1α0] ∈ Rm×(m+1) and
∆T,β = a!Ω−1α0 = [β : Im]Ω−1α0 ∈ Rm×m. (13.8)

Note that tr(∆!β0
λ∆β0

) = tr(∆!T,β0
λ∆T,β0

). Let etr(A) denote exp(tr(A)) for a matrix
A.

Lemma 11 (a) The density of Q at q ∈ R
(m+1)×(m+1)
pd is a non-central Wishart

density with k degrees of freedom, covariance matrix Im+1, and non-centrality matrix
(i.e., means sigma matrix ) ∆!βλ∆β:

fQ(q;β,λ) = K1,metr(−∆!βλ∆β/2)|q|(k−m−2)/2etr(−q/2) 0F1
%
k/2;∆!βλ∆βq/4)

&
,

where q ∈ R(m+1)×(m+1),

K−1
1,m = 2

k(m+1)/2Γm+1(k/2),

0F1(·; ·) denotes a hypergeometric function with matrix argument, and Γm+1(k/2)
denotes the multivariate gamma function.

(b) The density of QT at qT ∈ Rm×mpd is a non-central Wishart density with k
degrees of freedom, covariance matrix Im, and noncentrality parameter ∆!T,βλ∆T,β:

fQT
(qT ;β,λ) = K2,metr(−∆!T,βλ∆T,β/2)|qT |(k−m−1)/2

×etr(−qT /2) 0F1
%
k/2;∆!T,βλ∆T,βqT/4)

&
,

where qT ∈ Rm×m and

K−1
2,m = 2

km/2Γm(k/2).

(c) Under the null hypothesis, the conditional density of Q1 given QT = qT is

fQ1|QT
(q1|qT ;β0) = K1,mK−1

2,m|q|(k−m−2)/2|qT |−(k−m−1)/2etr(−qS/2)
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Comments: 1. Hypergeometric functions of matrix argument are deÞned in Muir-
head (1982, p. 258). They involve series of zonal polynomials.

2. The multivariate gamma function at k/2, Γm+1(k/2), can be written in terms
of the ordinary gamma function as follows: Γm+1(k/2) = πk(k−2)/16

<k/2
j=1 Γ((k − j +

1)/2), e.g., see Muirhead (1982, Thm. 2.1.12, p. 62), where π = pi = 3.1415... The
test statistics considered below do not depend on Γm+1(k/2), however, so computa-
tion is not an issue.

3. When m = 2 alternative expressions for the densities in parts (a)-(c) of the
lemma are available in Anderson (1946, eqn. (7)), which are easier to compute. These
expressions are in terms of the modiÞed Bessel function of the Þrst kind.

Equations (5.2), (5.7), and (5.8) and Lemma 11 combine to give the following
result.

Corollary 7 The optimal WAP test statistic for weight function W is given by

LRW (q1, qT ) =

/
fQ1,QT

(q1, qT ;β,λ)dW (β,λ)/
fQT

(qT ;β,λ)dW (β,λ)fQ1|QT
(q1|qT ;β0,λ)

=
ψW (q1, qT )

ψ2,W (qT )
,

where

ψW (q1, qT ) =

*
etr(−∆!βλ∆β/2) 0F1

%
k/2;∆!βλ∆βq/4)

&
dW (β,λ),

ψ2,W (qT ) =

*
etr(−∆!T,βλ∆T,β/2) 0F1

%
k/2;∆!T,βλ0∆T,βqT/4)

&
dW (β,λ),

the integrals are over (β,λ) ∈ Rm ×Rm×mpd , and ∆β and ∆T,β are deÞned in (13.8).

Comments: 1. As when m = 1, ψW (q1, qT ) does not equal
/
fQ1,QT

(q1, qT ;β,λ)
dW (β,λ) and likewise with ψ2,W (qT ). This is because numerous cancellations occur
in the second expression in the Þrst line of the Corollary 7, including the constants
K1,m and K2,m.

2. When m = 2, the density formulae given in Comment 3 following Lemma 11
yield alternative expressions for ψW (q1, qT ) and ψ2,W (qT ) that are easier to compute.

Because ψ2,W (qT ) does not depend on q1, it can be absorbed into the conditional
critical value given QT = qT . Thus, the test based on LRW (q1, qT ) is equivalent to a
test based on ψW (q1, qT ). Because ψW (q1, qT ) is simpler than LRW (q1, qT ), we focus
on the test statistic ψW (q1, qT ).

The test that maximizes WAP among invariant similar tests with signiÞcance
level α rejects H0 if

ψW (Q1,QT ) > κα(QT ), (13.9)

where κα(QT ) is deÞned such that the test is similar. That is, κα(qT ) is deÞned by

Pβ0
(ψW (Q1, qT ) > κα(qT )|QT = qT ) = α, (13.10)
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where Pβ0
(·|QT = qT ) denotes conditional probability given QT = qT under the null,

which can be calculated using the density in Lemma 3(c).
The results of this section are summarized as follows:

Theorem 12 The test that rejects H0 when ψW (Q1, QT ) > κα(QT ) maximizes WAP
for the weight function W over all level α invariant similar tests.
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14 Appendix of Proofs

14.1 Proofs of Results Stated in Sections 2 and 3

Proof of Lemma 1. Let Z = [Z1 :· · ·:Zn]! and X = [X1 :· · ·:Xn]!. The distribution
of Y is multivariate normal with

EY = Zπa! +Xη, (14.1)

independence across rows, and covariance matrix Ω for each row. Hence, the density
of Y evaluated at the n× 2 matrix y = [y1:· · ·:yn]! is

(2π)−n/2|Ω|−n/2 exp
4
−1
2

n.
i=1

(yi − aπ!Zi − η!Xi)!Ω−1(yi − aπ!Zi − η!Xi)
5

= (2π)−n/2|Ω|−n/2 exp
4
−1
2

6
n.
i=1

y!iΩ
−1yi − 2π!(

n.
i=1

Ziy
!
i)Ω

−1a

−2tr((
n.
i=1

Xiy
!
i)Ω

−1η!) +
n.
i=1

(aπ!Zi − η!Xi)!Ω−1(aπ!Zi − η!Xi)
75

. (14.2)

If a density can be factorized as pθ(x) = fθ(T (x))h(x), then T (X) is a sufficient
statistic for θ. In consequence, given that Ω is known, Zi and Xi are Þxed and
known, a = (β, 1)!, and η = [γ : ξ], sufficient statistics for θ = (β,π!, γ!, ξ!)! are1n
i=1 ZiY

!
i = Z

!Y and
1n
i=1XiY

!
i = X

!Y and part (a) of the lemma holds.
To prove part (b) of the lemma, note that Z !Y and X !Y are (jointly) multivariate

normal random matrices and Z !X = 0. For any m1,m2 ∈ R2, we have

cov(Z !Ym1,X !Ym2) = cov(
n.
i=1

ZiY
!
im1,

n.
i=1

XiY
!
im2)

=
n.
i=1

ZiX
!
icov(Y

!
im1, Y

!
im2) = Z

!X ·m!1Ωm2 = 0, (14.3)

where the second equality uses independence across i and the third equality uses the
assumption that the covariance matrix Ω of Yi does not depend on i. Hence, Z !Y and
X !Y are independent.

The distribution of X !Y is multivariate normal with variances and covariances
that depend on X and Ω, but not on θ, and with mean

X !EY = X !(Zπa! +Xη) = X !Xη (14.4)

because X !Z = 0. Hence, the distribution of X !Y does not depend on (β,π) and part
(c) of the lemma holds.

The distribution of Z !Y is multivariate normal with variances and covariances
that depend on Z and Ω, but not on θ, and with mean

Z !EY = Z !(Zπa! +Xη) = Z !Zπa! (14.5)
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because Z !X = 0. Hence, the distribution of Z !Y does not depend on (γ, ξ) and part
(d) of the lemma holds.

Part (e) of the lemma follows from parts (b)-(d). !

Proof of Lemma 2. The k-vector S is multivariate normal with mean

ES = (Z !Z)−1/2Z !EY b0 · (b!0Ωb0)−1/2
= (Z !Z)−1/2Z !(Zπa! +Xη)b0 · (b!0Ωb0)−1/2 = cβµπ (14.6)

using (14.1), Z !X = 0, and a!β0 = β − β0. We have

var(Z !Y b0) = var(
n.
i=1

ZiY
!
i b0) =

n.
i=1

ZiZ
!
ivar(Y

!
i b0) =

n.
i=1

ZiZ
!
ib
!
0Ωb0 = Z

!Zb!0Ωb0.

(14.7)

Hence, from the deÞnition of S, var(S) = Ik and part (a) of the lemma holds.
The k-vector T is multivariate normal with mean

ET = (Z !Z)−1/2Z !Y Ω−1a0 · (a!0Ω−1a0)−1/2
= (Z !Z)−1/2Z !(Zπa! +Xη)Ω−1a0 · (a!0Ω−1a0)−1/2 = dβµπ. (14.8)

>From (14.7) with b0 replaced by Ω−1a0, we have var(Z !Y Ω−1a0) = Z !Za!0Ω−1a0.
Hence, from the deÞnition of T, var(T ) = Ik and part (b) of the lemma holds.

The random vectors S and T are independent because they are non-stochastic
functions of Z !Y b0 and Z !Y Ω−1a0, respectively, and the latter are jointly multivariate
normal with covariance given by

cov(Z !Y b0, Z !Y Ω−1a0) = cov(
n.
i=1

ZiY
!
i b0,

n.
i=1

ZiY
!
iΩ

−1a0)

=
n.
i=1

ZiZ
!
icov(Y

!
i b0, Y

!
iΩ

−1a0) =
n.
i=1

ZiZ
!
ib
!
0ΩΩ

−1a0 = 0, (14.9)

using b!0a0 = 0. Hence, part (c) of the lemma holds. !

For completeness, we include a proof of Proposition 1.

Proof of Proposition 1. Sufficiency of the stated condition for similarity with
signiÞcance level α holds by iterated expectations.

To show necessity, suppose φ(S, T ) is similar with signiÞcance level α. Under the
null hypothesis, S ∼ N(0, Ik), T ∼ N(dβ0

µπ, Ik), and S and T are independent by
Lemma 2. Hence, S is ancillary for the parameter π. The density of T is

(2π)−k/2 exp(−T !T/2 + T !(Z !Z)1/2πdβ0
− d2β0

µ!πµπ/2)). (14.10)

For π ∈ Rk this forms an exponential family. Hence, by Thm. 4.1 of Lehmann (1986,
p. 142), T is a complete sufficient statistic for π under H0. By completeness, for any
function h such that Eβ0,πh(T ) = 0 for all π ∈ Rk, h(t) = 0 for almost all t.
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Given π ∈ Rk, take h(t) = Eβ0,π(φ(S, T )|T = t)− α. We have
Eβ0,πh(T ) = Eβ0,πEβ0,π(φ(S, T )|T )− α = Eβ0,πφ(S, T )− α = 0, (14.11)

where the second equality holds by iterated expectations and the third equality holds
by similarity of φ(S, T ) with signiÞcance level α. Hence, by completeness, h(t) =
Eβ0,π(φ(S, T )|T = t) − α = 0 for almost all t. The same argument applies for all
π ∈ Rk, which completes the proof of necessity.

The distribution of Q given T does not depend on π when β = β0 because T is
sufficient for π in this case. In consequence, the conditional expectation Eβ0

(·|QT =
qT ) does not depend on π. !

14.2 Proofs of Results Stated in Section 4

Proof of Theorem 1. LetM(S, T ) = [S:T ]![S:T ] = Q. M(S, T ) is a maximal invari-
ant if it is invariant and it takes different values on different orbits of G. Obviously,
M(S, T ) is invariant. The latter condition holds if given any k-vectors µ1, µ2, !µ1, and!µ2 such that M(µ1, µ2) =M(!µ1, !µ2) there exists an orthogonal k × k matrix F such
that !µ1 = Fµ1 and !µ2 = Fµ2, e.g., see Lehmann (1986, eqn. (7), p. 285).

First, suppose µ1 and µ2 are linearly independent (which implies that k ≥ 2).
Then, there exist linearly independent k-vectors µ3, ..., µk such that {µ1, ..., µk} span
Rk. Applying the Gram-Schmidt procedure to {µ1, ..., µk}, we now construct an or-
thogonal matrix F such that Fµ1 and Fµ2 depend on (µ1, µ2) only through µ

!
1µ1,

µ!1µ2, and µ!2µ2. For a full column rank k×4matrix A, letMA = Ik−A(A!A)−1A!. We
take f1 = µ1/||µ1||, f2 =Mµ1

µ2/||Mµ1
µ2||, ..., fk =M[µ1:···:µk−1]

µk/||M[µ1:···:µk−1]
µk||.

DeÞne F = [f1: · · · :fk]!. We have
Fµ1 = (f !1µ1, ..., f

!
kµ1)

! = (||µ1||, 0, ..., 0)! and
Fµ2 = (µ!1µ2/||µ1||, µ!2Mµ1

µ2/||Mµ1
µ2||, 0, ..., 0)!. (14.12)

Because µ!2Mµ1
µ2 = µ!2µ2 − (µ!1µ2/||µ1||)2, we Þnd that Fµ1 and Fµ2 depend on

(µ1, µ2) only through µ
!
1µ1, µ

!
1µ2, and µ

!
2µ2.

DeÞne !F analogously to F but with {!µ1, ..., !µk} in place of {µ1, ..., µk}. Then,!F!µ1 and !F!µ2 depend on (!µ1, !µ2) only through !µ!1!µ1, !µ!1!µ2, and !µ!2!µ2.
Now, suppose (µ1, µ2) and (!µ1, !µ2) are such that M(µ1, µ2) = M(!µ1, !µ2). That

is, µ!1µ1 = !µ!1!µ1, µ!1µ2 = !µ!1!µ2, and µ!2µ2 = !µ!2!µ2. Then, the orthogonal matrices
F and !F are such that Fµ1 = (||µ1||, 0, ..., 0)! = (||!µ1||, 0, ..., 0)! = !F!µ1 and !µ1 =!F−1Fµ1 = Fµ1, where F = !F−1F is an orthogonal matrix. Similarly, Fµ2 = !F!µ2
and !µ2 = !F−1Fµ2 = Fµ2. This completes the proof for the case where µ1 and µ2 are
linearly independent.

Next, suppose µ1 and µ2 are linearly dependent (as necessarily occurs when
k = 1). Then, we can ignore µ2 and proceed as above using just µ1 and some
additional linearly independent vectors {µ∗2, ..., µ∗k} for which {µ1, µ∗2, ..., µ∗k} span
Rk. The matrix F constructed in this way is such that if M(µ1, µ2) = M(!µ1, !µ2),
then !µ1 = Fµ1. In addition, because µ2 = κµ1 and !µ2 = κ!µ1 for some κ, we obtain!µ2 = Fµ2. This completes the proof. !
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Proof of Theorem 2. Sufficiency of the stated condition for similarity holds by
iterated expectations.

To show necessity of the condition, suppose φ(Q1, QT ) is similar with signiÞcance
level α. Because φ(Q1, QT ) = φ∗(S, T ) for some function φ∗, Proposition 1 implies
that

Eβ0,π(φ(Q1, QT )|σ(T )) = α a.s. (14.13)

for all π ∈ Rk, where σ(T ) denotes the σ-Þeld generated by T. Because σ(QT ) ⊂ σ(T ),
the law of iterated expectations and (14.13) give

Eβ0,π(φ(Q1, QT )|σ(QT )) = Eβ0,π(Eβ0,π(φ(Q1,QT )|σ(T ))|σ(QT )) = α a.s. (14.14)

for all π ∈ Rk. This is the desired result because the distribution of (Q1, QT ) only
depends on π through λ, so that Eβ0,π is equivalent to Eβ0,λ in the left-hand side of
(14.14). !

14.3 Proofs of Results Stated in Section 5

Proof of Lemma 3. First, we prove part (a). The k×2 matrix [S:T ] is multivariate
normal with mean matrix M = µπh

!
β, where hβ = (cβ, dβ)

!, all variances equal to
one, and all correlations equal to zero. Hence, Q = [S :T ]![S :T ] has a noncentral
Wishart distribution with mean matrix of rank one and identity covariance matrix.
By (6) of Anderson (1946), the density of Q at q is

K1 exp(−tr(M !M)/2)|q|(k−3)/2 exp(−tr(q)/2)
×(tr(M !Mq))−(k−2)/4I(k−2)/2

,0
tr(M !Mq)

-
. (14.15)

We have M !M = λhβhβ
!, where λ = µ!πµπ, tr(M !M) = λ(c2β + d

2
β), tr(M

!Mq) =
λh!βqhβ, and h

!
βqhβ = ξβ(q). Hence, part (a) holds.

Part (b) holds because the distribution of QT is a noncentral chi-squared distrib-
ution with non-centrality parameter d2βλ by Lemma 2(b) and (4.3). The stated form
of the density is given in Anderson (1946, eqn. (6)).

Part (c) holds by calculating the ratio of the densities given in parts (a) and
(b) of the lemma each evaluated at β = β0 and using the fact that cβ0

= 0 and
ξβ0
(q) = d2β0

qT .
Part (d) holds because the null distribution of QS is a central chi-squared distri-

bution with k degrees of freedom by Lemma 2(a) and cβ0
= 0.

For part (e), the null density of S2 is derived as follows: (i) S2 = S!T/(||S|| · ||T ||)
has the same distribution as A = S!α/||S|| for any α ∈ Rk with α!α = 1 because
S ∼ N(0, Ik) under the null and S and T are independent using Lemma 2(a) and (c),
(ii) for α = (1, 0, ..., 0)!, (k−1)1/2A/(1−A2)1/2 = (k−1)1/2S1/(

1k
j=2 S

2
j )
1/2 ∼ tk−1 by

deÞnition of the tk−1 distribution, and (iii) transformation of (k−1)1/2A/(1−A2)1/2
to A gives the density in part (d), e.g., see Muirhead (1982, pf. of Thm. 1.5.7(i), pp.
38-9; eqn. (5), p. 147).
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Next, we prove part (f). Under the null, S ∼ N(0, Ik), T ∼ N(dβ0
µπ, Ik), and S

and T are independent by Lemma 2. Hence, QS = S!S and T are independent. The
distribution of S!α/||S|| for α ∈ Rk with α!α = 1 does not depend on α by spherical
symmetry of S. In consequence, the conditional distribution of S2 = S!T/(||S|| · ||T ||)
given T = t does not depend on t and S2 is independent of T. Independence of
QS = S

!S and S!α/||S|| is a well-known result that holds by spherical symmetry of
S. !

Proof of Comment 4 to Corollary 2. The optimal test against β∗ rejects if
ξβ∗(Q1, QT ) is large and we have

lim
β∗→β0

,
ξβ∗(q1, qT )− d2β∗qT

-
/(β∗ − β0)

= lim
β∗→β0

,
(β∗ − β0)(b!0Ωb0)−1qS + 2b∗!Ωb0(b!0Ωb0)−1(det(Ω))−1/2qST

-
= 2(det(Ω))−1/2qST , (14.16)

where b∗ = (1,−β∗)!. Hence, if β∗−β0 > 0, the optimal test rejects when QST = S!T
is large or, equivalently, when QST/Q

1/2
T is large since the critical value can depend

on QT . The null distribution of QST/Q
1/2
T conditional on T or on QT is standard

normal by Lemma 2, so the critical value for the test is the 1− α quantile, κφ,α, of
the standard normal distribution. !

Proof of Comment 5 to Corollary 2. Comment 5 holds because (i) the optimal
test against β∗ rejects if ξβ∗(Q1,QT ) is large, (ii) we have

lim
β∗→∞

,
ξβ∗(q1, qT )− d2β∗qT

-
/c2β∗

= lim
β∗→∞

%
qS + 2(dβ∗/cβ∗)qST

&
= qS + 2(det(Ω))

−1/2(β0ω22 − ω12)qST , (14.17)

and (iii) the limit as β∗ → −∞ in (14.17) is the same as when β∗ →∞. The second
equality in (14.17) holds because

(det(Ω))1/2dβ∗/cβ∗ =
b∗!Ωb0
β∗ − β0

=
ω11 − (β∗ + β0)ω12 + β∗β0ω22

β∗ − β0
and so

lim
β∗→∞

dβ∗/cβ∗ = (det(Ω))−1/2 (β0ω22 − ω12) and

lim
β∗→−∞

dβ∗/cβ∗ = (det(Ω))−1/2 (β0ω22 − ω12) . ! (14.18)

14.4 Proofs of Results Stated in Section 6

THE FOLLOWING PROOF CAN BE ALTERED/SHORTENED BY JUST REF-
ERENCINGMoreira (2003b, Lemma 1) ANDUSING JUST THE FIRST AND LAST
PARAGRAPHS OF THE PROOF.
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Proof of Theorem 4. By continuity of the power function, which holds by Lehmann
(1986, Thm. 9, p. 59), any unbiased test φ(Q) is similar. Hence, the Þrst condition
of the Theorem holds by Theorem 2.

Now, for a test to be unbiased, (∂/∂β)Eβ,λφ(Q1, QT )|β=β0
= 0 for all values of

λ. By interchanging derivatives and integrals (which is justiÞed by Lehmann (1989,
Thm. 2.9, p. 59)) and the chain rule, the left-hand side of this equality equals I1+I2,
where

I1 =

* *
φ(q1, qT )

∂fQ1|QT
(q1, qT ;β0,λ)

∂β
dq1fQT

(qT ;β0,λ)dqT and

I2 =

* *
φ(q1, qT )fQ1|QT

(q1, qT ;β0)dq1
∂fQT

(qT ;β0,λ)

∂β
dqT

=

*
α
∂fQT

(qT ;β0,λ)

∂β
dqT = 0, (14.19)

where the second last equality holds by the condition for similarity and the last
equality holds because

/
fQT

(qT ;β,λ)dqT = 1 for all β.
To compute the derivative of the conditional density of Q1 given QT = qT with

respect to β evaluated at β0, it is convenient to write the conditional density of Q1
given QT = qT as

fQ1|QT
(q1, qT ;β,λ) = K1K

−1
2 exp(−qS/2) det(q)(k−3)/2q−(k−2)/2T ×

∞.
j=0

(λξβ(q)/4)
j

j!Γ((k − 2) /2 + j + 1)

= ∞.
j=0

(λd2βqT/4)
j

j!Γ((k − 2/2) + j + 1) (14.20)

using Lemma 3(a) and (b) and (5.10).
Tedious algebraic manipulations show that

∂fQ1|QT
(q1, qT ;β0,λ)

∂β
=
λ

2
fQ1|QT

(q1, qT ;β0)qST (det(Ω))
−1/2 ×

Ik/2(
(
λa!0Ω−1a0qT )/I(k−2)/2(

(
λa!0Ω−1a0qT ).(14.21)

The function Ik/2(·) arises because

∂

∂β

∞.
j=0

(λξβ(q)/4)
j

j!Γ((k − 2) /2 + j + 1) =
λ

4

∂ξβ(q)

∂β

∞.
s=0

(λξβ(q)/4)
s

s!Γ(k/2 + s+ 1)
(14.22)

and likewise with ξβ(q) replaced by (d
2
βqT ).

The necessary condition for unbiasedness, (14.19), and (14.21) give

0 =

*
h(qT )fQT

(qT ;β0,λ)dqT
Ik/2(

0
λa!0Ω−1a0qT )

I(k−2)/2(
0
λa!0Ω−1a0qT )

, where

h(qT ) =

*
φ(q1, qT )qST fQ1|QT

(q1, qT ;β0)dq1. (14.23)
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By completeness of QT under H0, see Comment 5 following Theorem 2, it must be
the case that h(qT ) is zero for almost all qT and all λ ≥ 0, which yields the second
condition of the Theorem.

Alternatively, the second condition of the Theorem can be derived as a spe-
cial case of a necessary condition given in Moreira (2003b, Lemma 1) for any test
φ∗(S, T ) to be unbiased: Eβ0

(φ∗(S, T )S|T ) = 0 a.s. This condition implies that
Eβ0

(φ∗(S, T )S!T |T ) = 0 a.s. Because φ(Q1, QT ) = φ∗(S, T ) for some function φ∗,
any unbiased invariant test φ(Q1, QT ) must satisfy: Eβ0,π(φ(Q1, QT )QST |T ) = 0 a.s.
for all π ∈ Rk. Because QT is determined by T, the law of iterated expectations gives
Eβ0,π(φ(Q1, QT )QST |QT ) = 0 for all π ∈ Rk. This is the desired result because the
distribution of (Q1, QT ) only depends on π through λ, so that Eβ0,π is equivalent to
Eβ0,λ here. !

Proof of Corollary 3. Any test that depends on (QS ,Q2ST ,QT ) can be written as
φ(QS,S22 , QT ), where S2 = QST/(QSQT )

1/2. By Lemma 3(e) and (f), QS , S2, and
QT are independent under H0 and S2 has a distribution that is symmetric about
zero. Hence, we have

Eβ0
(φ(QS,S22 , QT )QST |QT = qT ) = Eβ0

(φ(QS,S22 , qT )S2Q1/2S )q
1/2
T

=

*
Eβ0

(φ(qS ,S22 , qT )S2)q1/2S fQS
(qS)dqS · q1/2T = 0 (14.24)

for all qT , where the last equality holds because φ(qS ,S22 , qT )S2 is an odd function of
S2 and S2 is symmetrically distributed about zero. !

Proof of Theorem 5. By the same argument as in Section 5.2, it suffices to
Þnd the test that maximizes power against the single alternative density gW (q1|qT )
conditional on QT = qT . Given the restriction to locally-unbiased tests, we apply
the generalized Neyman-Pearson (GNP) Lemma, see Lehmann (1986, Thm. 3.5, pp.
96-7), rather than the Neyman-Pearson Lemma. The GNP Lemma implies that the
optimal (conditional) test rejects when LRW (Q1, qT ) > !κ1α(qT ) + !κ2α(qT )QST for
some !κ1α(qT ) and !κ2α(qT ) that are chosen such that the two conditions of Theorem 4
hold. As in Corollary 1, LRW (Q1, qT ) = ψW (Q1, qT )/ψ2W (Q1, qT ) and ψ2W (Q1, qT )
can be absorbed into the critical value functions. This yields the form of the test
stated in the Theorem.

It remains to verify the conditions needed to apply the generalized Neyman-
Pearson Lemma. Let M be the set of points

(E (φ(Q1, QT )|QT = qT ) , E (φ(Q1, QT )QST |QT = qT )) (14.25)

as φ ranges over all possible critical functions. It suffices to show that (α, 0) is an
interior point of M, see Lehmann (1986, Thm. 3.5(iv), p. 97).

The set M is convex because the conditional expectation operator is linear.
Moreover, M contains (α, 0) by considering the LM test. It also contains points
(α, u+α ) with u

+
α > 0 by considering the one-sided LM test which rejects H0 when
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QST/Q
1/2
T > cα. This follows because the derivative of the conditional power function

of this test is an increasing linear transformation of*
1
,
qST/q

1/2
T > cα

-
qST fQ1|QT

(q1, qT ;β0)dq1, (14.26)

which is strictly positive. Likewise, M also contains points (α, u−α ) with u−α < 0

by considering the test which rejects H0 when −QST /Q1/2T > cα by an analogous
argument. This completes the veriÞcation that (α, 0) lies in the interior of M. !

14.5 Proofs of Results Stated in Section 9

Proof of Lemma 4. Under Assumptions IID, INID, or MDS, Assumptions 2 and 3
hold by standard LLN�s and Assumption 4 holds by a MDS CLT, such as Cor. 3.1 of
Hall and Heyde (1980, p. 58). Under Assumption CORR, Assumptions 2 and 3 hold
by the ergodic theorem and Assumption 4 holds by the CLT given in the Theorem
of Heyde (1975) (of which there is only one). !

Proof of Lemma 5. Using the deÞnition Y = Zπa! + Xη + V, we obtain "V =
V − PZV − PXV. This and PZPX = 0 gives

n−1"V ! "V −Ω = (n−1V !V −Ω)− n−1V !PZV − n−1V !PXV. (14.27)

The Þrst summand on the right-hand side of (14.27) converges in probability to zero
by Assumption 3. The second summand satisÞes

0 ≤ n−1V !PZV ≤ n−1V !P !ZV = n−1(n−1/2V ! !Z)(n−1 !Z ! !Z)−1(n−1/2 !Z !V )→p 0,
(14.28)

where the second inequality holds because the span of Z is contained in the span of!Z and the convergence to zero holds by Assumptions 2 and 4. The third summand
of (14.27) converges in probability to zero by an analogous argument. !

Proof of Lemma 6. To establish part (a), we have

n−1Z !Z = n−1 !Z ! !Z − n−1 !Z !PX !Z →p D11 −D12D−122 D21 = L (14.29)

using Assumption 2. Let N∗ be a (k + p) × 2 random matrix with vec(N∗) ∼
N(0,Ω⊗D). Using Assumptions 2 and 4, we obtain

n−1/2Z !V b0 = n−1/2( !Z − PX !Z)!V b0 = n−1/2( !Z −XD−122 D21)!V b0 + op(1)
=
2
Ik : −D12D−122

3
n−1/2Z !V b0 + op(1)→d

2
Ik : −D12D−122

3
N∗b0

=
2
Ik : −D12D−122

3
(b!0 ⊗ Ik+p)vec(N∗). (14.30)

Hence, we have

Sn = (n−1Z !Z)−1/2(n−1/2Z !V b0 + n−1Z !ZCa!b0) · (b!0Ωb0)−1/2 →d H, where

H = L−1/2
%2
Ik : −D12D−122

3
(b!0 ⊗ Ik+p)vec(N∗) + LCa!b0

& · (b!0Ωb0)−1/2 (14.31)
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and the Þrst equality holds by Assumption 1 and Z !X = 0. Using Assumption 5, the
random vector H has a normal distribution with

EH = L1/2Ca!b0 · (b!0Ωb0)−1/2 = cβL1/2C and
var(H) = L−1/2

2
Ik : −D12D−122

3
(b!0 ⊗ Ik+p)(Ω⊗D)(b0 ⊗ Ik+p)

× 2Ik : −D12D−122 3! L−1/2 · (b!0Ωb0)−1
= L−1/2

2
Ik : −D12D−122

3
D
2
Ik : −D12D−122

3!
L−1/2 = Ik, (14.32)

which completes the proof for Sn.
Analogously to (14.30), we have

n−1/2Z !V Ω−1a0 →d

2
Ik : −D12D−122

3
((a!0Ω

−1)⊗ Ik+p)vec(N∗). (14.33)

Using this, we obtain

Tn= (n
−1Z !Z)−1/2

,
n−1/2Z !VΩ−1a0+n−1Z !ZCa!Ω−1a0

-
·(a!0Ω−1a0)−1/2 →d J , for

J =L−1/2
%2
Ik : −D12D−122

3
((a!0Ω

−1)⊗Ik+p)vec(N∗) + LCa!Ω−1a0
&·(a!0Ω−1a0)−1/2.

(14.34)

Analogously to (14.32), J has a normal distribution withEJ = dβL1/2C and var(J) =
Ik, which completes the proof for Tn.

The asymptotic normal distributions of Sn and Tn are independent because the
covariance of the random components of H and J is zero:

E(b!0 ⊗ Ik+p)vec(N∗)vec(N∗)!((Ω−1a0)⊗ Ik+p)
= E(b!0 ⊗ Ik+p)(Ω⊗D)((Ω−1a0)⊗ Ik+p) = (b!0a0)⊗D = 0. (14.35)

This completes the proof of part (a).
Part (b) holds by the deÞnitions of "Sn, "Tn, Sn, and Tn because (i) (Z !Z)−1/2Z !Y =

Op(1) by the same sort of argument as in (14.29) and (14.30), (ii) "Ωn →p Ω by Lemma
5, and (iii) Ω is pd by Assumption 3.

Part (c) follows immediately from parts (a) and (b). !

Proof of Theorem 6. The function ψW (·, ·) is continuous and does not depend on
n, see its deÞnition in Corollary 1. The same is true of the critical value function
κα(·) because the conditional distribution of Q1,n given QT,n is absolutely continuous
with a density that is a smooth function of qT and does not depend on n, see Lemma
3(c) and the deÞnition of κα(·) in (5.12). In consequence, the result of the Theorem
follows from Lemma 6, (9.5), and the continuous mapping theorem. !

Proof of Corollary 4. To prove part (a), let "Ψn = ψW ( "Q1,n, "QT,n)−κα( "QT,n),Ψn =
ψW (Q1,n, QT,n)−κα(QT,n), andΨ = ψW (Q1,∞, QT,∞)−κα(QT,∞). By Theorem 6(b),

P (|"Ψn −Ψn| > ε)→ 0 for all ε > 0. (14.36)

47



We have

P (|1("Ψn > 0)− 1(Ψn > 0)| > ε)
≤ P ("Ψn > 0 & Ψn ≤ 0) + P ("Ψn ≤ 0 & Ψn > 0). (14.37)

The Þrst summand on the right-hand side of (14.37) satisÞes

P ("Ψn > 0 & Ψn ≤ 0) ≤ P (0 < "Ψn ≤ ε) + o(1)→ P (0 < Ψ ≤ ε), (14.38)

where the inequality holds by (14.36) and the convergence holds by Theorem 6(c).
The right-hand side of (14.38) converges to zero as ε→ 0 because Ψ has an absolutely
continuously distribution by Lemma 3(a). Hence, the left-hand side of (14.38) con-
verges to zero as n→∞.

By an analogous argument, the second summand on the right-hand side of (14.37)
converges to zero as n→∞, which completes the proof of part (a).

Parts (b) and (c) follow immediately from Theorem 6(a) and (c).
Part (d) holds for the following reasons. The conditional distribution of Q1,∞

given QT,∞ = qT is the same as that of Q1,n given QT,n = qT because the former
distribution does not depend on λ∞ and the latter does not depend on λ, see Lemma
3(c). Hence, by deÞnition of κα(·), for all constants qT,∞, P (ψW (Q1,∞, qT,∞) >
κα(qT,∞)|Q1,∞ = qT,∞)) = α. This result and iterated expectations establishes part
(d). !

Proof of Corollary 5. The inequality holds because it holds with the limits deleted,
conditional on Z, for each n, by Theorem 3.

The equality holds by Corollary 4(b) (which applies because Assumption 3 holds
by a LLN for iid square-integrable random vectors and Assumptions 4 and 5 hold
because n−1/2Z !V ∼ N(,Ω⊗ (n−1Z !Z)) conditional on n−1Z !Z and n−1Z !Z →p D,

which implies that n−1/2Z !V →d N(,Ω⊗D). !

Proof of Theorem 7. First, we prove part (a). We have

"V !j b0 = V !j b0 − Z !j(Z !Z)−1Z !V b0 −X !
j(X

!X)−1X !V b0 (14.39)

because "V = V − PZV − PXV. Using (14.39), some manipulations, and Assumption
7, we obtain

n−1
n.
j=1

("V !j b0)2ZjZ !j − n−1 n.
j=1

(V !j b0)
2ZjZ

!
j →p 0. (14.40)
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In addition, we have

n−1
n.
j=1

(V !j b0)
2ZjZ

!
j

= n−1
n.
j=1

(V !j b0)
2( !Zj −D12D−122 Xj)( !Zj −D12D−122 Xj)! + op(1)

= n−1
n.
j=1

MB(Vi ⊗ Zi)(V !i ⊗ Z !i)B!M ! + op(1)

→ p MBΦB
!M !, (14.41)

where the Þrst equality holds using Assumption 2 via some manipulations, the second
equality holds by linear algebra, and convergence holds by Assumption 6. Combining
(14.40) and (14.41), gives !ΣS,n →p

!ΣS.
By similar arguments, !ΣTS,n →p

!ΣTS and !Σ∗T,n →p
!Σ∗T . (The arguments are

somewhat more involved because b0 is replaced by the random quantity "Ω−1n a0, but
no additional assumptions are needed.) These results combine to give !ΣT,n →p

!ΣT .
To establish part (b), we Þrst show that the result of Lemma 6(c) holds. We have!Sn = !Σ−1/2S,n

,
n−1/2Z !V b0 + n−1Z !ZCa!b0

-
→ d

!Σ−1/2S

2
Ik : −D12D−122

3
(b!0 ⊗ Ik+p)vec(N∗) + !Σ−1/2S LCa!b0

∼ N(!Σ−1/2S LCa!b0, Ik), (14.42)

where vec(N∗) ∼ N(0,Φ), the equality uses (9.7) and Assumption 1, and the conver-
gence holds by part (a), (14.29), and (14.30).

By Lemma 5, part (a), and Assumption 4, the use of "Ω−1n , rather than Ω−1, in
the deÞnition of Tn has no effect asymptotically. Hence, we have!Tn = !Σ−1/2T,n

,
n−1/2Z !Y Ω−1a0 − !ΣTS,n!Σ−1S,nn−1/2Z !Y b0-+ op(1)

= !Σ−1/2T,n

,
n−1/2Z !V Ω−1a0 − !ΣTS,n!Σ−1S,nn−1/2Z !V b0-

+!Σ−1/2T,n

,
n−1Z !ZCa!Ω−1a0 − !ΣTS,n!Σ−1S,nn−1Z !ZCa!b0-+ op(1)

→ d
!Σ−1/2T

,
MAvec(N∗)− !ΣTS!Σ−1S MBvec(N∗)

-
+!Σ−1/2T

,
LCa!Ω−1a0 − !ΣTS!Σ−1S LCa!b0- , (14.43)

where M, A, and B are deÞned in (9.9) and the convergence holds by (14.30) and
(14.34). The covariance matrix of the limiting distribution in (14.43) is Ik because

var
,
MAvec(N∗)− !ΣTS!Σ−1S MBvec(N∗)

-
= MAΦA!M ! −MAΦB!M !!Σ−1S !Σ!TS − !ΣTS!Σ−1S MBΦA!M !

+!ΣTS!Σ−1S MBΦB!M !!Σ−1S !Σ!TS
= !Σ∗T − !ΣTS!Σ−1S !Σ!TS = !ΣT . (14.44)
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The convergence in (14.42) and (14.43) is joint and the limit random vectors are
independent because

cov(MAvec(N∗)− !ΣTS!Σ−1S MBvec(N∗), !Σ−1/2S MBvec(N∗)) (14.45)

= MAΦM !B!!Σ−1/2S − !ΣTS!Σ−1S MBΦB!M !!Σ−1/2S = !ΣTS!Σ−1/2S − !ΣTS!Σ−1/2S = 0.

To complete the proof of part (b), we note that (i) Theorem 6(c) (with the changes
indicated in Theorem ??(b)) follows from (14.42)-(14.45) by the continuous mapping
theorem, (ii) Corollary 4(c) follows immediately from Theorem 6(c), and (iii) Corol-
lary 4(d) holds with ( !Q1,∞, !QT,∞) by the same reason as with (Q1,∞,QT,∞). !
14.6 Proofs of Results Stated in Section 10

Proof of Lemma 8. Part (a) holds because (i) conditional on [Z : X], equation
(14.2) with (π,Ω, η) replaced by (C/n12,Ω0 + Ω1/n1/2, η0 + η1/n

1/2), where Ω0 and
η0 are known and Ω1 and η1 are unknown, implies that (Z

!Y,X !Y, Y !Y ) are sufficient
statistics for (β, C,Ω1, η1) and (ii) (n

−1/2Z !Y, n1/2("ηn − η0), n1/2("Ωn − Ω0)) is an
equivalent set of sufficient statistics to (Z !Y,X !Y, Y !Y ).

Part (b) holds because (i) vec(n−1/2Z !V ) ∼ N(0,Ω ⊗ (n−1Z !Z)) conditional on
n−1Z !Z and n−1Z !Z →p L (by (14.30) using Assumption 2) imply that vec(n−1/2Z !V )
→d N(0,Ω⊗ L), (ii) vec(n−1/2Z !Zπa!) = vec(n−1Z !ZCa!)→p LCa

! by Assumption
2, (iii) n1/2("ηn − η0) = (n−1X !X)−1n−1/2X !V + η1 ∼ N(η1,Ω⊗ (n−1X !X)−1) con-
ditional on n−1X !X and (n−1X !X)−1 →p D

−1
22 (using Assumption 2) imply that

vec(n1/2("ηn − η0)) →d N(η1,Ω⊗D−122 ), (iv) n1/2("Ωn − Ω0) = n1/2(n−1V !V − Ω0) −
n−1/2V !PZV − n−1/2V !PXV using (14.27), (v) n1/2(n−1V !V − Ω0) = n−1/2(V !V −
EV !V ) + Ω1, (vii) vech(n−1/2(V !V − EV !V )) →d N(0, E(ζ − Eζ)(ζ − Eζ)!) by a
triangular array CLT for row-wise iid random vectors, (viii) n−1/2V !PZV = n−1/2 ·
n−1/2V !Z(n−1Z !Z)−1n−1/2Z !V →p 0 using (i), (ix) n−1/2V !PXV →p 0 by an anal-
ogous argument to (viii), and (x) the three random matrices on the left-hand side
of part (b) are asymptotically independent because they are independent in Þnite
samples conditional on n−1Z !Z and n−1X !X and the randomness in n−1Z !Z and
n−1X !X is asymptotically negligible. !

Proof of Theorem 8. The equality in the Theorem holds by the deÞnition of
a convergent sequence of asymptotically invariant tests. The inequality holds be-
cause (i) given the random quantities (Q∞,NX , NΩ), Q∞ is a sufficient statistic for
β and C since it is independent of NX and NΩ and the latter have distributions
that do not depend on β or C, (ii) part (i) implies that the WAP of the similar
test φ∗(Q∞, NX , NΩ) is less than or equal to that of some similar test !φ(Q∞) that
depends on (Q∞, NX , NΩ) only through Q∞, and (iii) Theorem 3 with Q replaced
by Q∞ implies that the WAP of the similar test !φ(Q∞) is less than or equal to the
upper bound given in Theorem 8. !

14.7 Proofs of Results Stated in Section 13

Proof of Lemma 9. The proof is essentially the same as that of Lemma 1. !
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Proof of Lemma 10. The proof is similar to that of Lemma 2. For brevity, we
only discuss the aspects of the proof that differ. To show independence of S and Tj ,
it suffices to show lack of covariance between S and Tj , because S and Tj are jointly
multivariate normal. We have

cov(Z !Y b0, Z !Y Ω−1α0,j) = cov(
n.
i=1

ZiY
!
i b0,

n.
i=1

ZiY
!
iΩ

−1α0,j)

=
n.
i=1

ZiZ
!
icov(Y

!
i b0, Y

!
iΩ

−1α0,j) =
n.
i=1

ZiZ
!
ib
!
0ΩΩ

−1α0,j = 0, (14.46)

because b!0α0,j = 0. By analogous calculations Tj and T) have zero covariance for
j "= 4 provided α!0,jΩ−1α0,) = 0 for all j "= 4. Lastly, Tj has covariance matrix equal
to Ik provided cov(Z !Y b0, Z !Y Ω−1α0,j) = Z !Z. By analogous calculations to those
in (14.46), the latter occurs if α!0,jΩ

−1α0,j = 1 for j = 1, ...,m. The vectors α0,j are
chosen so that the desired conditions b!0α0,j = 0, α!0,jΩ

−1α0,) = 0, and α!0,jΩ
−1α0,j = 1

hold. !

Proof of Theorem 9. The proof is the same as that of Proposition 1 provided the
family of distributions of T = [T1 : · · · : Tm] under H0 is a km-parameter exponential
family with parameter space that contains a km-dimensional rectangle. The log of
the null density of T times minus two is k log(2π) plus

m.
j=1

(Tj − (Z !Z)1/2πa!0Ω−1α0,j)!(Tj − (Z !Z)1/2πa!0Ω−1α0,j)

= tr

 m.
j=1

TjT
!
j

+ tr
 m.
j=1

(Z !Z)1/2πa!0Ω
−1α0,j

,
(Z !Z)1/2πa!0Ω

−1α0,j
-!

−2tr
 m.
j=1

(Z !Z)1/2πa!0Ω
−1α0,jT !j

 , (14.47)

where a!0 = [β0 : Im] ∈ Rm×(m+1).
The Þrst summand depends on the data, but not the parameters. The second

summand depends on the parameters, but not the data. Hence, these two terms are
not important. The third term can be written as

−2tr
 m.
j=1

!πjT #
j

 = −2
m.
j=1

k.
)=1

!πj,)Tj,), where
!πj = (Z !Z)1/2πa!0Ω−1α0,j ∈ Rk,!πj = (!πj,1, ..., !πj,k)!, and
Tj = (Tj,1, ..., Tj,k)

!. (14.48)

The parameters !π = [!π1 : · · · : !πm] ∈ Rk×m are the �natural� parameters of
the exponential family. There is a one-to-one transformation from π to !π provided
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Z !Z and Ω are nonsingular, which is assumed, a!0 = [β0 : Im] is full row rank m,
which holds by the deÞnition of a0, and α0 = [α0,1 : · · · : α0,m] ∈ R(m+1)×m is full
column rank m. The latter holds because Ω−1/2α0,1, ...,Ω−1/2α0,m are orthogonal by
construction, so Ω−1/2α0 = [Ω−1/2α0,1 : · · · : Ω−1/2α0,m] is full column rank m and,
in turn, α0 is full column rank using the fact that Ω is nonsingular. The parameter
space for π includes a km-dimensional rectangle. Hence, the same is true for !π. We
conclude that the family of distributions of T underH0 is a km-parameter exponential
family with parameter space that contains a km-dimensional rectangle. !

Proof of Theorem 10. The proof is the same as that of Theorem 1, but one
considers vectors (µ1, ..., µm) and (!µ1, ..., !µm) instead of (µ1, µ2) and (!µ1, !µ2). !
Proof of Theorem 11. The proof is the same as that of Theorem 2 using Theorem
9 in place of Proposition 1. !

Proof of Lemma 11. First, we establish part (a). The k × (m+ 1) matrix [S :T ]
is multivariate normal with mean matrix M = µπ∆β, all variances equal to one, and
all correlations equal to zero by Lemma 10. Hence, Q = [S:T ]![S:T ] has a noncentral
Wishart distribution with k degrees of freedom, covariance matrix Im+1, and matrix of
noncentrality parametersM !M = ∆!βλ∆β, where λ = µ

!
πµπ. By (10.3.1) of Muirhead

(1982), the density of Q at q is as given in part (a) of the lemma.
Part (b) is established as follows. The distribution of QT is a noncentral Wishart

distribution with k degrees of freedom, covariance matrix Im, and matrix of non-
centrality parameters ∆!T,βλ∆T,β by Lemma 10(b). By (10.3.1) of Muirhead (1982),
the density of QT at qT is as given in part (b) of the lemma.

For part (c), by calculating the ratio of the densities in parts (a) and (b) of the
lemma evaluated at β = β0 and using the fact that tr(∆

!
β0
λ∆β0

) = tr(∆!T,β0
λ∆T,β0

),
we obtain

fQ1|QT
(q1|qT ;β0,λ) = K1,mK

−1
2,m|q|(k−m−2)/2|qT |−(k−m−1)/2etr(−qS/2) (14.49)

× 0F1

,
k/2;∆!β0

λ∆β0
q/4)

-,
0F1

,
k/2;∆!T,β0

λ∆T,β0
qT/4)

--−1
.

We show below that the conditional distribution of Q1 given QT = qT does not
depend on λ. Hence, we can take λ = 0 in (14.49). Because 0F1 (k/2; 0m×m) = 1 for
all positive integers m (e.g., see Muirhead (1982) p. 226 for the case m = 1 and pp.
227-8 and p. 258 for the case m ≥ 1), this yields the expression given in part (c) of
the lemma.

The conditional distribution of Q1 given QT = qT does not depend on λ by the
following argument. Theorem 11 states that invariant tests are similar if and only if
they have Neyman structure with respect to QT (e.g., as deÞned in Lehmann (1986,
pp. 141-2)). By Theorem 4.2 of Lehmann (1986, p. 144), the latter implies that
QT is a boundedly complete sufficient statistic under H0 for the parameter λ > 0.
Sufficiency of QT implies the desired result.

An alternative (and more direct) proof that the conditional distribution of Q1
given QT = qT does not depend on λ is the following: (i) there is a one-to-one
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transformation from Q1 to !Q1 = (QS , S!T1/||S||, ..., S!Tm/||S||), so it suffices to show
that the conditional distribution of !Q1 does not depend on λ, (ii) the distribution
of !Q1 depends on T = [T1 : · · · : Tm] only through T !jT) for j, 4 = 1, ...,m by the
spherical symmetry of the null distribution of S, which is N(0, Ik) by Lemma 10(a),
(iii) by (ii) the conditional distribution of !Q1 given QT = T !T is the same as the
conditional distribution of !Q1 given T , and (iv) the conditional distribution of !Q1
given T is a random function of S only and the null distribution of S is N(0, Ik),
which does not depend on λ. !
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Footnotes

1 Andrews gratefully acknowledges the research support of the National Science
Foundation via grant number SES-0001706; Stock acknowledges support via NSF
grant number SBR-0214131.

2 The statistics S and T are denoted S and T , respectively, in Moreira (2003a).
3 An orbit of G is an equivalence class of k× 2 matrices, where x1 ∼ x2 (mod G)

if there exists an orthogonal matrix F such that x2 = Fx1.
4 In Johnson and Kotz (1970, 1972), a standard reference for probability densities,

the formulae for the noncentral Wishart and chi-squared distributions in terms of
I(k−2)/2(·) contain several typographical errors. Hence, the densities in Lemma 3(a)
and (b) are based on Anderson (1946, eqn. (6)) and are not consistent with those
of Johnson and Kotz (1970, eqn. (5), p. 133; 1972, eqn. (50), p. 176). Sawa (1969,
footnote 6) notes that Anderson�s (1946) eqn. (6) contains a slight error in that the
covariance matrix Σ is missing in one place in the formula. This does not affect our
use of Anderson�s formula, however, because we apply it with Σ = Ik.

5 This is true except in the special case in which β0 = ω12/ω22, where ω12 is the
off-diagonal element of Ω and ω22 is the (2, 2) element of Ω.

6 The usual criterion is that of Wald (1943), who considers weighted average
power over certain ellipses in the parameter space. Lack of asymptotic efficiency for
a test does not mean that the test is asymptotically inadmissible under strong IV
asymptotics. Rather, it means that the test does not possess the standard two-sided
asymptotic optimality properties that LR, LM, and Wald tests possess in regular
models.

7 The proof of this relies on the fact that qST enters the densities only through q2ST
in each place except in the modiÞed Bessel function. In consequence, the cancellations
that occur in the middle expression of the Þrst line of Corollary 1 still hold.

8 The second condition of Theorem 4 clearly implies (6.10). The converse holds by
the completeness of QT because by iterated expectations the left-hand side in (6.10)
can be written as Eβ0,λh(QT ), where h(QT ) = Eβ0

(φ(Q)QST |QT = qT )/Q1/2T .
9 This deÞnition of "Ωn is suitable if Z or X contains a column vector of ones,

which is usually the case. If not, then "Ωn is deÞned with the sample mean of "V
subtracted off.

10 There is no need to recenter {"V !i b0Zi : i ≤ n} by subtracting off its sample mean,
n−1

1n
j=1

"V !j b0Zj , in the deÞnition of !ΣS,n because its sample mean is identically zero.
The same holds for !ΣTS,n and !Σ∗T,n.
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